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There is a problem: In elementary geometry the numbers you have at disposal
are length of line segments.

How can you get a measure for areas. Is that well defined?

Try another method. Use ratios:

“\
a:b=a’ : b’ iff the lines g and h are parallel

again that has to be well defined:

Desargues

Both problems can be overcome by elementary methods, that is, only by use of
axioms for congruence, ordering and parallelism, but without use of calculus.

But that is tricky

Hilbert: Grundlagen der Geometry
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If you accept these axioms, you may find orthonormal coordinates with
respect to the standard scalar product over an ordered field P.

Now look at the line g connecting 0 and (a,b) :

On g we should find a point A such that the line segment between 0 and A
has length 1. o
So we have to solve the equation

s’ (a’+b’) = 1. That means P has the
Property: Forall a,beP there exists CEP such that c¢®=a’+b?.

Definition: A field P is called pythagorean, if it is formally real and if the sum of
two squares in P is again a squafe.

Note, that a in a field of characteristic 2 one has always a’+ b’= (a+b)’ and a
non formally real field with this property is quadratically closed because of the
identity: a=% (a+1)’-(a-1)’.

Definition: A field E is called euclidean, if it has a unique ordering such that
the positive elements are squares.



Paradox: For basic euclidean geometry the field of scalers is pythagorean
(with a fixed ordering).

For basic non euclidean geometry the field of scalars is euclidean.

Note that Pythagoras law does not hold in non euclidean geometry.

Fields which are close to the rational numbers or function fields are never
pythagorean. So let us look at the other end. Look at the Galois theory.



What can we say about the Galois theory of pythagorean fields?

After what | have told so far it is not surprising, that an early paper is due to
two mathematicians, who worked on foundations of geometry at that time.

Zur Galoistheorie pythagoreischer Korper
Professor KARL STRUBECKER zum 60, Geburtstag gewidmet

Von

J. DiLLER und A. Dress

ARCH. Math. XVI, 1965
Here is the first result:

Prdposition. Let K be a field of Char.3 2
a) In K is every sum of squares a square, if K admits no cyclic extension of

degree 4.
In particular, K is pythagorean, iff K admits no cyclic extension of degree 4, but

extensions of degree 2.

b) If K is formally real and not pythagorean, the pythagorean closure of K
admits a cyclic extension of degree 4.

Corollary. If E is pythagorean and fiﬁ'/’?e over K, then K is pythagorean too.
I will call a property p of a class of fields genetic, if:

Let L/K be a finite extension. Then if L has property p, then K has property p
too.

So genetic properties are:

To be pythagorean
To be euclidean
To be henselean

Also, no proper finite extension C/K can be algebraically closed (quadratically
closed) unless K is real closed (euclidean).
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Also they show
‘Proposition: Let P be formally real, qq-Pz. Then P ( rq_' ) is pythagorean, iff
PrqP’ =P U qP.

In that case P is called g- pythagorean.

Proposition: For a formally real field P the following properties are equivalent:
a) P(Jq')is pythagorean for all q¢ -P.

b) P*+qP’ = P* U qP’ for all qf -P.

c) P(i ) isthe only non-real quadratic extension of P.

i:=f1’.

If these properties hold for P, then they hold for every real quadratic extension
of P too.

All this is shown by direct calculation ( Diller-Dress, 1965 loc. cit),

may be a little bit hidden.

Pythagorean fields with these properties came up again about 1972 under
different names: ‘

Strictly pythagorean fields ( Br.)

Superpythagorean fields ( Elman,Lam)

2- hereditarily Pythagorean fields (Becker)

Eberhards goal was, to understand the Galois group of these fields.
More generally he showed the following result which | like very much.

For this let P be a formally real field, C its algebraic closure and i=f-1"
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Theorem (Becker 1976): For a formally real field P the following conditions are
equivalent:

a) P is hereditarily pythagorean, that is,

every real algebraic extension of P is pythagorean.

b) Every non real extension of P contains i.

c) Gal (C/P(i))is abelean.

d) Every real extension of P is the intersection of its real closures.
Under these conditions b” = 1 for all b&€Gal (C/P), b&Gal (C/P(i)).

Here b)--? a) and d)--» a)are obvious, using the property (p): If a finite
extension of a field K is pythagorean, than K is pythagorean too

b) - ¢ isinteresting: &etj: ¢ = =¢ amol ue Gl (C/PCi ).
Sinee jeiul = —i vehave (g 1= Fix(ja),
Jo £ Ao tcal eno Gzl (C, =) s abelear,
w5 Gel [ CI1=) 4= of orcler L. (it )%= (ol
Ttr'o fovale 1o e Gel(C/PC)) . = Gel (CIPL) <~
Qhbelean .
Here is a further equivalent condition | found shortly later:

e) The Haar- measure of Inv(Gal(C/P))) is 0, where Inv (G) is the set of
involutions in a group G.

The proof does not use Beckers theorem, but Diller-Dress, in particular
property p.

Question: Let G be a profinite group having no other finite subgroups but Z,
such that the Haar-measure of Inv (G) 0. Does that imply, that Haar-measure
ofInv(G)=% ?

Such a group is known to be abelean py finite. (Levai-Pyber, ARCH.MATH 75,2000).
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Beckers Theorem generalizes the characterization of hereditariy euclidean
fields

Definition: A field E is called hereditarily euclidean, if every finite real extension
of E is euclidean.

Theorem (Prestel-Ziegler 1975). For a field E the following conditions are
equivalent:

a) E is hereditarily Euclidean.
b) Every real algebraic extension of E is of odd degree.
c) Every non-real algebraic extension of E is quadratically closed.

d) E is the intersection of its real closures where any two of them are conjugate
over their intersection..

This follows either from Beckers Theorem or by use of similar methods.

There is a completely different approach to hereditarily pythagorean fields.
The first step was the following

Proposition (Br. 1972). Let K be a superpythagorqqn field. If K admits an
archimedean ordering, then K admits at most one further ordering.

For the short proof | surprisingly used Pfisters local-global principle for
ternary forms, which contradicts the condition K’+gk’= K> U gK? if you have
more than 1 further ordering.

Inspired by Beckers Theorem | generalized this to

Theorem (Br. 1976). Let P be a heretiarily pythagorean field. Then P admits a
henselean valuation such that the residue field admits at most 2 orderings,
hence 4 square classes.

| was asking me, if there was a short way from this to Beckers theorem, but |
didn’t find it except for this:

Theorem (Becker 1976). Let P be hereditarily pythagorean bearing only one
ordering. Then P is hereditarily euclidean.
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Proof: It is suffices to consider the residue fields. Let E/P a real extension and
let C be the Galois closure of E/P.

Also let S be the fixed field under the 2-Sylow subgroup of C/P.

C=S orS is euclidean

odd but at most 2 extensions of the ordering

:‘—-7 E is euclidean.



Pythagoras number
It is generally told that Pythagoras claimed:
Everything is number.
An expert told me that there exists no original citation. However his followers
(hundred years later) referred to him claiming, for instance:

TavTa TH FiLyvkGRIMEVA agvTpov gyovie

wich means: Every insight includes a number.

Sometimes this number is hard to find.

Definition: The Pythagoras number p(K) of a field K is the smallest p such that
every sum of squares in K is a sum of p squares (it can beco ).

Definition: The level €(K) of a non real field K is the smallest number (such that
-1 can be written as a sum of ¢ squares in K.

Well known: ¢ (K) is always a power of 2, and p(K)=[ (K) or € (K)+1,
if Kis notreal.

Examples: p(K) = 1 iff Kis Pythagorean or quadrajcically closed.
p(@)= 4, (Euler Lagrange). Also p(L) = 4 for finite extensions L/@ (Hasse
Minkowski)

Proposition ( Becker 1976): Let P be a hereditarily pythagorean field.
Then p(P(t)) =2. P(t) = field of rational functions.

Proof: Let ¢ Be a quadratic form over P(t).Then §~ 0, if¢~ 0 over every K,
where K, is the discrete complete valued field induced by p.

(Milnor sequence). Now let a be a sum of squares in P. Then

(1,1,-a,-a) £ 0= (1,-1, a, -a), hence by cancelation (1,1,-a)=(-1,1,a).

Couldn’t we repeat this procedure ?

Problem: We do not know p(K) and s(K) for algebraic extensions of Q (t).
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Let
K/@ be finitely generated.
What is p (K) , dependingon tdg (K/@)?

That is a challenge for professionals. So far one has just bounds

Our topic are pythagorean fields. Here is a recent result, the proof of which is
not minor subtle:

Theorem (Becher et al.): Let P be hereditarily pythagorean and K a finite

extensionof P(t). Then p(K)X£ 5.

Corollary : Let P be hereditarily pythagorenan. Then p(P((x), (y))) £ 8.

1% —






