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How it all started
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Symmetric Cryptography

▶ Symmetric cryptography is a tool developed to ensure the
confidentiality of a message.

▶ Alice encrypts a secret message with an encryption algorithm
E and key kAB. Bob decrypts the ciphertext by using a
decryption algorithm D together with the same kAB .

▶ An attacker with access to the channel should not be able to
understand the communication.

▶ The key must be transmitted via a secure channel
(out-of-band) between Alice and Bob.
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Public-Key Cryptography
Public-key cryptography gives positive answers to the following
questions:
▶ Can two people who have never met have a private

conversation?
▶ Is it possible to digitally sign documents?
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Public-Key Encryption

▶ This is achieved by introducing cryptosystems using a pair of
keys.

▶ Alice encrypts a message for Bob with Bob’s public key pkBob .
▶ Bob decrypts the message with his secret key skBob.
▶ pkBob can be transmitted over an insecure channel.

skBob has to be stored securely.
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Digital Signatures

▶ Bob signs a message for Alice with his secret key skBob.
▶ Alice verifies the received signature with Bob’s pkBob .

�The famous RSA public-key cryptosystem can be easily turned
into a signature algorithm. This also explains why it is so
widespread nowadays.
�The result of these positive answers is that
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Cryptography is Ubiquitious

It is deployed in
▶ messenger services,
▶ electronic commerce,
▶ automotive industry,
▶ cloud computing,

▶
...
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Security Principles of Public-Key Cryptography

All widely used public-key systems rely on hard problems from
algebraic number theory.
▶ RSA is based on the hardness of integer factorization, n = pq.

▶ Diffie-Hellman(-Merkle) key exchange is based on the
hardness of computing the discrete logarithm,
y = ga , logg (y) = a (dlog).

▶ Elliptic curve cryptography (ECC) is based on the special case
of the elliptic curve discrete logarithm, Q = sP , logP (Q) = s.

These problems allow systems of small key sizes.
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Practical Key Sizes
RSA Dlog ECC

bit size of bit size of bit size of
modulus n prime field Fp field Fn

2800 ∼ 2800 ∼ 240
3000 ∼ 3000 ∼ 250

Technical guideline TR-02102-1, Version 2023-1 from the Federal
Office for Information Security (FOIS).
With these key sizes the underlying problems are supposed to be
hard and the systems considered practical secure.

Practical Security (informal)
A cryptosystem is practical secure if the best known algorithm for
breaking it requires (almost for sure) an unreasonable amount of
time or memory using available computing power.

A For the systems above the best known algorithms require to
solve the underlying hard problem.

10 / 31



Practical Key Sizes
RSA Dlog ECC

bit size of bit size of bit size of
modulus n prime field Fp field Fn

2800 ∼ 2800 ∼ 240
3000 ∼ 3000 ∼ 250

Technical guideline TR-02102-1, Version 2023-1 from the Federal
Office for Information Security (FOIS).
With these key sizes the underlying problems are supposed to be
hard and the systems considered practical secure.

Practical Security (informal)
A cryptosystem is practical secure if the best known algorithm for
breaking it requires (almost for sure) an unreasonable amount of
time or memory using available computing power.

A For the systems above the best known algorithms require to
solve the underlying hard problem.

10 / 31



Practical Key Sizes
RSA Dlog ECC

bit size of bit size of bit size of
modulus n prime field Fp field Fn

2800 ∼ 2800 ∼ 240
3000 ∼ 3000 ∼ 250

Technical guideline TR-02102-1, Version 2023-1 from the Federal
Office for Information Security (FOIS).
With these key sizes the underlying problems are supposed to be
hard and the systems considered practical secure.

Practical Security (informal)
A cryptosystem is practical secure if the best known algorithm for
breaking it requires (almost for sure) an unreasonable amount of
time or memory using available computing power.

A For the systems above the best known algorithms require to
solve the underlying hard problem.

10 / 31



What are hard Problems?

James L. Massey:“A hard problem is a problem nobody works on.”
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What if Somebody Works on it...

If large enough quantum computers can be built
▶ all schemes based on RSA, Dlog, ECC are insecure (Shor’94).

Is this not just thinking about the far future?
News in Jan. 2014 (Washington Post, Snowden Files)
▶ NSA has spent 85M$ on research to build a quantum

computer.
▶ After the disclosure the National Institute for Standards and

Technology (NIST, US pendant to FOIS) initiated the PQC
competition.

�Symmetric cryptography remains secure when employed with
larger but still moderate sized keys. These schemes remain
practical.
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The NIST Post-Quantum Cryptography Competition
https:
//csrc.nist.gov/Projects/Post-Quantum-Cryptography

▶ Start: 2016
▶ End: 2022, Draft standards until 2024.
▶ 2022: Round 4 submissions for backup candidates.
�Post-quantum cryptography deals with designing cryptographic
algorithms which are still secure even if large enough quantum
computers can be built.

Secure means again practical secure.
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The new Candidates
The submitted candidates are based on the following hard
problems with respect to post-quantum cryptography.
▶ Lattice-based crypto (e.g. hardness of finding short vectors).
▶ Code-based crypto (hardness of decoding a random code).
▶ Multivariate crypto (hardness of solving a random system of

quadratic equations).
▶ Most designs discussed in this competition are not new.

Due to their large key sizes they were rarely employed in
practice before this competition.
Up to 1 Mb for a security level of e.g. 2048 bit ≈ 200 byte
RSA.

▶ E.g. multivariate cryptosystems have been studied by E.
Becker and others long before this competition (diploma
theses by M. Daum and P.Felke).
A good reason to have a look at these cryptosystems.
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Going Back to the 80s
The Imai-Matsumoto Cryptosystem C ∗ (1988)

▶ Presented at Eurocrypt 1988.
▶ Particularly useful for lightweight cryptography, e.g. lowcost

smartcards, IoT devices, . . .
▶ It resists known attacks based on quantum computers.
▶ Drawback is its public key size - 127 kbyte for a security level

of 2048 bit RSA.
The secret key size is 4 kbyte.

▶ FOIS planned in the 90th to implement a variant in devices
employed for national security.
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The Imai-Matsumoto Cryptosystem C ∗

General parameters:
1. A finite Field Fq , q := 2m , a field extension of Fqn of degree n,

an Fq-basis B = {𝛽1, . . . , 𝛽n} of Fqn .

2. A 0 ≤ \ ≤ n − 1, s.t. the power function 𝜋(X ) := X q \+1 is
bijective, i.e. gcd(q \ + 1, qn − 1) = 1.

3. The inverse mapping, which is the power mapping
𝜋−1(X ) = Xh with h (q \ + 1) = 1 mod qn − 1.

Secret key:
1. Affine Transformations S = Ax + d ,T = Bx + e,

A,B ∈ GL(n, Fq), und d , e ∈ Fn
q .

�Condition 2 requires qn to be even. It is easy to find proper n
such that condition 2 can be fulfilled.
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Construction of the Public-Key
Compute the multivariate representation of 𝜋(X ) = X q \+1 with
respect to B.
It is 𝛽

q \

i =
∑n

l=1 p (\ )il 𝛽l and 𝛽i𝛽j =
∑n

l=1 mijl𝛽l , p (\ )il ,mijl ∈ Fq .

Set v := 𝜋(u) = uq \+1, u :=
∑n

i=1 ui𝛽i , ui ∈ Fq then
v =

∑n
l=1 vl𝛽l =(∑n

i=1 ui𝛽
q \

i

) (∑n
j=1 uj𝛽j

)
=

(∑
1≤i ,≤`≤n p (\ )i` ui𝛽`

) (∑n
j=1 uj𝛽j

)
=∑n

l=1

(∑
1≤i ,j ,`≤n p (\ )i` m`jluiuj

)
𝛽l =∑n

l=1

(∑
1≤i≤j≤n a (l )ij uiuj

)
𝛽l .Comparing coeff. yields vl =∑

1≤i≤j≤n a (l )ij uiuj =: fl (u1, . . . , un)⇒ 𝜋(u) = ∑n
l=1 fi (u1, . . . , un)𝛽l .

The mult. representation of 𝜋(X ) is f1, . . . , fn and hidden by

T ◦
©«

f1
...

fn

ª®®¬◦S =B
©«

f1((Ax + d)1, . . . , (Ax + d)n)
...

fn ((Ax + d)1, . . . , (Ax + d)n)

ª®®¬+e =
©«

p1(x)
...

pn (x)

ª®®¬
The quadratic polynomials p1, . . . , pn constitute the public key.
The computations are modxq

1 + x1, . . . , xq
n + xn .
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Encryption/Decryption with C ∗

Encryption (public):

m ∈ Fn
q

c=(p1 (m ) ,...,pn (m ) )t=T◦𝜋◦S (m )
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ c ∈ Fn

q

Decryption (secret):

m S−1
←−−−−−−− Fn

q Fn
q

T−1
←−−−−−−− cxΦ−1

B
yΦB

Fqn
𝜋 (X )−1=Xh

←−−−−−−−−−−−−−−− Fqn

ΦB (v) :=
∑n

i=1 vi𝛽i
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Encryption/Decryption

▶ Alice encrypts a message m = (m1, . . . ,mn) by computing
c1 = p1(m1, . . . ,mn)

...

cn = pn (m1, . . . ,mn)
▶ Bob decrypts the ciphertext c = (c1, . . . , cn) by computing

1. v = T −1 (c)
2. 𝜋−1 (∑ vi𝛽i) = (v)h = u =

∑
ui𝛽i ⇒ u = (u1, . . . , un)

3. m = S−1 (u)
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Security

Malicious Eve (attacker) faces the problem to solve the following
system of quadratic equations
c1 = p1(x1, . . . , xn)

...

cn = pn (x1, . . . , xn),
which has the unique solution (m1, . . . ,mn)t in Fn

q .
Gröbner Bases are commonly used to solve such systems.

Systems of quadratic equations
Solving a system of m quadratic equations in n variables is
NP-hard with respect to worst case complexity.

The decomposition problem, i.e. recovering the secret key S ,T is
supposed to be even harder.
Interpolating the inverse mapping is also infeasible.
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The Big Surprise (especially for FOIS)

▶ C ∗ was broken by J. Patarin in 1995. Independently by
Dobbertin in 1993 while being employed at FOIS and thus his
work was classified at this time.

▶ The attack makes use of the unforeseen relation for
Y = X q \+1:
YX q2\ +Y q \X = 0 for all Y = X q \+1,X ∈ Fqn .

▶ This yields at least k ≥ n multivariate relations
rl (x , y) =

∑n
i ,j 𝛾

(l )
ij xiyj +

∑n
i=1 𝛼

(l )
i xi +

∑n
i=1 𝛽

(l )
i yi + 𝛿 (l )

fulfilled for all plaintext-ciphertext pairs (m, c).
These can be easily computed from the public key.

▶ Both proved that plugging in an intercepted ciphertext c
yields a system of linear equations rl (x , c) = 0, 1 ≤ l ≤ k with
a solution space of dimension ≤ n

3 .

A The plaintext can be recovered efficiently for all practical
key sizes.

▶ The attack does not recover the secret key.
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The Dawn of new Ideas and Cryptanalytic Techniques

Patarin suggested to substitute 𝜋(X ) by
P (X ) :=

∑
aijX qi+qj

, aij ∈ Fqn .

�The birth of the HFE-Cryptosystem (HFE=Hidden Field
Equations).
Drawback of HFE:

1. Decryption is more complex.
2. Secret key is larger.
3. Security evaluations are more complicated.
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The Dawn of New Ideas and Cryptanalytic Techniques

C ∗ and HFE can be modified to supposedly efficient signature
schemes by removing equations (public polynomials) or adding
“dummy” variables.
▶ SFLASH and Quartz are systems based on these approach.
▶ Both had been submitted to the NESSIE Project (New

European Schemes for Signature, Integrity and
Encryption,2002-2003, project to support standardization) and
accepted.

▶ First discussions about these schemes in Dortmund.
▶ Later a security analysis by N. Courtois, M. Daum and P.

Felke rendered Quartz impractical.
▶ Later SFLASH and certain HFE-type cryptosystems were

broken with methods from the theory of nonassociative
algebras and quadratic forms. In some cases even the secret
key could be fully recovered (D. Coppersmith, P. Felke, P.A.
Fouque, J. Stern et al.).

�Many new approaches followed.
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Current Status (excerpt)
▶ C ∗ (Imai-Matsumoto, Eurocrypt’88):

broken (Dobbertin ‘93 (classified), Patarin, Crypto‘95).
▶ Quartz (Patarin et al., Cryptographers Track RSA 2001):

broken (Courtois, Daum, Felke , PKC 2003).
▶ SFLASH (Patatrin et al., 2001):

broken (V. Dubois, P.A. Fouque, Crypto 2007)
▶ HFE and variants with branches (Patarin, Eurocrypt 1996):

broken (L. Bettale et al., DCC 2013, P. Felke, WCC 2006).
▶ EFLASH (Cartor at al., SAC‘18):

broken (Øygarden, Felke et al., Cryptographers Track RSA
2020).

▶ Dob (Patarin et al., IACR Cryptol. ePrint Arch., 2018):
broken (Øygarden, Felke et al., PKC 2021/J. of Crypt. (wip)).

▶ GeMSS (Faugere et al, submission to NIST PQC comp.):
broken (Chengdong et al, Crypto 2021).

▶ Rainbow (Ding et al., NIST PQC candidate):
broken (W. Beullens, Crypto, 2022).
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Finalists and 4th Round Candidates
A None of the multivariate candidates survived in the NIST

PQC competition. Research for new strong candidates is still
ongoing.

On the 7th of July 2022 NIST announced after 3 rounds the
algorithms to be standardized:
▶ public-key encryption: CRYSTALS-Kyber (lattice-based),
▶ digital signatures : CRYSTALS-Dilithium, FALCON,

SPHINCS+ (all lattice-based).
4th round candidates (to have non-lattice-based alternatives):
▶ public-key encryption: Classic McEliece, Bike and HQC

(code-based).
A The promising 4th round candidate SIKE (isogeny-based) was
broken shortly after announcement (W. Castryck et al., Eurocrypt
2023).
This raises the question . . .
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. . . should one start to implement the candidates?
▶ Companies like Google, Microsoft etc. started to employ and

promote usage of PQC.
Thus customers will ask for it in other branches.

▶ FOIS gives the following advice (technical guidelines 2021-1):
Employ Classic McElice (as cryptanalysed since 1978) or
another candidate in combination with a classic standard like
ECC to e.g. derive two separate symmetric keys and from
those a single key.
The details are given in the guideline.

▶ Sooner or later PQC will be compulsory to fulfil certain
guidelines.

▶ The keys are much bigger. Up to 1 Mb in comparison to 3000
bit nowadays.

�Industry has to react now as changes later might be impossible,
e.g. in a hardware solutions or devices with too less memory.
A big challenge . . .
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Security Issues
A History has shown that most of the cyberattacks against

security solutions do not break the underlying crypto. It is
exploited how the crypto is implemented or employed.

A The transition to PQC requires considerable changes in
software and hardware.

A It is expected that these will open the door for new
cyberattacks.
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Thank you.
Any Questions?
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