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On a limiting absorption principle for
sesquilinear forms with an application to the
Helmholtz equation in a waveguide

Ben Schweizer, Maik Urban

AbstractWe prove a limiting absorption principle for sesquilinear forms on Hilbert
spaces and apply the abstract result to a Helmholtz equation with radiation condition.
The limiting absorption principle is based on a Fredholm alternative. It is applied to
Helmholtz-type equations in a truncated waveguide geometry. We analyse a problem
with radiation conditions on truncated domains, recently introduced in [4]. We
improve the previous results by treating the limit δ→ 0.

1 Introduction

This article is devoted to the analysis of time-harmonic versions of wave equations,
themost prominent example being the Helmholtz equationLu B −∇·(a∇u)−ω2u =
f , whereω is the prescribed frequency of the problem, a a positive coefficient, and f
a source term. The equation is posed in a domainΩ ⊂ Rn and it is complemented by
a boundary condition on ∂Ω. For applications, it is interesting to solve the equation in
an unbounded domainΩ. In order to make the equation well-posed in an unbounded
domain, radiation conditions must be imposed in those directions in which Ω is
unbounded.

A vast body of literature is devoted to radiation conditions such as the classical
Sommerfeld condition and their analysis, we mention [2, 12, 14] and the overview
of [13]. Recently, the interest turned to radiation conditions in periodic media. This
requires new methods, see [5, 6, 10]. Related to radiation conditions is the question
of a numerical treatment of the equation; the domain must be truncated (replaced
by a bounded domain), and the radiation condition must be replaced appropriately.
Methods like non-reflecting boundary conditions or perfectly matched layers are
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2 Ben Schweizer, Maik Urban

successfully applied to problemswith constant coefficients, but thesemethods cannot
be used in a periodic medium. The approach of [4] is to introduce radiation boxes
and to demand that the solution of the truncated problem is an outgoing wave in the
radiation boxes. The problem can be formulated with the help of a sesquilinear form.

Limiting absorption principle. A tool to establish the existence of solutions to
Lu = f in an unbounded domain is the limiting absorption principle. The idea of
that approach is to add a small absorption term. For δ > 0 we study

Luδ + δiuδ = f , (1)

such that the original problem is recovered for δ = 0. Usually, it is easy to establish
the existence of a solution to (1). Given a family of solutions (uδ)δ , we can study
the limit δ → 0. Any limit of the sequence (uδ)δ is a candidate for a solution to the
original problem. This program has been performed successfully in several settings,
as recent examples we mention [7] and [11].

A radiation condition for truncated domains was introduced in [4], the article
contains a well-posedness result for positive absorption δ > 0. Here, we study the
limit δ→ 0 of that system.

Abstract setting. In the first part of this article, we derive the limiting absorption
principle in an abstract setting, and consider sesquilinear forms on Hilbert spaces.
We recall that the system of [4] is formulated with sesquilinear forms, hence our
abstract results can be applied to this “radiation condition on truncated domains”.

Given a (real or complex) Hilbert space H , a sesquilinear form b, and ` ∈ H ∗,
we look for an element u ∈ H that satisfies the equation

b(u, ·) = `(·) . (2)

If b is bounded and coercive, then the existence of such an element u follows from the
Lax-Milgram lemma. But how can we establish the existence of a solution u ∈ H
to (2) if b is not coercive? We perform the following approach: instead of b, we
consider a family (bδ)δ of sesquilinear forms such that there is a unique solution
uδ ∈ H to

bδ
(
uδ, ·

)
= `(·) (3)

for each δ > 0. Under suitable assumptions on the family (bδ)δ , we prove that the
sequence of solutions (uδ)δ converges to a solution u to (2) as δ→ 0.

The limiting absorption principle is based on a Fredholm alternative for sesquilin-
ear forms; see Proposition 2.1. We note that the Fredholm alternative is not new, but
rather a variant of known results, see [8, 9].

Application to theHelmholtz equation in periodicwaveguide.Let us sketch the
setting of the truncated problem of [4]. The geometry is described by the numbers
ε, R > 0 and H ∈ N, the truncated domain is ΩR := (−εR, εR) × (0, εH). A
parameter L > 0 defines the width of the two radiation boxes (εR, ε(R+L))×(0, εH)
and (−ε(R + L),−εR) × (0, εH). The coefficient a : R2 → R is assumed to be
periodic in the left half-space and in the right half-space; that is, a(x) = a−(x) for
x ∈ (−∞, 0) × (0, εH) and a(x) = a+(x) for x ∈ [0,∞) × (0, εH), where a− and a+
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are ε-periodic functions on R× (0, εH). The problem is to find a function uδ , which
solves (1) in ΩR and which is radiating in radiation boxes. This problem is recast in
[4] with a sesquilinear form βδ and is written as βδ(uδ, ·) = 〈 f , ·〉.

The problem for δ > 0 was analysed in [4]. Our abstract results allow to study the
limit δ → 0: Except for a countable set of singular frequencies ω, the solutions uδ
converge to the unique solution u of the original problem β(u, ·) = 〈 f , ·〉.

2 Fredholm alternative and limiting absorption principle

Our aim in this section is to present a limiting absorption principle for a sesquilinear
form defined on a Hilbert space over R or C. The limiting absorption principle is
based on a Fredholm alternative, which we present first.

2.1 Fredholm alternative for sesquilinear forms

The Fredholm alternative for Fredholm operators of index 0 is a classical result in
functional analysis. As we focus on problems involving sesquilinear forms rather
than operators, we present a Fredholm alternative for sesquilinear forms.

We recall that such an alternative is new. Indeed, Kress [9] proved a Fredholm
alternative for bilinear forms on reflexive Banach spaces and characterised the bi-
linear forms for which such a Fredholm alternative can hold. As our version of the
Fredholm alternative is slightly different from the one presented by Kress and for
convenience of the reader, we provide a proof.

LetH be a Hilbert space over the field K = R or K = C and let b : H ×H → K
be a sesquilinear form; that is, b is anti-linear in its first argument and linear in the
second. Note that b is bilinear in case K = R. The norm on H is denoted by ‖ · ‖.
The kernel of b is defined as

ker(b) B
{
u ∈ H : b(u, v) = 0 for all v ∈ H

}
.

The adjoint b∗ : H × H → K of b is given by b∗(u, v) B b(v, u). In case K = R
this reduces to b∗(u, v) B b(v, u). We say that a sesquilinear form b : H ×H → K
satisfies a Gårding inequality if there are a constant c > 0 and a compact operator
K : H → H ∗ such that ��b(u, u) + 〈Ku, u〉H∗,H

�� ≥ c ‖u‖2 , (4)

for all u ∈ H . The space of bounded linear functionals is denoted byH ∗. Thus, for
K = C the compact operator K : H → H ∗ in the Gårding inequality is an anti-linear
map.
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Proposition 2.1 (Fredholm alternative for sesquilinear forms) LetH be a Hilbert
space, and let b : H×H → K be a bounded sesquilinear form that satisfies aGårding
inequality. Then the following statements hold:
(a) Let ` ∈ H ∗. There exists u ∈ H with

b(u, ·) = `(·) (5)

if and only if
`(v) = 0 for all v ∈ ker(b∗) .

(b) The dimension of ker(b) is finite and equals the dimension of ker(b∗).
(c) If ker(b) = {0}, then for every ` ∈ H ∗ there is a unique u ∈ H such that (5)

holds.

Let us recall that a bounded linear operator F : H → K between two Hilbert
spaces H and K is called a Fredholm operator if both its kernel ker F and its
cokernel coker F := K/im F are finite dimensional. The index of F is defined as

ind F := dim ker F − dim coker F ∈ Z .

The Fredholm index is stable under compact perturbations; that is, if F is a Fredholm
operator and K : H → K is compact, then F + K is a Fredholm operator with
ind(F + K) = ind F. Denoting the adjoint of F by F∗ : K → H , one readily checks
that ker F∗ � coker F and coker F∗ � ker F; in particular, F∗ is a Fredholm operator
if and only if F is, and we have ind F = − ind F∗. For a discussion of Fredholm
operators we refer to [3].

We call an anti-linear operator F : H → K an anti-linear Fredholm operator if
H → K, u 7→ Fu is a Fredholm operator. The following result will be useful in the
proof of Proposition 2.1.

Lemma 2.1 Let H be a Hilbert space and let b : H × H → K be a bounded
sesquilinear form that satisfies aGårding inequality. Then the operator B : H → H ∗
given by u 7→ b(u, ·) is an anti-linear Fredholm operator of index 0.

Proof The sesquilinear form b is anti-linear an in its first argument and bounded,
which implies anti-linearity and boundedness of B. By assumption, b satisfies a
Gårding inequality; hence there is a compact anti-linear operator K : H → H ∗
such that (4) holds. The operator (B + K) : H → H ∗ induces a sesquilinear form
a : H ×H → K,

a(u, v) B
〈
(B + K)u, v

〉
H∗,H

= b(u, v) +
〈
Ku, v

〉
H∗,H

.

Thanks to the boundedness of b and K , the sesquilinear form a is bounded as well.
Moreover, a is coercive since b satisfies a Gårding inequality. We can apply the
Lax-Milgram lemma to conclude that the operator (B + K) : H → H ∗ is bijective.
Consequently, B+K is an anti-linear Fredholm operator of index 0. As the Fredholm
index is stable under compact perturbations, we deduce that B = (B+K) −K is also
an anti-linear Fredholm operator of index 0. This proves the claim. �
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Having Lemma 2.1 at hand, we can perform the proof of Proposition 2.1.

Proof (of Proposition 2.1) By Lemma 2.1 we know that the operator B : H → H ∗,
u 7→ b(u, ·) is an anti-linear Fredholm operator of index 0. Obviously, ker(b) = ker B.

(a) Problem (5) is equivalent to Bu = ` inH ∗. As im B � H ∗/ker B∗ � (ker B∗)⊥,
we deduce that Bu = ` has a solution u ∈ H if and only if ` ∈ (ker B∗)⊥. We are
hence left to prove that ker B∗ = ker(b∗). Using the definition of B∗, we deduce that

b(u, v) = 〈Bu, v〉H∗ = 〈u, B∗v〉H = 〈B∗v, u〉H

for all u, v ∈ H . Hence, by identifying H with H ∗, we find that B∗v = b∗(v, ·) for
all v ∈ H and consequently ker B∗ = ker(b∗). This proves the claim.

(b) As ind B = 0, the adjoint B∗ is also a Fredholm operator of index 0. Hence
dim ker B = dim coker B = dim ker B∗. Thus dim ker(b) = dim ker B = dim ker B∗ =
dim ker(b∗). Finiteness of the dimensions follows since B is Fredholm operator.

(c) This statement is an immediate consequence of (a) and (b). �

2.2 Limiting absorption principle for sesquilinear forms

Given ` ∈ H ∗, a standard tool to prove the existence of a solution u ∈ H to

b(u, ·) = `(·) (6)

is the Lax-Milgram lemma. For this tool to work, b has to be coercive. If b is not
coercive, one can replace it by a family of suitable sesquilinear forms (bδ)δ and
prove, for each δ > 0, the existence of a solution uδ ∈ H to

bδ
(
uδ, ·

)
= `(·) . (7)

The idea is then to show that the solutions (uδ)δ of (7) converge in H to a solution
of (6) as δ→ 0.

We provide a sufficient condition for this method to work.

Assumption 2.1 The sesquilinear form b : H ×H → K satisfies the following two
requirements:

(i) (Uniqueness) The kernel of b is trivial.
(ii) (Gårding) There exist a constant c > 0 and a compact operator K : H → H ∗

such that ��b(u, u) + 〈Ku, u〉H∗,H
�� ≥ c ‖u‖2 for all u ∈ H .

We observe that every coercive sesquilinear form satisfies Assumption 2.1.

Lemma 2.2 Let H be a Hilbert space and let b : H × H → K be a bounded
sesquilinear form that satisfies Assumption 2.1. Then, for every ` ∈ H ∗ there is a
unique u ∈ H such that
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b(u, ·) = `(·) .

Proof The claim follows by applying Proposition 2.1(c). �

Theorem 2.1 (Abstract limiting absorption principle) Let H be a Hilbert space
over the field K and let b : H × H → K be a bounded sesquilinear form. Assume
that (bδ)δ is a family of bounded sesquilinear forms that satisfies the following
requirements:
(a) For each δ > 0, the sesquilinear form bδ satisfies Assumption 2.1.
(b) For u, v ∈ H fixed, limδ→0 bδ(u, v) = b(u, v).
(c) For every sequence (uδ)δ inH with uδ → u weakly inH there holds:

lim
δ→0

bδ
(
uδ − u, v

)
= 0 for all v ∈ H .

Assume further that
ker(b) = {0} .

Then the following holds: For every ` ∈ H ∗ there exists a sequence (uδ)δ such that
bδ(uδ, ·) = `(·), for each δ > 0. The sequence (uδ)δ weakly converges in H to an
element u ∈ H satisfying

b(u, ·) = `(·) . (8)

Moreover, the limit u is the unique solution to (8).

Proof Fix ` ∈ H ∗. Lemma 2.2 together with assumption (a) imply that, for each
δ > 0, there is a unique solution uδ ∈ H to bδ(uδ, ·) = `(·).

Case 1. Assume that (uδ)δ is bounded in H . We then find a subsequence (uδ)δ
and an element u ∈ H such that uδ → u weakly inH . For all v ∈ H there holds

|bδ(uδ, v) − b(u, v)| ≤
��bδ (uδ − u, v

) �� + |bδ(u, v) − b(u, v)| . (9)

Thanks to (b) and (c), we conclude from (9) that

lim
δ→0

bδ(uδ, v) = b(u, v) for all v ∈ H . (10)

On the other hand, for each δ > 0, we have that bδ(uδ, ·) = `(·). Combining this
with (10) we infer that b(u, v) = `(v) for all v ∈ H and a solution u ∈ H is found.
Uniqueness of u follows as ker(b) = {0}. As the limit u is unique, we infer that
every subsequence of the bounded sequence (uδ)δ has a subsequence that weakly
converges inH to u, and thus the whole sequence converges weakly.

Case 2. Suppose that (uδ)δ is unbounded in H . We shall prove that this is
impossible. As (uδ)δ is unbounded, we find a subsequence (uδ)δ with ‖uδ ‖ → ∞ as
δ→ 0. Consider the re-scaled sequence (wδ)δ given by

wδ B
uδ
‖uδ ‖

∈ H .

Clearly, (wδ)δ is bounded in H and thus there is an element w ∈ H such that
wδ → w weakly inH . For each δ > 0, the function wδ ∈ H satisfies the equation
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bδ(wδ, v) =
`(v)

‖uδ ‖
for all v ∈ H . (11)

As the sequence (uδ)δ is unbounded inH , we deduce from (b), (c), and equation (11)
that

b(w, v) = lim
δ→0

bδ(wδ, v) = lim
δ→0

`(v)

‖uδ ‖
= 0 for all v ∈ H .

By assumption ker(b) = {0} and thus w = 0.
As ` is bounded, we deduce from (11) that limδ→0 bδ(wδ,wδ) = 0. The sesquilin-

ear forms (bδ)δ satisfy Assumption 2.1; in particular, a Gårding inequality holds.
Consequently, there exist a compact operator K : H → H ∗ and a constant c > 0
such that

0 < c = c ‖wδ ‖2 ≤ |bδ(wδ,wδ)| + |〈Kwδ,wδ〉| . (12)

Sending δ→ 0 in (12), we find that

0 < c ≤ |〈Kw,w〉| ,

This is a contradiction and hence the sequence (uδ)δ cannot be unbounded inH . �

3 Existence result for a periodic bounded waveguide

In this section we apply Theorem 2.1 to a Helmholtz equation in a bounded wave-
guide, and extend the analytical results of [4].

3.1 Setting

Let us describe the setting of [4]: Fix a periodicity ε > 0, and define the domain
ΩR B (−Rε, Rε) × (0, εH) with R > 0 and H ∈ N. Assume that a+, a− : R2 → R
are two ε-periodic functions for which there exist constants c2 > c1 > 0 such that
c1 ≤ a+, a− ≤ c2. Define a : R2 → R by

a(x) B

{
a+(x) for x ∈ [0,∞) × R ,
a−(x) for x ∈ (−∞, 0) × R .

(13)

Fix δ, R, L > 0 and f ∈ L2(ΩR). Below, we will construct functions uδ : ΩR+L →

C that satisfy the Helmholtz equation with absorption parameter δ > 0,

−∇ · (a∇uδ) − ω2(1 + iδ)uδ = f in ΩR , (14)

and that are periodic in vertical direction. Furthermore, we construct a vertically
periodic function u : ΩR+L → C satisfying
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−∇ ·
(
a∇u

)
− ω2u = f in ΩR . (15)

To formulate the radiation conditions, we introduce radiation boxes

W−R,L B
(
−ε(R + L),−εR

)
× (0, εH) and W+R,L B (εR, ε(R + L)) × (0, εH) .

The restriction of u : ΩR+L → R to W±R,L is denoted by R±R,L(u). More precisely, we
also shift in the parameter x1 and set R−R,L(u),R

+
R,L(u) : [0, εL) × [0, εH) → R,

R−R,L(u)(x1, x2) B u
(
−ε(R + L) + x1, x2

)
and R+R,L(u)(x1, x2) B u(εR + x1, x2) .

Roughly speaking, the radiation condition at infinity is replaced by the requirement
that the solution u of (14) should be a right-going wave in W+R,L and a left-going
wave in W−R,L . To make this idea precise, we need the Bloch formalism.

Bloch expansion. Set Yε B ε(0, 1)2. For fixed N , M ∈ N we consider the index
sets

QN B

{
0,

1
N
, . . . ,

N − 1
N

}
and

IN,M B {( j,m) : j ∈ QN ×QM and m ∈ N0} .

For each j ∈ QN ×QM we consider L+j ,L
−
j : H1

per(Yε;C) → (H1
per(Yε;C))∗ given

by
L+j B −

(
∇ + 2πi j/ε

)
·
[
a+(x)

(
∇ + 2πi j/ε

) ]
,

and
L−j B −

(
∇ + 2πi j/ε

)
·
[
a−(x)

(
∇ + 2πi j/ε

) ]
.

The definition of these differential operators is motivated by the following observa-
tion: If ψ±j is an eigenfunction of L±j with eigenvalue µ±j , then x 7→ ψ±j (x)e

2πij ·x/ε

is a solution to the Helmholtz equation (15) with a = a±, ω2 = µ±j , and f = 0.
Let j ∈ [0, 1]2 be a fixed wave vector. We denote by (ψ+j,m)m∈N0 a family of

eigenfunctions of the differential operator L+j . The labelling is in such a way that
the corresponding eigenvalues (µ+m( j))m satisfy µ+

m+1( j) ≥ µ+m( j) for all m ∈ N0.
Similarly, the eigenfunctions of L−j are denoted by (ψ−j,m)m∈N0 . We normalise with
the condition

−

∫
Yε

���ψ±j,m���2 = 1 for all m ∈ N0 .

The eigenfunctions (ψ±j,m)m∈N are called Bloch eigenfunctions. The following ex-
pansion is classical; see, for instance, [1, Lemma 4.9].
Lemma 3.1 (Bloch expansion) For L,H ∈ N and ε > 0 denote by Wε the rectangle
(0, εL)×(0, εH). Let u ∈ L2(Wε;C). Then for both families of eigenfunctions (ψ+j,m)m
and (ψ−j,m)m, the function u admits a unique expansion

u(x) =
∑

(j,m)∈IN ,M

α±j,mψ
±
j,m(x)e

2πij ·x/ε in L2(Wε,C) , (16)
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where α±j,m ∈ C for all ( j,m) ∈ IN,M .

To shorten the notation, let us introduce for λ = ( j,m) ∈ IN,M the functions

Uλ : Wε → R , U±λ (x) B ψ±λ (x)e
2πij ·x/ε .

Having the families (U+λ )λ and (U
−
λ )λ, the expansion (16) reads

u =
∑

λ∈IN ,M

α±λU±λ in L2(Wε;C) ,

where α±λ ∈ C for all λ ∈ IN,M .
We recall from [1] the following Plancherel formula

‖u‖2
L2(Wε ;C) = ε

2LH
∑

λ∈IN ,M

��α±λ ��2 .
Radiation condition in a bounded waveguide. The Bloch eigenfunctions (U+λ )λ

and (U−λ )λ may transport energy in any direction. To indicate in which direction
along the x1-axis energy is transported, we introduce the Poynting numbers

P±λ B Im−
∫
Yε

Ū±λ (x)e1 ·
[
a±(x)∇U±λ (x)

]
dx . (17)

For N , M ∈ N, let us define two index sets

I−N,M ⊂
{
λ ∈ IN,M : P−λ < 0

}
and I+N,M ⊂

{
λ ∈ IN,M : P+λ > 0

}
, (18)

and the function spaces

X−← B span
{
U−λ : λ ∈ I−N,M

}
and X+→ B span

{
U+λ : λ ∈ I+N,M

}
. (19)

We note that X−← is the space spanned by all left-going Bloch eigenfunctions U−λ
which are defined on the radiation box W−R,L , and X+→ is the space spanned by all
right-going Bloch eigenfunctions U+λ defined on W+R,L .

The function space in which we look for a solution to (14) is

VR B

{
u ∈ H1(ΩR+L) :

u(x1, ·) is periodic for almost all x1 ∈ (−R, R) ,

R−R,L(u) ∈ X−← and R+R,L(u) ∈ X+→

}
. (20)

The variational formulation. For a weak formulation of (14) and (15), we
introduce the sesquilinear forms Q+,Q−,Q : VR × VR → C,

Q+(u, v) B
1
εL

∫
W+

R,L

ūe1 · a+∇v , Q−(u, v) B
1
εL

∫
W−R,L

ūe1 · a−∇v , (21)

and
Q(u, v) B Q+(u, v) −Q−(u, v) (22)
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which we will use to encode the radiation conditions. We further define the function
ϑ : ΩR+L → [0, 1],

ϑ(x1, x2) B


0 for |x1 | ≥ R + L ,
1 for |x1 | ≤ R ,
1
L (R + L − |x1 |) otherwise .

(23)

For R, L, ω2 > 0 and δ ≥ 0, we define the sesquilinear form βδ : VR ×VR → C by

βδ(u, v) B
∫
ΩR+L

ϑa∇ū · ∇v − ω2(1 − iδ)
∫
ΩR+L

ūvϑ +Q(u, v) , (24)

where the coefficient a : ΩR+L → R is given in (13).
The following problem was introduced in in [4].

Definition 3.1 (Solution concept) We say that u : ΩR+L → C solves the truncated
radiation problem with absorption if it is an element of VR and satisfies

βδ(u, v) =
∫
ΩR

f̄ v (25)

for all v ∈ VR. If u satisfies (25) with δ = 0, then u is a solution to the truncated
radiation problem.

3.2 Existence result for the Helmholtz equation with damping

Weneed the following assumptions to prove the existence of solutions to the truncated
radiation problem.
Assumption 3.1 Let I−N,M and I+N,M be the index sets of (18), and let X−← and X+→
be the function spaces of (19).
(A1) Every pair of indices λ = ( j,m) and λ̃ = ( j̃, m̃) in I−N,M with λ , λ̃ satisfies

j , j̃. The same holds for I+N,M .
(A2) There exists C0 > 0 such that for all u ∈ X−← and v ∈ X+→ there holds

‖u‖H1(W−R,L )
≤ C0 ‖u‖L2(W−R,L )

and ‖v‖H1(W+
R,L )
≤ C0 ‖v‖L2(W+

R,L )
. (26)

We note that every λ ∈ I−N,M is a pair ( j,m) with j ∈ QN × QM and m ∈ N,
where QN and QM are finite index sets. Thus, Assumption (A1) implies that both
index sets I−N,M and I+N,M are finite. This ensures, in particular, that the function
spaces X−← and X+→ are finite dimensional and hence closed. VR ⊂ H1(ΩR+L) is thus
a Hilbert space. Moreover, as both X−← and X+→ are finite dimensional, we can expect
a regularity property as in (A2). A consequence of (A2) is a Gårding inequality.
For such a Gårding inequality we need a compact operator. Define K : VR → V∗R,
u 7→ Ku, by
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〈Ku, v〉V ∗R,VR B 2ω2〈u, v〉L2(ΩR+L )
− iδω2〈u, ϑv〉L2(ΩR+L )

−Q(u, v) , (27)

where Q is the sesquilinear form defined in (22). In this definition of K we allow
δ ≥ 0. We first show that K is indeed compact.

Lemma 3.2 (Compactness of K) Let R, L, and ω2 be positive numbers and δ ≥ 0.
Let VR be the function space defined in (20) and let Assumption 3.1 hold. Then the
operator K defined in (27) is compact.

Proof For brevity we write L2 instead of L2(ΩR+L). The compactness of K : VR →

V∗R is equivalent to the following condition: Every bounded sequence (um)m in VR

admits a subsequence (um)m that weakly converges to some u ∈ VR and satisfies

〈Kum, vm〉V ∗R,VR → 〈Ku, v〉V ∗R,VR as m→∞

for all sequences (vm)m in VR with vm → v weakly in VR.
Let (um)m and (vm)m be sequences in VR such that (um)m is bounded and (vm)m

weakly converges in VR to v ∈ VR. As VR is a Hilbert space, (um)m admits a
subsequence (um)m that weakly converges to u ∈ VR. The function space VR is a
subspace of H1(ΩR+L) and thus, by the Rellich-Kondrachov theorem, um → u in
L2. Moreover, the weak convergence of (vm)m in VR implies that vm → v weakly in
L2 as well as ∇vm → ∇v weakly in L2. Using the definition of Q in (22), the strong
L2-convergence of (um)m and the weak L2-convergence of (∇vm)m, we deduce that
Q(um, vm) → Q(u, v) as m→∞. Consequently,

lim
m→∞
〈Kum, vm〉V ∗R,VR = lim

m→∞

(
2ω2〈um, vm〉L2 − iδω2〈um, ϑvm〉L2 −Q(um, vm)

)
= 2ω2〈u, v〉L2 − iδω2〈u, ϑv〉L2 −Q(u, v)

= 〈Ku, v〉V ∗R,VR .

This proves the claim. �

Lemma 3.3 (Gårding inequality) Let R, L, and ω2 be positive numbers, and let VR

be the function space given in (20). Suppose that Assumption 3.1 holds. For each
δ ≥ 0, the sesquilinear form βδ satisfies a Gårding inequality. More precisely, there
exists a constant c > 0 such that for all u ∈ VR there holds���βδ(u, u) + 〈Ku, u〉V ∗R,VR

��� ≥ c ‖u‖2
H1(ΩR+L )

,

where K : VR → V∗R is the operator defined in (27).

Proof Fix u ∈ VR. Using the definition of K , we find that

βδ(u, u) + 〈Ku, u〉V ∗R,VR =

∫
ΩR+L

ϑa |∇u|2 + ω2
∫
ΩR+L

(2 − ϑ) |u|2 . (28)

Equation (28) and Assumption 3.1 (A2) imply that
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��� ≥ c1 ‖∇u‖2
L2(ΩR )

+ ω2 ‖u‖2
L2(ΩR+L )

≥ min
{
c1, ω

2} ‖u‖2
H1(ΩR )

+ ω2C−1
0 ‖u‖

2
H1(W−R,L∪W

+
R,L )

= C1 ‖u‖2H1(ΩR+L )
. (29)

Thanks to Lemma 3.2 we know that K is compact. This together with (29) proves
the claim. �

Lemma 3.4 (Uniqueness of the homogeneous problem with δ > 0) Let R, L, and
ω2 be positive numbers, and let VR be the function space defined in (20). Fix δ > 0.
If u ∈ VR satisfies βδ(u, ·) = 0, then u = 0.

Proof Suppose that there is an element u ∈ VR with u , 0 and βδ(u, v) = 0 for all
v ∈ VR. Taking the imaginary part of βδ(u, u), we find that

ω2δ

∫
ΩR+L

|u|2 ϑ + Im Q(u, u) = 0 . (30)

We first show that both terms are non-negative. By definition of the function space
VR, the function u can be expanded in Bloch eigenfunctions in the radiation boxes
W−R,L and W+R,L ,

R−R,L(u) =
∑

λ∈I−N ,M

α−λU−λ and R+R,L(u) =
∑

λ∈I+N ,M

α+λU+λ , (31)

where α±λ ∈ C for all λ ∈ I±N,M . The Bloch eigenfunctions (U±λ ) are orthogonal with
respect to Q±, that is,

Q±(U±λ ,U
±
µ ) = 0 for all λ, µ ∈ I±N,M with λ , µ . (32)

We refer to Lemma 2.4 in [4] for a proof of this orthogonality property. Using the
expansion (31) and the orthogonality property (32), we compute that

Q(u, u) = Q+
(
R+R,L(u),R

+
R,L(u)

)
−Q−

(
R−R,L(u),R

−
R,L(u)

)
=

∑
λ∈I+N ,M

��α+λ ��2 Q+(U+λ ,U
+
λ ) −

∑
λ∈I−N ,M

��α−λ ��2 Q−(U−λ ,U
−
λ ) . (33)

Using the definition of the Poynting numbers in (17), and the definition of the index
sets I−N,M and I+N,M , we infer from (33) that

Im Q(u, u) =
∑

λ∈I+N ,M

��α+λ ��2 P+λ −
∑

λ∈I−N ,M

��α−λ ��2 P−λ ≥ 0 .

By assumption u , 0 in ΩR+L . If u , 0 in ΩR, then the first term on the left-hand
side of (30) is positive and the second is non-negative, which is a contradiction
with the right-hand side. On the other hand, if u , 0 in W−R or u , 0 in W+R, then
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Im Q(u, u) > 0. But this contradicts equation (30) as well. Consequently, u = 0
almost everywhere in ΩR+L and the claim is proved. �

Theorem 3.1 (Existence result for δ > 0) Let R, L, and ω2 be positive numbers,
f ∈ L2(ΩR), and let a : ΩR+L → R be as in (13). Let VR be the function space given
in (20) and assume that Assumption 3.1 is satisfied. If δ > 0, then there exists a
unique solution u ∈ VR to the truncated radiation problem. More precisely, for every
v ∈ VR there holds

βδ(u, v) =
∫
ΩR

f̄ v ,

where βδ is the sesquilinear form defined in (24).

Proof Thanks to Assumption 3.1 (A1), VR is a Hilbert space. The sesquilinear form
βδ is bounded and satisfies a Gårding inequality by Lemma 3.3. Hence, the claim
follows from Lemma 2.2 as soon as we show that the only element w ∈ VR that
satisfies βδ(w, v) = 0 for all v ∈ VR is w = 0. But this is true due to Lemma 3.4. �

Remark 3.1 The above existence result was also proved in [4]. There, however, the
authors had to make an additional assumption (besides Assumption 3.1):

(A3) There exists a positive number c0 > 0 such that P+λ ≥ c0 for every λ ∈ I+N,M .
Furthermore, for every λ ∈ I−N,M there holds −P−λ ≥ c0.

Here P±λ are the Poynting numbers defined in (17). This additional assumption is
needed to show coercivity of the sesquilinear form βδ from which existence of
a solution to the truncated radiation problem follows. Here, on the other hand, we
deduce existence from aGårding inequality and hence do not have to prove coercivity
of βδ . Let us remark, however, that (A3) is satisfied since assumption (A1) implies
that the index sets I±N,M are finite.

3.3 Existence result for the Helmholtz equation

In this section, we apply the limiting absorption principle to prove the existence of
a solution to the truncated radiation problem. We recall that, by Definition 3.1, a
function u ∈ VR is a solution provided

β(u, v) =
∫
ΩR

f̄ v for all v ∈ VR ,

where the sesquilinear form β : VR × VR → C is defined as

β(u, v) B
∫
ΩR+L

ϑa∇ū · ∇v − ω2
∫
ΩR+L

ūvϑ +Q(u, v) . (34)

Theorem 3.2 (Limiting absorption principle)Let R, L andω2 be positive numbers,
f ∈ L2(ΩR), and let a : ΩR+L → R be as in (13). Let VR be the function space given
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in (20) and let Assumption 3.1 hold. Assume further that ker(β) = {0}. Then for every
f ∈ L2(ΩR) there exists a sequence (uδ)δ of solutions to the truncated radiation
problem that weakly converges in VR to a function u ∈ VR satisfying

β(u, v) =
∫
ΩR

f̄ v for all v ∈ VR . (35)

Moreover, this limit u is the unique solution to (35).

Proof We use the limiting absorption principle of Theorem 2.1. By Assumption 3.1
(A1), VR is a Hilbert space. For each δ > 0, the sesquilinear form βδ defined in (24)
is bounded. One readily checks that limδ→0 βδ(u, v) = β(u, v) for all u, v ∈ VR. We
are thus left to prove that premises (a) and (c) of Theorem 2.1 hold. Lemmas 3.3
and 3.4 ensure that (a) is satisfied.

Let (uδ)δ be a sequence in VR with uδ → u weakly in VR. Thanks to the Rellich-
Kondrachov theorem, we find a subsequence (uδ)δ that strongly converges to u in
L2(ΩR+L). Thus, for every v ∈ VR, we have that

lim
δ→0

[
ω2(1 + iδ)

∫
ΩR+L

ϑ(ūδ − ū)v
]
= 0 and lim

δ→0
Q(uδ − u, v) = 0 . (36)

On the other hand, since ∇uδ → ∇u weakly in L2(ΩR+L) as δ → 0, we conclude
that

lim
δ→0

∫
ΩR+L

ϑa
(
∇uδ − ∇u

)
· ∇v = 0 . (37)

Combining (36) and (37), we infer that limδ→0 βδ(uδ − u, v) = 0 for all v ∈ VR,
which shows premise (c).

We can therefore apply Theorem 2.1 and deduce the claim. �

Remark 3.2 Using standard arguments for symmetric and elliptic differential opera-
tors, one can show that there exists an at most countable set D ⊂ [0,∞) such that for
all ω2 < D the kernel ker(β) is trivial.

Remark 3.3 Theorem 3.2 contains an existence result: for each f ∈ L2(ΩR) there
is a unique solution u ∈ VR to (35). We mention that this existence result can also
be obtained without the limiting absorption principle of Theorem 2.1. Indeed, by
Lemma 3.3, the sesquilinear form β = β0 satisfies a Gårding inequality. Thus, by
Proposition 2.1, for every ` ∈ V∗R there is a unique solution u ∈ VR to β(u, ·) = `(·)
provided ker(β) = {0}.
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