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Abstract: We study the time-harmonic Maxwell equations on
bounded Lipschitz domains with an impedance boundary condition.
The impedance coefficient can be matrix valued such that, in partic-
ular, a polarization dependent impedance is modeled. We derive a
Fredholm alternative for this system. As a consequence, we obtain the
existence of weak solutions for arbitrary sources when the frequency
is not a resonance frequency. Our analysis covers the case of singular
impedance coefficients.
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1. INTRODUCTION

We study the time-harmonic Maxwell equations in a bounded Lipschitz domain.
Our interest is to investigate an impedance boundary condition, a condition that
can be compared with a Robin boundary condition in a scalar problem. The
impedance coefficient A can be matrix valued and can, therefore, model a polar-
ization dependent impedance. Furthermore, the matrix coefficient may be singular
in the sense that it is non-trivial, but it vanishes on a non-trivial subspace of the
tangent space. Our result is a Fredholm alternative for this Maxwell system.

Let us describe the system in mathematical terms. Given is a bounded Lipschitz
domain © C R3, two coefficient functions € € L>(2,C3*3) and p € L>(Q, C3*3),
a frequency w > 0 and right-hand sides f, f.: Q — C? of class L?. We seek for
functions £, H: Q0 — C3 that satisfy, in €,

(1.1a) curl B = iwpH + fp,

(1.1b) curl H = —iweE + f..

The system is complemented with the tangential boundary condition
(1.1c) Exv=A(H xv)xv) on I':==0Q,

where v is the exterior normal vector on €2 and A is a matrix valued impedance
coefficient. The normal vector is a map v: Q0 =T 3 z — v(z) € R?, defined
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for almost every x (almost every z in the sense of the two-dimensional measure
on T'). Similarly, A is a map A: T > z — A(z) € C**3. The map H(z) —
—(H(x) x v(x)) x v(z) is the projection onto the tangential space T,I.

We note that the above setting covers perfect conductor boundary conditions on
some part of the boundary (setting A = 0 on this part) and impedance boundary
conditions in the remaining part of the boundary. In view of such applications, it
is important that we do not impose a continuity property on the coefficient A. The
following situation is also covered: Along the boundary (or a certain part of the
boundary), there is a perfect reflection condition for some polarization direction
and an impedance condition for the orthogonal polarization direction. This is
modeled with a singular map A # 0.

The solution space and the weak solution concept are defined below in (1.7)
and (1.8). The weak form encodes the boundary condition with matrix valued
functions ¥ and O instead of A. We will discuss that the two formulations are
equivalent, see Section 2 and (2.3). Our main theorem is formulated with assump-
tions on X and O, but we provide also a formulation of the assumptions in terms
of A, see Lemma 1.2.

Assumption 1.1 (Assumptions on the coefficients). The bulk coefficients are
maps €, i € L>®(,C3*3). They are coercive in the sense that, for some constant
co > 0, for almost every x € (), there holds

(1.2) C-e(@)¢ = allK)*  and - pu(@)C = collCl]* forall ¢ € C.

The boundary coefficients are given by maps ©,% € L®(I,C**3). Their sum is
coercive: There exists a constant co > 0 such that, for almost every x € T,

(1.3) ¢ (B(x) +0(2))C > /¢ for all ¢ € C?.

With the coercivity requirement in (1.2) and (1.3) we demand, in particular,
that the left-hand side is real for all arguments x and (. Every real valued,
symmetric and coercive matrix is also coercive in the above sense. With p € L*°
coercive in the above sense, also the inverse matrix p~! is coercive in the above
sense. We choose ¢y > 0 such that ¢, e, u, p=! are coercive with this constant.
Regarding (1.3), we mention that it would be sufficient to consider only ¢ € T,T",
where we understand T,I" as complex vector space.

We note that not only real matrices are coercive in the above sense. A two-
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We should clarify how ¥ and © can be chosen for a given map A. This helps
to derive conditions on A such that ¥ and © satisfy the above conditions.

dimensional example is given by the matrix (3 _l> € C2x2,

Lemma 1.2 (Assumptions in terms of A). Let a boundary condition be given by a
map A € L=(T,C3¥*3). For almost every x € T, with the kernel Z = ker(A(x)) C
C? and its orthogonal complement Z+ C C3, we assume: (i) v(x) € Z such that
Z+ C T,T, (ii) A maps into the orthogonal complement of its kernel, R(A(x)) C
Z+, (iii) A(z) is coercive on Z+: For a constant co > 0 holds, for almost every
x € I' and for the space Z corresponding to x:

(1.4) C-Ax)¢ > el forall ¢ € Z+.
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In this situation, we set ©(x) = Iz, the orthogonal projection onto Z. We
define X(x) € L>®(Q2,C3*3) by demanding that it is the inverse of A(z)| . : Z+ —
Z+ on Z+ and that ¥(z)|z = 0. Then, X and © have the properties of Assumption
1.1. The weak solution concept with ¥ and © encodes the strong formulation of
(1.1c).

The proof of Lemma 1.2 is given in Section 2.

Remark 1.3 (Special case A = 0). We emphasize that our setting allows to choose
A = 0. This choice models a perfectly conducting boundary. For A = 0, we can
set © = id, the space Heg(curl,Q, ") coincides with the classical space Hy(curl, §2)
and all boundary integrals in the proofs are vanishing. Conceptually, our approach
for general A is not more involved than classical existence proofs for A = 0.

1.1. Function spaces and weak formulation. A fundamental function space
in the analysis of Maxwell’s equations is

H(curl, Q) == {u € L*(Q,C% ’ 3f € L*(Q,C?):

(1.5) /Qf-gb:/ﬂu-curlngquECEO(Q,(C?’)}.

The function f is the distributional curl of v and we therefore write curlu = f.
The space H(curl,Q) is a Hilbert space with [[ul|7 ) = fo {lul® + [curlul*}
and the scalar product (u, ) = (u, p)r2(q) + (curlu, curl ) r2(q).

Functions in H (curl, 2) have a tangential trace in the distributional sense, but
we do not need the theory of tangential traces here. We construct a space of
functions with a tangential trace in L*(T") as follows:

H(curl,,T) = {u € H(curl, ) ‘ Jg € L*(T, C?):

(1.6) /Q{curlu-qﬁ—u-cuﬂd)}:/ry(b v¢eH1(Q)}.

The function ¢ in (1.6) is the tangential trace, we write v X u|r = g. We remark
that a tangential trace function g satisfies always g(z)-v(x) = 0 for a.e. x € I'; this
can be seen by inserting test-functions ¢ that point in normal direction along I'.
The space is a Hilbert space with the norm. [|u|%; o = Jo {luf® + | curluf?} +
Jo lv x ulp]?.

For our application, we define the subspace of functions u with ©(v x u|r) = 0:

(1.7) Ho(cwrl, ,T) = {u € H(cuwrl, ,T") | O(v x u|r) =0} .



4 Maxwell’s equations with mixed impedance boundary conditions

Weak form of the Maxwell system. On ) with boundary I' = 09, we
study the following problem: Find F € Hg(curl, Q,I") such that

/{ul curl E - curl ¢ — w’eE - ¢} — iw/Z(V X E|r) - v X ¢|r
Q

r

(1.8)
= / {iwfe A Curlgb} V ¢ € Ho(curl,Q,T),
Q

For a solution F € Hg(curl,,T) of (1.8) we use H = (iwp)~" (curl E — f3,) as
the corresponding magnetic field.
Our main result is the following:

Theorem 1.4 (Fredholm alternative). Let Q C R? be a bounded Lipschitz do-
main, let w > 0 be a frequency and let €, and 3,0 be coefficients that satisfy
Assumption 1.1. Then, the problem (1.8) satisfies a Fredholm alternative: FEi-

ther (i) for fu, fe = 0 system (1.8) has a non-trivial solution, or (ii) for every
I, fo € L*(Q,C3), system (1.8) has a weak solution E € He(curl, Q,T).

The reader might prefer the following formulation, which is an immediate con-
sequence of Theorem 1.4.

Corollar 1.5 (Existence and uniqueness). Let  C R3 be a bounded Lipschitz
domain and let €, and X, O satisfy Assumption 1.1. Let w > 0 be a frequency
such that system (1.8) with f, = 0 and f. = 0 has only the trivial solution.
Then, for every fn, fo € L*(2,C3), system (1.8) has a unique weak solution E €
He(curl, Q,T).

The corollary is a consequence of Theorem 1.4, but it can also be obtained with
a limiting absorption principle. We provide such a proof in Section 6.

1.2. Overview of the available literature. We consider (1.1) on a bounded
domain, this setting is often denoted as the cavity problem. When the domain
of interest is unbounded, one has to impose radiation conditions at infinity to
have a well-posed problem. For recent well-posedness result in the unbounded
domain of a waveguide, we refer to [22, 23] and references therein. Radiation
conditions for the Helmholtz equation in exterior domains have a long history,
variable coefficients have been treated in [17].

For A = 0 the boundary condition (1.1c) simplifies to v X E|r = 0 and models
a perfectly conducting material in some exterior medium €' with 9Q C 0.
If the exterior medium €2’ is dissipative, as for instance if it is a good but not
perfect conductor, one often uses an impedance boundary condition with A # 0.
A possibility is to define A as the multiplication with a positive number, this is
the usual choice for time-harmonic fields. The impedance boundary condition can
also be used to approximate the Silver-Miiller radiation condition. We refer to [4,
Chapter 1.6.1] for a more detailed discussion on the application of the boundary
conditions.

In the case A = 0, the variational approach to the cavity problem leads to
a non-coercive sesquilinear form and an existence result can only be formulated
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as a Fredholm alternative. The Fredholm alternative can be derived by a well-
established approach (see for instance [4, 21, 24]), we also follow this approach in
Section 4. It consists in the following three steps: (i) A Helmholtz decomposition
of the data yields a control of the divergence of the unknown (ii) derivation of
a compact embedding of the solution space into L*(2, C?) (iii) reformulating the
weak form of the problem in terms of operators, the compact embedding provides
the Fredholm property for one of the operators. The derivation of the Fredholm
alternative for A # 0 requires only an appropriate formulation, an adjustment of
the function spaces and the sesquilinear form and a refinement of the compactness
result of (ii). For A equal to a positive constant, proofs can be found in [24] and
[4].

An alternative approach for the derivation of a weaker existence result in the
sense of Corollary 1.5 is the Eidus principle of limiting absorption [11] (cf. [33,
Chapter 8]), which we also employ in Section 6. The limiting absorption principle
replaces Step (iii) of the first approach but does still rely on the Helmholtz de-
composition and the compactness result (Steps (i) and (ii)). We emphasize that
the limiting absorption principle is more than just a method of proof: It provides
an additional information, namely the convergence of solutions for a vanishing
damping parameter.

The Helmholtz decomposition can be derived by elementary methods, we present
this in Section 3. The compact embedding of the solution space is more tech-
nical and has a longer history: Elementary calculations provide H(curl,©) N
H(div,Q) C H}.(2,C?) and, thus, by Rellich’s compact embedding H (curl, Q) N

H(div, Q) S L% (9, C?). However, the compact embedding holds only locally
and H(curl, Q) N H(div,Q) cannot be compactly embedded in L?(2,C3), even
for smooth domains [2, 26]. For C1! domains, the Gaffney—Friedrichs inequality
gives a continuous embedding of the subspace of functions with vanishing tan-
gential boundary values, Hy(curl, Q) N H(div,2) or vanishing normal boundary
values, H(curl, Q) N Hy(div,Q), in H'(2,C3). Then, Rellich’s compactness theo-
rem provides the desired compactness of these spaces in L*(£2, C?). The Gaffney—
Friedrichs inequality was shown for smooth domains in [13, 14, 15, 25]. For con-
vex domains, Gaffney—Friedrichs inequality was shown for vanishing tangential
boundary values in [27] and for vanishing normal boundary values in [30]. For
Cll-domains, the Gaffney—Friedrichs inequality was derived in [10, 12, 16] for
vanishing tangential components and in [2, 7] for vanishing normal components.
For Gaffney—Friedrichs inequality with more general boundary conditions see [8].
However, this inequality does not hold for arbitrary Lipschitz domains (see [2])
and a different approach is required for the derivation of Maxwell’s compactness
theorem.

For a class of piecewise smooth domains the compact embedding of Hy(curl, )N
H(div,Q) and H(curl, Q)N Hy(div, ) in L*(2) was shown in [35] and for general
Lipschitz domains in [29, 34]. This approach relies essentially on the construction
of suitable scalar and vector potentials. The compactness result was improved to
a more quantitative estimate, namely the continuous embedding in H'/2(2, C?)
using additionally regularity results for the Dirichlet- and Neumann-problem, see
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also [24]. The regularity results are based on the non-tangential maximal functions
[18, 19] and enable also inhomogeneous L?(T')-regular tangential or normal bound-
ary values. The case of inhomogeneous boundary value becomes highly relevant
in the analysis for Maxwell’s equations with an impedance boundary condition.
More elementary regularity arguments provide an embedding in H'/279((2, C?) for
d > 0, see [6]; this is sufficient for the desired compactness.

The compactness result is extended to mixed boundary values, where at some
part of the boundary the tangential trace vanishes while on the remaining part
the normal trace vanishes [5, 20]; an extension to inhomogeneous L*(T')-regular
mixed boundary data is presented in [28]. Related discussions on vector potentials
with mixed boundary conditions are presented in [3]

On polarization dependent boundary conditions: Variational formulations of
the time-harmonic Maxwell equations have mainly addressed polarization inde-
pendent boundary conditions. In [32] the homogenization of a thin layer of perfect
conductors is considered, it can lead to a polarization dependent interface condi-
tion, which is strongly related to a polarization dependent boundary conditions.
An existence result for this kind of interface condition is presented in [9]. The
novelty of the present work is that it combines two qualitatively different bound-
ary conditions on the same part of the boundary, namely the reflection boundary
condition is some direction and an impedance boundary condition in another di-
rection.

1.3. Organization of this text. In Section 2, we discuss the weak solution con-
cept for (1.1). In particular, we discuss the different formulations of the boundary
condition and the equivalence of these formulations under reasonable assumptions.
Section 3 is devoted to Helmholtz decompositions which allows us to simplify the
problem: It is sufficient to consider solutions and test-functions in a space of
divergence-free functions. The proof of Theorem 1.4 is given in Section 4. We
make use of a well-known compactness result for functions with bounded diver-
gence and curl; in order to have this exposition self-contained, we include the proof
of the compactness statement in Section 5. The same compactness statement is
also used in the limiting absorption principle that is presented in Section 6. It
provides another proof of Corollary 1.5.

2. DISCUSSION OF WEAK FORMULATION AND BOUNDARY CONDITIONS

In order to motivate the weak solution concept of this article, let us consider
a weak solution (E, H). A weak solution is given by E € Hg(curl,,T') that
satisfies (1.8), the magnetic field is set to H = (iwu) ™! (curl E — f3,).

The strong equation (1.1a) is satisfied by the definition of H. We use this
relation for H to substitute curl £ in (1.8) and find

(2.1) {iwH -curlp — w’e¢E - ¢} —iw | S(vx Elp) v x dlr = [ iwfe ¢
/ / /

for all p € Hg(curl,,T). For test-functions ¢ € C°(2,C3) in (2.1), the boundary
integral vanishes and we obtain (1.1b).
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It remains to check the boundary conditions. For this step, we assume that the
solution has additional regularity such that boundary traces are well defined. We
consider an arbitrary ¢ € Hg(curl,Q,T") in (2.1), integrate the first term by parts
and insert (1.1b). This provides

(2.2) /inmx¢]p—iw/E(VxE|p)~yx¢|p:0.

r r

Therefore, the weak solution satisfies pointwise the boundary conditions

(2:3b) [H-X(vxE)]-(rxo¢)=0 V¢ with O(v x ¢)=0,

where the first condition follows from the fact that we seek for a solution E &
He(curl,Q,T"). The second condition, interpreted pointwise, implies that H —
Y (v x E) is orthogonal to the kernel of © in the tangential space.

Let us consider the situation of Lemma 1.2 and a point x € I'. We claim that
(E, H) satisfies the boundary condition (1.1c) if and only if it satisfies (2.3). To
show one implication, let (F, H) satisfy (2.3). We use the orthogonal projection
I1, to the tangent space T,I". By (2.3b), the expression II,[H — X(v x E)|(z) is
orthogonal to the kernel of ©(x). This means that it is an element of Z, the kernel
of A(z). Supressing the point x, we obtain AIIH = AIlYX(v x E). The left-hand
side is identical to —A((H x v) x v). On the right-hand side, II acts trivially on
Y (v x E), since the latter is a tangential vector. Since A is the inverse of ¥ on
the kernel of © and v x E is in this kernel, the right-hand side is v x E. We
have therefore concluded (1.1¢); we note that we use in (1.1c) the more standard
notation where the normal vector is always written behind the fields.

Vice versa, let (F, H) satisfy (1.1c). We apply © on (1.1c) and obtain from
© o A =0 that O(F x v) = 0, which shows (2.3a). To deduce (2.3b), we apply
on (1.1c) and multiply the equation by ¢ x v for ¢ satisfying O(¢ x v) = 0, which
gives g x v-N(E x v) = ¢ x v- NA((H x v) x v). We note that (XA)T is the
identity on Z+ and, thus (XA)" (¢ x v) = ¢ x v. We obtain ¢ x v - %(E x v) =
¢ xv-((HxXv)xv)=—¢xv-H, which is (2.3b).

With these calculations, we have verified the last statement of Lemma 1.2.

Vice versa, we can motivate the weak formulation (1.8) starting from the strong
Maxwell system (1.1a)—(1.1b) with the boundary condition (2.3): When we mul-
tiply (1.1a) with x~! and use, for arbitrary ¢ € Hg(curl,Q,T'), the test-function
curl ¢, we obtain

(2.4) /;fl curl £ - curl ¢ = / {in ceurl g+t Curlgb} .
Q

Q
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We study the first term on the right-hand side. Integrating by parts and using
the identities (1.1b) and (2.3b) we find

/in~curl¢:z'w/curlH-gb—l—iw/H-l/><gb
T

2.5) “ “

:w2/€E~¢—|—iw/fe-¢+z'w/2(y><E|p)~1/><q§|p.
Q

Q r

With this replacement in (2.4), we find the weak form (1.8). The identity (2.3a)
restricts the solution space to Hg(curl,Q,T').

2.1. Coercivity. Under certain assumptions on A, Lemma 1.2 provides a suitable
choice of 2 and ©. We have seen above that, with this choice, the weak solution
concept encodes (1.1c). It remains to show that, for A as in Lemma 1.2, the maps
3} and © are well-defined and satisfy Assumption 1.1.

Proof of Lemma 1.2. In the situation of the lemma with Z = ker(A(x)) C C3, the
map A(z)|z1: Z+ — Z+ is invertible with lower bound (independent of ). Since,
additionally, A satisfies a uniform upper bound by the property A € L, the
inverse (A(z)|z2)~t: Z+ — Z+ is uniformly bounded and coercive. In particular,
¥ is well defined and coercive on Z+,

(2.6) C-S(2)(¢) > es|[¢]? for all ¢ € Z+

for some constant ¢y, > 0 that is independent of x. Decomposing an arbitrary
vector £ € C? as &€ = 2+ ( with z € Z and ( € Z+, we can calculate, suppressing
the point x,

O©+X)() €=©O+X)(z+0)-E=(z+2(Q) ¢
= [121* + 2(¢) - ¢ = I2]I* + eI €I
This provides the coercivity (1.3) of © + X. O

The coercivity assumption (1.3) is designed in such a way that the boundary
integral in the weak form (1.8) together with the function space Hg(curl,Q,T")
provides full control over the |[v x E|r||r2(r)-norm on the boundary I' = 9€2. This
can be seen with the following calculation for arbitrary £ € Hg(curl, 2, T):

2.7) eollv X Elp 2oy < /(@+ ) x Elp) v x By /z(y X El)-vx Elr,
r T

where the equality uses ©(v x E|r) = 0.

2.2. Formulation in H instead of E. System (1.1) permits also a weak formu-
lation in terms of the magnetic field. Up to boundary regularity, it reads: Find
H € H(curl, Q) such that

bf{é“l curl H - curly) — w?pH - b} — infA((H xv)|r xv)- (¢ xv)lp xv)

(2.8) = [{—iwfr - +etf. curly} for all ¢,
Q
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where test-functions 1 are chosen in the same space as H. The underlying space
is H(curl, ), the additional requirement is that the projection of ((¢» X v)|r X v)
onto R(A) is in the space L?*(T).

For a solution H € H(curl,2,T) of (2.8), we set £ = (iwe)™! (—curl H + f.).
The formulation (2.8) has the advantage that it uses A. It does not require to
formulate the problem with the two auxiliary matrix functions ¥ and ©.

Unfortunately, the weak formulation (2.8) has a major disadvantage concern-
ing compactness. We recall that the literature provides compact embeddings of
H(curl, Q) N H(div, ) in L*(Q) when an L?*(T')-control of tangential or normal
components of the functions are available. For a singular map A # 0, we have only
control of one tangential component through the boundary term since A is not
coercive on the entire tangent space. At the same time, we do not have full control
of the normal component: Inserting ¢» = Vi in (2.8), assuming, for simplicity,
frn =10, we find

(2.9) - /w2,uH Vo = iw/A((H X v)|r xv) - (Vo x v)|r xv).

Q r

The boundary term does not disappear for arbitrary ¢ € H'(Q) but only for
o € HY(Q) such that (Vo x v)|r x v) € R(A)* = ker(A). Thus, we obtain only
a restricted information on the normal component of H. Consequently, one has a
mixed control over the tangential and normal components. To the best knowledge
of the authors, no compactness result of the literature is applicable in this setting.

3. HELMHOLTZ DECOMPOSITION

Our aim is to prove Theorem 1.4 with the help of the compactness result of
Lemma 5.1. This compactness result requires a control of the divergence of E.
We obtain this control in two steps: With a Helmholtz decomposition of L*(§2, C?),
we restrict the analysis to divergence-free right-hand sides, see Lemma 3.2. With
a Helmholtz decomposition of Hg(curl, €2, T"), we restrict the set of solutions to
e-divergence-free functions.

We start by introducing the space G of gradients. The set G can be understood
as a subspace of L?(Q2, C?), but also as a subspace of H(curl, ) since the rotation
of gradients vanishes. It is even a subspace of Hg(curl, 2, ") since the tangential
derivatives of an Hj-function vanish. For a given coefficient €, we define D, and Y.
as spaces of e-divergence-free functions. In the subsequent definition, differential
operators are understood in the sense of distributions.

(3.1) G={uel*(Q)|IeH)(Q): u=Vi},
(3.2) D, = {ue L*(Q,C% | div(eu) =0} ,
(3.3) Y. = Ho(curl Q,I") N D, .

The choice is such that D. is the orthogonal complement of G in the space
L*(Q, C%) with the weighted scalar product (u,v). = [,eu - 0. Furthermore,
because of curl(Vey) = 0 and v x Vi|r = 0, the subspaces Y. and G are also
orthogonal with respect to the scalar product (u,v)x = [,{eu v+ p ' curlu -
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curl o} + [ {v xu-v x0}. By construction, Y is the (.,.) x-orthogonal complement
of G in Hg(curl,Q,T"). The definitions therefore imply directly the following two
Helmholtz decompositions.

Lemma 3.1 (Helmholtz decomposition). The space L*(Q2,C3) has the orthogonal
decomposition L*(Q2,C?) = D.®.G. In particular, an arbitrary element u € L*(Q)
can be written uniquely as uw = v + Vi with v € D, and v € H}(Q).

The space X = Hg(curl, 2, T") has the orthogonal decomposition X =Y. Dx G.
In particular, an arbitrary element u € X can be written uniquely as u = v + Vi
with v € Yz and ¢ € H} ().

We use the Helmholtz decomposition of L?(£2, C3) in order to replace the data f,
with divergence-free data. This allows us to control the divergence of the unknown
E.

Lemma 3.2 (Reduction to divergence-free data). Let f., f, € L*(Q2, C3) be given
and let € satisfy Assumption 1.1. Using Lemma 3.1, we find h € D, and x €
HL(Q) such that (iwe)™'f. = h+ Vx. We use f. = (iwe)h with div(f.) = 0.
Then, E € He(curl, Q,T) is a solution for (1.8) if and only if E = E — Vy €
Heo(curl, Q,T) satisfies

/{u‘lcurlE curl ¢ — w’eE - gb} — iw/Z(u X E\p) -V X Q|r

Q r

= / {iwfe A curlgb} Vo € Hg(curl,Q,T).

Q

(3.4)

Moreover, solutions E are e-divergence-free in the sense that div(eE) = 0.

Proof. When E is a solution, elementary substitutions show that E is a solution
of (3.4). Indeed, the curl of a gradient vanishes, the second terms on both sides
are modified in the same way, the boundary integral is unchanged since x vanishes
on I' and, thus, tangential components of Vy vanish along the boundary.

The opposite implication is obtained with the same calculation.

In order to obtain div(eE) = 0, it is sufficient to use a gradient ¢ = Ve for
p € HY(Q) in (3.4). O

Lemma 3.2 allows us to consider only right-hand sides f, with div(f.) = 0 in
the following. By doing so, we can also restrict the solution space (and, accord-
ingly, the space of test-functions) in (1.8) to e-divergence-free functions. For these
functions, we write £ and ¢, dropping the tilde.

Lemma 3.3 (Equivalent formulation in Y.). Let Q C R3 be a bounded Lipschitz
domain, w > 0, &, 1, 2,0 as in Assumption 1.1. Let f., fr, € L*(Q, C?) be right-
hand sides with div(f.) = 0. In this situation, the weak problem formulated in
(1.8) is equivalent to the following problem: Find E € Y. such that the equation
in (1.8) holds for all test-functions ¢ € Y-.

Proof. Let E be a solution of the new problem, i.e., F € Y. and (1.8) holds for
test functions ¢ € Y.. Given an arbitrary test-function ¢ € X = Hg(curl, Q,T"),
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we write ¢ = p + V¢ with ¢ € Y. and ¢ € H}(Q) as outlined in Lemma 3.1.
Using that (1.8) is linear in ¢, we can treat the contributions separately. Inserting
V1 in (1.8), all terms vanish. Inserting ¢, the equality holds since E is a solution
of the Y.-problem. This shows that (1.8) is satisfied for arbitrary test-functions
¢ € Ho(curl, Q,T).

When FE is a solution of the original weak form, then (1.8) holds, in particular,
for test-functions ¢ € Y.. The fact that E' is indeed an element of Y. was observed
in Lemma 3.2. U

4. VERIFICATION OF THE FREDHOLM ALTERNATIVE

With the above considerations, the Maxwell system has a symmetric weak for-
mulation in the space Y; (we recall that now only divergence-free right-hand sides
fe are considered). Using the compactness result of Lemma 5.1 below, some func-
tional analysis provides the Fredholm alternative of Theorem 1.5.

Proof of Theorem 1.5. We recall that Y. C Hg(curl ©,I') denotes the subspace of
e-divergence-free functions. We define two sesquilinear forms a,b: Y. x Y. — C
and an anti-linear right-hand side f: Y. — C by setting, for every u, ¢ € Y,

a(u, @) = / {u-¢+p " ewlu-curlp} — iw/ {S(vxulr) v x|},
Q T

o) = [{u-d+wteu0) . £0)= [{iwho4u fy-culd)
Q Q

By Lemma 3.3, the weak formulation of the Maxwell problem is equivalent to:
Find E € Y, such that

(4.1) a(E,¢) —b(E,¢) = f(¢) VoeY.

The sesquilinear form a defines a map A: Y. — Y/ from Y. into the (anti-)dual
space Y. with the definition Au := a(u,-). By definition of the scalar product in
Y. C X = He(curl, 2, T") and the estimate (2.7), the form a is coercive on Y. The
Lemma of Lax-Milgram implies that A: Y, — Y/ is invertible.

We now exploit that the embedding ¢: Y. — L?(€, C?) is compact, see Lemma 5.1.
The multiplication map B: u + (1 + w?e)u corresponding to b is linear and
bounded as a map B: L?(Q,C?) — L*(Q, C?). We denote the concatenation with
an embedding into Y, with the same letter and write B: L*(Q,C?) — Y.

The field E € Y. solves (4.1) if and only if

AE—(BolE=f inY!.
Applying A~1, we find the equivalent relation
(id—=A'oBol)E=A"f inY,.
The operator A~! o B o is compact, since ¢ is compact and the other operators
are continuous. Standard functional analysis results imply that the operator F' :=
id —A~! o B o is a Fredholm operator of index zero, see, e.g., [1, Theorem 11.8].

By their definition, such operators satisfy the Fredholm alternative: The kernel is
trivial if and only if the operator is surjective. U
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5. COMPACTNESS PROPERTY

In the previous section, we derived the Fredholm alternative from a compact
embedding: We need that the solution space is compactly embedded in L*(€2, C?).
In our application, we considered functions with a vanishing e-divergence, but this
is actually not needed for the compactness. The compactness only needs that the
e-divergence is controlled in L? (just as we demand the control of the curl). We
use the following spaces:

H(dive, Q) = {u € L*(Q,C% | 3f € L*(Q,C):

(5.1) /chb:/gsu-w V¢€C§°(9)},

and

H(dive, Q1) = {u € H(dive, Q) ‘ Jg € L*(T,C):

(5.2) /Q{div(gu)qweu-w} = /ngj Vo € Hl(Q)} .

Norms and scalar products are defined in the natural way, using L2-norms of all
the given quantities. For functions u in the second space, the normal trace of u is
defined as v - (su)|r = g.

The following two compactness results are well known. They both require an
L?(9Q)-control over curl and divergence and an L?*(T')-control of either the normal
or tangential boundary values. In our main result, we have used the compact
embedding (5.3). The space Y. is a subspace of the left-hand side; for functions
u € Y. holds div(eu) = 0, which implies, in particular, that div(eu) is an L?(Q)-
function. Additionally, for functions u € Yz, there holds ©(v x u|p) = 0, but we
exploit only the L?(T")-control of v x ulr.

In the result (5.4), the normal trace of functions is controlled in L?(T).

Lemma 5.1 (Mawell compactness theorem). Let Q C R? be a Lipschitz domain
and g, 4 as in Assumption 1.1. Then, the following embeddings are compact:

(5.3) H(curl, Q,T) N H(dive, Q) <25 L2(Q, CY),
(5.4) H(curl, Q) N H(div p, Q,T) <255 L(Q,C3).

The second embedding is used when the Maxwell system is formulated in H; for
this reason, the coefficient p (instead of €) is typically used in this formulation. In
order to highlight the controlled quantities, one may write H(curl,dive, Q,v X |r)
for the space on the left-hand side of (5.3) and H(curl, div p, 2, v-|r) for the space
on the left-hand side of (5.4).

We note that the compactness has some relations with the div—curl lemma,
sometimes called compensated compactness. Knowledge on the curl and on the
divergence of a function somehow controls all derivatives. Loosely speaking, this
property is already suggested by the relation A = — curlcurl +V div. We will
actually exploit this relation in our proof.
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We sketch a proof for the first embedding, which is used in this article. The
proof for the second embedding is identical in most steps, the only difference
is that a Neumann problem instead of a Dirichlet problem must be analyzed in
Step 3. We note that the proof for a vanishing normal component with the same
methods can be found in [31].

Proof. In Steps 1-3 of this proof, we assume that €) is simply connected and that
the coefficient is ¢ = 1. In Step 4 we treat general coefficients € and in Step 5 we
show how the assumption of simple connectedness is removed.

In order to show compactness, we consider a bounded sequence u; in the space
H(curl, Q,T") N H(dive, Q). We recall that this implies that w;, f; = curlu;,
g; = div(eu;) and the tangential boundary values of u; are bounded sequences in
L?-spaces.

The set €2 is bounded, we can therefore choose a radius R > 0 such that € is
compactly contained in the open ball with this radius, Q C By := Br(0) C R®.

Step 1: Extension of f; with a gradient. We consider the solutions v; of the
following Laplace problem: At; = 0in Br\Q with ¢); = 0 on 9By and 9,; = v-f;
on 0f2. We define an extension of f; by setting

J'EA . f] inQ,
7 V¢j in BR\Q

The construction ensures that this extended function has a vanishing divergence.
We note that the function f; is a curl and has therefore a vanishing divergence;
this fact actually allows us to formulate the boundary condition in the Neumann
problem even though f; is only an L?-function. A detailed verification of this fact
can be found in [31].

Step 2: Vector potential v; for fj As a function with vanishing divergence on
the simply connected set Bpg, the function fj possesses a divergence-free vector
potential 0; € L?(Bg, C*) with curl v; = fj in Br. One way to show this standard
result is the following: In a first step, a function w; with curlw; = fj is constructed
with the help of path integrals of fj. When an average over a set of starting points
of the path integrals is taken, the function w; is of class L?(Bpg, C?) with norm
bounded by the norm of f] In a second step, we subtract the gradient ng of
a function & with A¢; = div(w;). We obtain that 9; = @; — V&, has the same
rotation as @, (namely f;) and satisfies div@; = 0.

Let us discuss the regularity of ©;. Because of A = —curlcurl4+-V div, the
function 9; € L?(Bg, C?) satisfies, in the sense of distributions, Av; = — curl f; €
H~Y(Bg). The sequence ¥; is therefore locally (in Bg) of class H' (Caccioppoli’s
inequality). This implies that v; == 9;|q is bounded in H'(Q2). In particular, it
possesses a subsequence that converges strongly in L?(€, C3). We consider only
this subsequence in the following.

Step 3: Scalar potential for u; — v;. We consider now only functions on the
simply connected set €2. By construction, the difference u;—v; has a vanishing curl,
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it can therefore be written, for some scalar function ¢; € H*(Q), as a gradient:
U; —Vj = ng]

Let us analyze the regularity properties of ¢; along I We have bounds for
v X u;|r € L*(09Q) by the assumptions on u; and we have bounds for v X v;|r €
L*(09) because of the boundedness of v; € H'(Q) and classical trace theorems.
We therefore have v X Vo,|r = v X uj|r —v x v;|r € L*(9€2) bounded and conclude
the boundedness of ¢; € H*(99).

It remains to analyze the Dirichlet problem

Ap=g inQ, p=h onl,

for given g and h. By classical elliptic theory, the solution operator to this problem
is a bounded linear operator 7: H~*(Q) x HY(I') 3 (g,h) — ¢ € H'(Q). We

cpt. cpt.

have the compact embeddings L?(Q) — H~Y(Q) and HY(I') — HY*(T).
They imply that the operator 7 on these better function spaces is compact,

T:L*Q) x H'(T) 3 (g,h) — ¢ € H'(Q) compact.

As a solution of the Dirichlet problem, ¢; = T(g;, ;|r), the sequence ¢; has a
subsequence that converges in H'(Q2). Along this subsequence, both V¢; and v,
are converging strongly in L?(2, C?), hence also u; = v; + V¢; is converging in
this space. This concludes the compactness proof for simply connected domains
and ¢ = 1.

Step 4: General coefficients . We now consider a general coercive coefficient
e € L*(Q,C*3). In order to show compactness, we consider once more a bounded
sequence u; € H(curl, ,T") N H(dive, ).

We claim that it is sufficient to consider the case div(eu;) = 0. Indeed, in the
general case, we consider the sequence 4; = u; — V§; where ; € H} () solves
div(eV¢;) = div(eu;). For a subsequence, div(eu;) is converging weakly in L?(2)
and hence strongly in H~'(Q), which implies that &; is strongly converging in
H'(Q) and V¢; strongly in L*(Q). It is therefore sufficient to prove the strong
convergence of 4; in L?(2). This justifies the claim.

We use the Helmholtz decomposition L?(Q, C?) = D, ®. G with D, and G de-
fined in (3.2) and (3.1). We discussed this decomposition in Lemma 3.1, where we
also noted that D, = H (curl, 2, T) N D, allows us to introduce the decomposition
H(curl,Q,T) = D. & G. The corresponding projections are bounded.

We decompose u; with respect to the decomposition that corresponds to € = id,
that is, using H (curl,Q,T") = Dy @ G:

u; = v; + V@DJ with v; € Did and l/}j € H&(Q,C)

Since u; is bounded in H(curl, ,T") and since projections are bounded, the se-
quence v; € Djq is bounded in H (curl, 2, T"). Since it has a vanishing divergence,
Steps 1-3 yield that there exists a subsequence, again denoted by v;, which con-
verges in L?(2, C3). With this knowledge, we now read the previous decomposition
in the form

Uj = Uj — v1/1j,
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and note that this is a decomposition of v; in L*(Q,C*) = D. & G. Since v;
converges in L*(€2, C3) and since the projection onto D, is bounded in the space
L*(Q,C?), we conclude that u; converges in L?(£2, C?). This concludes the proof.

Step 5: Removing the assumption of simple connectedness. It remains to con-
sider an arbitrary bounded Lipschitz domain §2. Let again u; be a bounded
sequence in the spaces on the left-hand side. We choose a finite family of sim-
ply connected Lipschitz subdomains €2, C 2, k =1, ..., K, such that €2 is covered,
QC Ule Q. We choose a subordinate family of smooth cut-off functions 7, with
UkK:1 nx = 1 on ). Steps 1-4 can be applied successively in the subdomains {2, to
the sequences u;n; to find L*(2)-convergent subsequences. For the corresponding

subsequence, also u; = S 0 u;7 is then L(2)-convergent. O

6. LIMITING ABSORPTION PRINCIPLE

In this section, we prove Corollary 1.5 with a limiting absorption principle. In
the limiting absorption principle, one introduces a damping term in the equation
and considers the limit of a vanishing damping (or absorption). Here, we use
a small real number § > 0 and replace the pre-factor w?e in equation (1.8) by
w?e +15. We will verify that this equation has a solution Ej, we will find a limit
E =lims_,o E5, and we show that E is a solution to (1.8).

The problem with absorption is: Find Es € Hg(curl, 2,T") such that

/{,ul curl Bs - curl ¢ — (w’e + i0)Es - ¢} — iw/E(u X Eslr) - v X ¢|r
Q

r

(6.1) = / {iwfe A+ curlgb} V ¢ € Hg(curl,2,T).
Q

Proof of Corollary 1.5 with limiting absorption. Lemma 3.2 guarantees that we
can assume, without loss of generality, that the data satisfy div(f.) = 0. Lemma 6.1
below provides a unique solution Es of (6.1). Lemma 6.2 below shows that the
sequence Ejs is bounded in Hg(curl,Q,T") (in the setting of Corollary 1.5, where
it is assumed that (1.8) has only the trivial solution for f, = f. = 0). Since
Hg(curl, Q,T) is reflexive, there exists a subsequence of Ej that converges weakly
to some limit £ € Hg(curl,Q,T"). The weak convergence allows us to take the
limit § — 0 in (6.1). We obtain that E solves (1.8). O

Lemma 6.1 (Existence of a solution for the problem with absorption). Let 2 C R3
be a bounded Lipschitz domain and w > 0 and ,u and 3,0 satisfy Assump-
tion 1.1. Let f., fr € L*(Q2,C3) be right-hand sides with div(f.) = 0. Then, there
exists 09 > 0 such that, for every § € (0,0p), equation (6.1) has a unique weak
solution Es € Hg(curl,Q,T).

Proof. We define a sesquilinear form as on Hg(curl, 2, I") by setting, for u,¢ €

Heg(curl, Q,T),

(6.2)

as(u, ) = / {p " ewrlu - curl g — (we + id)u- ¢} — iw/E(y X ulp) v X @|r.
Q r
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The form a; allows us to rewrite (6.1) as

(6.3) as(Es, @) /{zwfe ¢+ p curqu} V¢ € Ho(curl, 2,17 .

We calculate with the coercivity lower bound (2.7), for arbitrary u € Hg(curl, 2, T),
[T s (1, 0)] = 8l 22y + cowllv  ulelZagr
Reas(u,u) = co cuﬂunm - w2||e||Lw<Q>||u||L2(Q> .
We observe the following fact in R? = C: For every vector z = (z1, 20) € R?

and every s € [0, 1], there holds |z| > max{|z|, |22|} > (1 — s)|z1| + s|22|. This
inequality allows us to calculate, with s = §2,

las(u,u)| > (1 — 6%)| Im as(u, u)| + 6° Re as(u, u)
> (1= 0%) (Bllulaga + cow v X ulrlEaqr))
+ 6% (coll curl ull2a() — w?lellzoeqen luliagay) -

Choosing dy > 0 small, we achieve (1 — §%)6 > 26%w?||e||f(q) for all 0 < § < do;
for these values of 9, the form as is coercive. Problem (6.3) for Ej can therefore
be solved with the Lemma of Lax-Milgram. O

Lemma 6.2 (Boundedness of solutions to the problem with absorption). Let
the assumptions of Lemma 6.1 be satisfied. For a sequence 6 — 0, let Es €
He(curl, 2, T') be the corresponding sequence of solutions of (6.1). We assume
that relation (1.8) with data f, = fo = 0 has only the trivial solution E = 0.
Then, the sequence Ejs is bounded in Hg(curl, Q,T).

Proof. Step 1: Preparation. For a contradiction argument, we assume that there
exists a subsequence Ej such that || Es|| g, (curory — 00. The subsequent calcula-
tion uses that ¢y is a coercivity constant for the matrix function x~! and the fact

that |21 + iza] = v/|21]? + |22]> > 3(|z1] 4 |22]) holds for real numbers z; and 2.
Using Ejs as a test-function in (6.1), we find

1
5 (coll curl Byl + weollv x Bslellizqr))

< /,ul curl Es - curl B — iw/E(y x Es|r) - v x Es|p
Q r

= /(w28+i5)E5-E(;—I—/{z'wj;-E(;—k/,L_lfh-curlE(;}
Q Q

For an arbitrarily small number A > 0, we can continue this calculation with
Young’s inequality to find

1
5 (coll curl Bsll3ay +weolly x Bslellfzqr))
< C||E5HL2(Q) + O + Al curl E5HL2(Q) ;
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for some C' depending on w, f. and ¢, and C'y depending on p, f; and A. Choosing
A = ¢p/4 and subtracting the term A|| curl E(;||%2 (o on both sides, we find, for some
constant C, the inequality || cur1E5HL2 + ||lv x Eg\rHLQ < C(1+ ||Es|I72 @)

In particular, we can conclude that our assumptlon HE(;H H@(Curm,p) — 00 1rnphes
the divergence of the L*-norm, || Es||p2(q) — co.

Step 2: Normalization. We normalize the sequence Es and consider the new se-
quence Es == Es/||Es|| r2(q, c#- The normalized sequence satisfies | Es|lL2,c3) = 1
and, by Step 1, that || curl Es||2, Q)%—Hl/><E(;|p||L2 is bounded. Since Hg(curl, 2, T")

is reflexive, there exists a subsequence of Ej that converges weakly to some limit
E € He(curl Q,1). In particular, we have: Es — E in L*(Q), curl By — curl E
in L*(Q) and v x E5|p — v x Elp in L*(T).

The function Ej solves (6.1) for source terms f. = f./||Es|| r2(0) and fr =
fu/llEsllz2()- The weak convergence of Ej allows us to perform the limit § — 0
in this relation. We obtain that the limit E solves (1.8) for f, = f. = 0. Our
assumption was that there is no non-trivial solution to the homogeneous problem;
this implies E = 0.

Step 3: Strong convergence. In this step we show the strong convergence of
Es in L*(Q,C?) along a subsequence. Once this is obtained, we have the desired

contradiction: || Es|| r2(@) = 1 is in conflict with the strong convergence Es — E =
0.

In order to show the strong convergence, we decompose E5 according to the
Helmholtz decomposition of Lemma 3.1: Ejs = E5 + Vs for E& €Y. and ¢5 €
H}(Q). Boundedness of Es in He(curl,Q,T") and boundedness of the projection
implies that ng is bounded in Y.. The compactness of Y. (shown in Lemma 5.1)

allows us to pass to a subsequence such that E) converges strongly in L?(€). We

therefore have the desired result once we have the strong convergence of Vs in
L3(9).

We use the test-function ¢ = V)5 in (6.1). Since the curl of a gradient vanishes
and since we assumed that f, is orthogonal to gradients of H{(f2)-function, we
obtain

/(8 + iw*25)E5 . V?/_}(; =0.
Q
Inserting the decomposition Es = ng + Vs in the integral containing ¢, we find
(6.4) Z/ w_25E5 . Vi/;(s + / eVs - V%Z&s = — / €E§/ . V@E(; =0,
Q Q Q

where we used the property E{ € Y. in the last equality. The coercivity of ¢
allows us to deduce from (6.4)

ol Vs 22 < /Q Vs - Ty = —i /Q w26Es - V.
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With the Cauchy-Schwarz inequality and the normalization || Ej| 2@ = 1 we
obtain ||[Vs| 2@ < Cd — 0 as § — 0. This is the desired strong convergence of
Vibs.

The strong convergence of E) together with the strong convergence of Vs
implies the strong convergence of Fs = EY + Vs in L*(Q). This provides the

desired contradiction and concludes the proof. U
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