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Abstract

We investigate the acoustic properties of meta-materials that are in-
spired by sound-absorbing structures. We show that it is possible to con-
struct meta-materials with frequency-dependent effective properties, with
large and/or negative permittivities. Mathematically, we investigate solu-
tions uε : Ωε → R to a Helmholtz equation in the limit ε→ 0 with the help
of two-scale convergence. The domain Ωε is obtained by removing from
an open set Ω ⊂ Rn in a periodic fashion a large number (order ε−n) of
small resonators (order ε). The special properties of the meta-material are
obtained through sub-scale structures in the perforations.
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1 Introduction

In this article, we are interested in the acoustic properties of a particular meta-
material, inspired by sound absorbing structures. We define a complex geome-
try, consisting of many small cavities, and study the Helmholtz equation in this
geometry. The acoustic properties of the meta-material are determined by the
Helmholtz equation since the acoustic pressure p of a time-harmonic sound wave
of fixed frequency ω is of the form p(x, t) = u(x)eiωt, where u solves a Helmholtz
equation.

In standard homogenization settings, nothing special can be expected concern-
ing the acoustic properties of a meta-material (e.g. large or negative coefficients).
Instead, in this contribution, we introduce a setting where the small inclusions
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are resonators and where the effective behavior of the meta-material introduces
new features.

Let us describe these statements in a more mathematical language: We con-
sider a domain Ωε ⊂ Rn, n = 2 or n = 3, which is obtained by removing small
obstacles of typical size ε > 0 from a domain Ω ⊂ Rn. For a fixed frequency
ω ∈ R, we study solutions uε ∈ H1(Ωε) to the Helmholtz equation

−∆uε = ω2uε in Ωε ,

∂nu
ε = 0 on ∂Ωε \ ∂Ω ,

uε = g on ∂Ω .

(1.1)

The first boundary condition expresses that the obstacles are sound-hard (homo-
geneous Neumann condition, n denotes the exterior normal at ∂Ωε), the second
boundary condition prescribes a pressure at the external boundary, g ∈ H1(Ω) is
responsible for the generation of a sound wave in the domain.

When Ωε is obtained from Ω by a standard periodic perforation procedure, then
the homogenization of equation (1.1) is well-established. One finds an effective
coefficient A∗ and a volume correction factor λ ∈ (0,∞) such that, for small
ε > 0, the solution uε looks essentially like the solution u∗ of the effective equation
−∇ · (A∗∇u∗) = ω2λu∗. In this effective system, neither A∗ nor λ are frequency
dependent.

In contrast to such a standard approach we investigate (1.1) for a domain Ωε,
where every single inclusion (perforation) has the shape of a small resonator. This
is possible by introducing a three-scale problem: The macro-scale is diam(Ω) =
O(1), the micro-scale of the single inclusion is O(ε), and the single inclusion
contains a subscale feature of either size O(ε2) (in dimension n = 3) or O(ε3) (in
dimension n = 2). In this three-scale domain Ωε, the solutions uε exhibit a more
interesting behavior. We perform the homogenization procedure and find that,
for small ε > 0, the solution uε to (1.1) looks essentially like the solution v to the
effective system

−∇ · (A∗∇v) = ω2Λ v in Ω . (1.2)

The form of this system is as in the standard homogenization setting, two effective
coefficients A∗ and Λ ∈ R modify the original equation when describing the system
with a macroscopic equation on Ω. But, due to the more complex geometry, we
obtain a parameter Λ = Λ(ω), which is frequency dependent. It can change sign
and it can be arbitrarily large due to a resonance effect in the single cavity. The
resonance frequency is given by the well-known formula for Helmholtz resonators,
ω∗ =

√
A/(LV ), where the real numbers A, L, and V characterize the geometric

properties of the resonators (area of a channel cross section, length of the channel,
volume of the resonator).

Usually, small inclusions correspond to a high resonance frequency, and not to
some finite frequency ω∗. But, as was shown in [30], a finite resonance frequency
can be obtained when a singular structure is included in the geometry: We con-
sider a setting where, in every periodicity cell Y ⊂ Rn, a resonator region RY ⊂ Y
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is separated from an exterior region QY ⊂ Y by the sound-hard obstacle Σε
Y ⊂ Y ,

cp. Figure 1. But the separation is not complete, the obstacle leaves open a
small channel that connects RY and QY . The scaling of the channel depends
on the dimension. In two space dimensions (n = 2), the relative scaling of the
opening is εp with p = 2, hence the channel width of the single inclusion Σε

k ⊂ Ω
(where k ∈ Zn is the index of the k-th inclusion) is of order ε3. In dimension
n = 3 the exponent is p = 1, the channel opening diameter of the single inclusion
Σε
k ⊂ Ω is therefore of order ε2. In both cases, the scaling is such that the quan-

tity Aε/(LεVε) is of order 1, where Aε is the channel opening, Lε is the channel
length and Vε is the volume. Let us check this condition: For n = 2 we have
Aε/(LεVε) ∼ εp+1/(ε1εn) = 1, for n = 3 we have Aε/(LεVε) ∼ (εp+1)2/(ε1εn) = 1.

1.1 Main result

We investigate a large domain Ω ⊂ Rn that contains meta-material in some region
D ⊂ Ω. The single small resonator is denoted as Σε

k, with k ∈ Zn such that
ε (k + Y ) ⊂ D, where Y := (−1

2
, 1

2
)n. The union of all resonators Σε =

⋃
k Σε

k ⊂ D
defines the perforated domain Ωε := Ω \ Σε. In order to analyze the effect of the
resonator region D, we study solutions uε to the Helmholtz equation (1.1) and
investigate their behavior inside and outside of D in the limit ε→ 0.
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Figure 1: Sketch of the scattering problem. Left: The sub-region D ⊂ Ω contains
the small Helmholtz resonators, given by Σε ⊂ D. The number of resonators in
the region D is of order ε−n. We are interested in the effective properties of the
meta-material in D. Right: The microscopic geometry with the single resonator
RY . The channel width inside Y is of the order εp.

We derive an effective Helmholtz equation with the tool of two-scale conver-
gence. Essentially, the effective system is given by (1.2). In this equation, the
effective permittivity Λ : Ω → R is Λ(x) = 1 for x ∈ Ω \ D (outside the region
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that contains the resonators) and Λ(x) = Λeff for x ∈ D, where the real number

Λeff := Q− A

L

(
ω2 − A

LV

)−1

(1.3)

is determined by the positive real numbers A, L, V and Q which characterize
the geometric properties of the resonators (area of a channel cross section, length
of the channel, volume of the resonator, volume of the exterior), cf. Section 1.3
below. The number Λeff represents the permittivity of the effective medium. Due
to resonance properties of Σε

Y , it can be negative and it can be large in absolute
value (with both signs). The resonance frequency ω∗ =

√
A/(LV ) is determined

by the geometry.
The ellipticity matrix is A∗(x) = 1Rn for x ∈ Ω \ D, whereas for x ∈ D it is

given as a cell problem integral:

(A∗)ij (x) := (Aeff)ij :=

∫
QY

[δij + ∂yiχj(y)] dy for i, j ∈ {1, ..., n} , (1.4)

where δij denotes the Kronecker Delta and χj is the solution to the cell problem
(2.11). The set QY ⊂ Y is the part of the periodicity cell Y that is exterior to the
obstacle and Q := |QY | is its volume.

Let us formulate here our main result in a condensed form. Theorem 1.1
characterizes the effective influence of the scattering region D on waves in Ω.
Theorem 1.1 is a consequence of the stronger result in Theorem 3.1, which includes
a characterization of uε in D.

Theorem 1.1 (Effective Helmholtz equation). Let Ω ⊂ Rn be a domain and
let D ⊂ Ω contain the obstacle set Σε ⊂ D as described in Section 1.3. Let
uε ∈ H1(Ωε) be a sequence of solutions to (1.1) satisfying

‖uε‖L2(Ωε) ≤ C . (1.5)

Let Λeff and Λ be defined by the algebraic relation (1.3), which uses the geometric
constants A,L, V,Q > 0. Let A∗ be defined by (1.4) with the help of cell problems.
Let v ∈ H1(Ω) be a solution to the effective Helmholtz equation

−∇ · (A∗∇v) = ω2Λ v in Ω , (1.6)

v = g on ∂Ω . (1.7)

If the solution v to the effective system is unique, then there holds

uε|Ω\D → v|Ω\D in L2(Ω \D) . (1.8)

Remark 1.2. For almost every ω ∈ R the solution to (1.6)-(1.7) is unique, since
the generalized Eigenvalue-problem (1.6) has a discrete set of Eigenvalues ω2.

The result of Theorem 1.1 yields that the field uε is determined outside the
resonator region D by the effective system (1.6)–(1.7). Inside D, the solutions uε

are oscillatory due to the micro-structure. We describe the two-scale limit of uε

in D in Subsection 1.4.
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1.2 Literature

Homogenization theory is concerned with the derivation of effective equations.
The most elementary task is to consider a sequence uε of solutions to a family
of partial differential equations that contains a small parameter ε, very often the
periodicity of the geometry or the periodicity of a coefficient. The goal is to find
an equation that characterizes the weak limit u∗ of the sequence uε. Our result is
of that form. The general theory has origins in [29] and it was greatly simplified
by introducing the notion of two-scale convergence [1, 26]. The theory was later
extended in several directions, e.g. to stochastic problems [21], to problems with
multiple scales [2], and to problems with measure valued limits [8, 14].

Perforated media. Our result treats perforated media in the sense that an
equation with constant coefficients is considered on a domain Ωε which is obtained
by removing many small subdomains from a macroscopic domain Ω. A simple
boundary condition is imposed on the boundary ∂Ωε \ ∂Ω. Perforated media
have been studied with Dirichlet boundary conditions in [16] and with Neumann
boundary conditions in [17], the scattering problem has been analyzed in [15].
For perforations along a lower dimensional manifold see e.g. [19]. Periodically
perforated domains can also be treated with the tool of two-scale convergence,
which shortens the proofs of some of the original results. The difference between
our result and those mentioned above is that we introduce a sub-scale structure
in the perforation to allow for resonances. This leads to more interesting terms in
the effective equation.

Resonances in Maxwell’s equations. Resonances in the single periodicity
cell can create interesting effects in the homogenization limit. One of the fascinat-
ing examples is the construction of negative index materials for light as suggested
in [27, 28] with its possible applications to cloaking (see [23] and the references
therein). The meta-material for the Maxwell’s equations has qualitatively new
features, namely a negative effective permittivity and a negative effective per-
meability. The astonishing properties of such a material had been anticipated
in [31], but the mathematical analysis of negative index meta-materials is much
younger. Model equations have been studied in [22], non-rigorous results appeared
in [13, 20]. The mathematical theory that confirmed negative effective permeabil-
ity appeared in [11, 24] for metals and in [7] for dielectrics. The full result on the
negative effective index meta-material can be found in [25].

Generation of resonances. At first sight, a resonance effect in a structure of
order ε seems impossible when the frequency ω is kept fixed: One expects that an
object of order ε has a resonance at wave-length of order ε and hence a resonance
frequency of order ε−1. Indeed, in order to obtain interesting features in the limit
ε→ 0, one has to introduce some singular behavior of the micro-structure.

(a) Large contrast. The simplest setting uses a large contrast, e.g. a parameter
aε that is of order 1 outside the structure and ε2 in the structure [7, 12, 13, 25]. In
many cases, the large contrast must be combined with one of the features (b)-(d)
below.
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(b) Fibers. Interesting effects within the framework of homogenization can be
obtained when fibers are present in the structure [4, 5, 6, 13]. On the one hand
a fiber can be regarded as a classical periodic micro-structure (ε-periodic in each
direction). On the other hand, the exterior of the fiber (in the single cell) is not a
simply connected set, which makes some standard two-scale limit characterizations
impossible. Other effects are related to the fact that the length of a single fiber
is of order O(1). For implications in Maxwell equations see e.g. [9, 10, 13, 25].

(c) Split rings. More complicated is the three-dimensional construction of a
split ring: For ε > 0, the ring is simply connected, but the slit closes in the limit
ε → 0 such that the limiting object is no longer simply connected. This change
of topology is exploited in [11, 24].

(d) Disconnected subregions. In the work at hand we use a different construc-
tion, based on the Helmholtz resonator that has been studied mathematically in
[30]. Again, a topological effect plays a role: Every cell has an interior part RY

(the resonator) and an exterior part QY . For every ε > 0, the two subdomains
are connected by a thin channel, but since the channel gets thinner and thinner,
the limiting object for ε→ 0 is no longer connected, it has the two disconnected
components RY and QY .

In both settings (c) and (d) it is the change of the topology that makes the
resonance in the small object at finite frequency possible. We note that the
analysis of spectral properties in perforated domains require other methods if
the low- and high-frequency parts of the spectrum are studied separately, see
[3, 21, 32].

1.3 Geometry

Let Ω ⊂ Rn be open and bounded and let D ⊂ Ω be an open set with Lipschitz
boundary such that D̄ ⊂ Ω. The set D contains the periodic perforations, it is
the scatterer in the effective equations.

Microscopic geometry. We start the construction from the periodicity cube
Y := (−1

2
, 1

2
)n. Since we will always impose periodicity conditions on the cube Y ,

we may identify it with the torus Tn. We assume that Y is the disjoint union

Y = RY ∪ Σ̄Y ∪QY ,

each of the three sets RY ,ΣY , QY is open and connected with Lipschitz boundary,
R̄Y , Σ̄Y ⊂ (−1

2
, 1

2
)n do not touch the boundary, and RY ∪ QY is not connected,

see Figure 1.
Channel construction. The channel is constructed starting from a one-

dimensional line-segment ΓY ⊂ ΣY that connects ∂RY with ∂QY . We may write
the segment with its tangential vector τΓY ∈ Rn as ΓY = {γ0 + tτΓY : t ∈ (0, L)}
with L denoting the length of the segment. For ease of notation we assume in
the following that the line segment has the tangential vector τΓY = e1 and that
ΓY ⊂ R × {0} ⊂ Rn. In this case, we have γ0 = (yR, 0) and ΓY = (yR, yQ) × {0}
with yQ := yR + L < 1/2.
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For technical reasons in the study of the asymptotic behavior of cell solutions,
we assume that the boundaries ∂RY and ∂QY are flat in the vicinity of (yR, 0)
and (yQ, 0): For some δ > 0 there holds ∂RY ∩ Bδ((yR, 0)) ⊂ {yR} × Rn−1 and
similarly for ∂QY .

We now construct the channel as Kε
Y := Bαεp(ΓY ) ∩ ΣY , where α > 0 is fixed

and Bαεp denotes the generalized ball around a set. In our simplified setting,
the channel is the cylinder Kε

Y = (yR, yQ) × Bn−1
αεp (0) ⊂ Y , where Bn−1

αεp (0) is the
n−1-dimensional ball with radius αεp. The Helmholtz resonator Σε

Y is defined as

Σε
Y := ΣY \ K̄ε

Y = Y \
(
R̄Y ∪ K̄ε

Y ∪ Q̄Y

)
. (1.9)

In the following, three geometric quantities will be crucial: (i) The length L of
the channel. (ii) The relative cross section area A of the channel, A = 2α for
n = 2 and A = α2π for n = 3. (iii) The volume V = |RY | of the inner connected
component RY . We will see that in the effective equation resonances appear at
frequencies ω2 that are close to the ratio A/(LV ).

Macroscopic geometry. In order to define the domain Ωε, we use indices
k ∈ Zn and shifted small cubes Y ε

k := ε(k+Y ). We denote by K := {k ∈ Zn |Y ε
k ⊂

D} the set of indices k such that the small cube Y ε
k is contained in D. Here and

in the following, in summations or unions over k, the index k takes all values in
the index set K. The number of relevant indices is of the order |K| = O(ε−n).

Using the local subset Σε
Y ⊂ Y we define the union Σε of scaled obstacles and

the perforated domain Ωε by

Σε :=
⋃
k∈K

Σε
k :=

⋃
k∈K

ε(k + Σε
Y ) , Ωε := Ω \ Σ̄ε . (1.10)

Also the other microscopic quantities have their counterpart in the macroscopic
domain: The union Kε of the channels, the union Qε of exterior components and
the union Rε of interior components are

Kε :=
⋃
k∈K

ε(k +Kε
Y ) , Qε :=

⋃
k∈K

ε(k +QY ) , Rε :=
⋃
k∈K

ε(k +RY ) . (1.11)

1.4 Characterization of solutions in D

Outside the scatterer region D, the function v of the effective system (1.6)–(1.7)
is the weak limit of uε. In the following, we want to describe the meaning of v in
the scatterer region D.

If we denote by ũε ∈ L2(Ω) the trivial extension of uε by zero, then the
uniform bound (1.5) implies the existence of a subsequence and of a two-scale

limit u0 = u0(x, y) such that ũε
2s
⇀ u0 (for the definition of two-scale convergence

we refer to [1]). Proposition 2.1 below yields that the two-scale limit for x ∈ D is
of the form

u0(x, y) =


v(x) for y ∈ QY ,

w(x) for y ∈ RY ,

0 for y ∈ ΣY .

(1.12)
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This characterization clarifies the meaning of v. Outside the perforated region
D ⊂ Ω, there is no micro-structure and the sequence uε converges strongly to v.
Instead, for x ∈ D, the function v describes the value of u0 in the exterior QY

of the Helmholtz resonator. Outside D, the limit function v is comparable to uε,
while inside D the function v stands for the values of uε outside the scatterers.
This fits with the result v ∈ H1(Ω) from Lemma 2.2 below: It is the function v
that has a weak continuity property across the boundaries of D.

2 Two-scale limits

We will always work with the assumption that the sequence uε is uniformly
bounded in L2(Ωε) as demanded in (1.5). We remark that (1.5) implies also a
uniform H1-bound,

‖uε‖H1(Ωε) ≤ C (2.1)

for some ε-independent constant C > 0. Since the boundary values are given
by g ∈ H1(Ω) and since the domain Ω is bounded, the estimate (2.1) follows
immediately from (1.5) by testing (1.1) with the solution uε.

In this section we derive Relation (1.12) for the two-scale limit u0. Moreover,
we provide a characterization for the two-scale limit of the gradients ∇uε.

2.1 The two-scale limit u0

The following proposition provides a first characterization of u0. We use the
sequence ũε ∈ L2(Ω) of trivial extensions of uε (obtained by setting ũε(x) := 0 for
x ∈ Σε).

Proposition 2.1 (The two-scale limit u0). Let uε ∈ H1(Ωε) be a sequence of
solutions to (1.1). We assume that the sequence satisfies the uniform bound (1.5)
and that ũε ∈ L2(Ω) converges in two scales to some limit function u0 ∈ L2(Ω×Y ).
Then there exist v ∈ L2(Ω) and w ∈ L2(D) such that

1. For x ∈ Ω \D one has u0(x, y) = v(x).

2. For x ∈ D one has

u0(x, y) =


v(x) for y ∈ QY ,

w(x) for y ∈ RY ,

0 for y ∈ ΣY .

(2.2)

Proof. We start with the characterization of u0(x, y) for (x, y) ∈ D×ΣY . There-
fore, we consider localized test functions ϕε(x) := θ(x)Ψ

(
x
ε

)
with θ ∈ C∞c (D)
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and Ψ ∈ C∞(Y ) with supp(Ψ) ⊂ ΣY . On the one hand we find, exploiting the
two-scale convergence of ũε,∫

Ω

ũε(x)ϕε(x) dx→
∫
D

θ(x)

∫
ΣY

u0(x, y)Ψ(y) dy dx .

On the other hand one obtains, using the fact that supp(ϕε) ⊂ (Σε ∪ K̄ε), the
definition of ũε, the L2(Ω)-bound for ũε and the vanishing volume fraction of the
channels Kε, ∫

Ω

ũε(x)ϕε(x) dx =

∫
Kε

ũε(x)ϕε(x) dx→ 0 .

Since the test functions were arbitrary, we conclude u0(x, y) = 0 for (x, y) ∈
D × ΣY .

We next show that u0(x, y) is independent of y for (x, y) ∈ D×QY . As before
we consider localized test functions ϕε(x) := θ(x)Ψ

(
x
ε

)
with θ ∈ C∞c (D) and

Ψ ∈ C∞per(Y,Rn) with supp(Ψ) ⊂ QY . Multiplying ∇uε by εϕε and integrating by
parts gives

ε

∫
Ωε

∇uε(x) · ϕε(x) dx = −
∫

Ωε

uε(x)
[
(∇y ·Ψ)

(x
ε

)
θ(x) + εΨ

(x
ε

)
· ∇xθ(x)

]
dx .

(2.3)

Note that no boundary terms appear due to the compact support of θ and Ψ. We
can now pass to the limit ε→ 0. Due to the uniform L2-bound of ∇uε, cf. (2.1),
the left hand side of (2.3) vanishes in the limit as ε→ 0. On the right hand side
we exploit the two-scale convergence of ũε to find∫

Ωε

uε(x)
[
(∇y ·Ψ)

(x
ε

)
θ(x) + εΨ

(x
ε

)
· ∇xθ(x)

]
dx

=

∫
Ω

ũε(x)
[
(∇y ·Ψ)

(x
ε

)
θ(x) + εΨ

(x
ε

)
· ∇xθ(x)

]
dx

ε→0→
∫
D

θ(x)

∫
QY

u0(x, y)(∇y ·Ψ)(y) dy dx .

Since the test functions θ,Ψ were arbitrary, this implies that ∇yu0(x, .) = 0 in
the sense of distributions in QY for almost every x ∈ D. Therefore u0 does not
depend on y for (x, y) ∈ D × QY . We may therefore write u0(x, y) = v(x) for
some v ∈ L2(D).

For the domains (Ω \D)× Y and D × RY one proceeds analogously to show
that u0(x, .) does not depend on y.

2.2 Two-scale convergence of the gradients

Due to the uniform bound (2.1) we can find also a two-scale limit of the sequence
∇uε (upon extending by zero). The subsequent Lemma provides a first charac-
terization of the two-scale limit. We use the space H1

per(QY ) of those functions in
H1(QY ) for which also their periodic extension to Rn is locally of class H1.
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Lemma 2.2. Let uε ∈ H1(Ωε) be a sequence of solutions to (1.1) that satisfies the
uniform bound (1.5). Let ξε ∈ L2(Ω;Rn) be the trivial extension of ∇uε by zero
and let v be the exterior field of Proposition 2.1. We assume that ξε converges in
two scales to some limit function ξ0 ∈ L2(Ω× Y )n. Then the following holds:

1. The exterior field v is of class H1(Ω).

2. For x ∈ Ω \D one has ξ0(x, y) = ∇xv(x).

3. There exists v1 ∈ L2(D;H1
per(QY )) such that for x ∈ D one has

ξ0(x, y) =

{
∇xv(x) +∇yv1(x, y) for y ∈ QY ,

0 for y ∈ RY ∪ ΣY .
(2.4)

We note that the lemma implies for the interior of the resonators

∇uε 1Rε
2s
⇀ 0 as ε→ 0 . (2.5)

Proof. Step 1. Regularity of v. We consider the domain Ω̂ε := Ω \ (Σ̄ε ∪ K̄ε ∪ R̄ε),
which is obtained from Ω by removing the union of obstacles Σε, slits Kε and
interior regions Rε. In particular, the perforation of Ω̂ε in each periodicity cell is a
Lipschitz domain without substructure. We construct a sequence v̂ε ∈ H1(Ω) by
setting v̂ε := uε in Ω̂ε and extending to Ω. Actually, it is well known that there
exists a family of extension operators Pε : H1(Ω̂ε)→ H1(Ω) such that

‖Pεuε‖H1(Ω) ≤ C‖uε‖H1(Ω̂ε)

for some C > 0 independent of ε, see [18], Chapter 1. Essentially, Pε is defined by
using in each perforation the harmonic extension of the boundary values. Hence,
v̂ε := Pεuε is uniformly bounded inH1(Ω). We therefore find, up to a subsequence,
a limit function v̂ ∈ H1(Ω) such that v̂ε converges in two scales and strongly in
L2(Ω) to the (y-independent) function v̂ = v̂(x).

Since v̂ε = uε in Ω̂ε, the strong limit v̂ coincides with the two-scale limit of uε

in the exterior of the resonators, i.e. v̂ = v. This proves v ∈ H1(Ω).

Step 2. Characterization outside D. Outside of D, the elliptic equation for uε

implies that the solution sequence is locally H2-bounded. Therefore, the distri-
butional convergence ∇uε → ∇v is locally a strong L2-convergence. In this case
the two-scale limit of gradients coincides with the strong limit.

Step 3. Characterization in D: The case y ∈ QY ∪ ΣY . Concerning the
characterization for (x, y) ∈ D ×QY we refer to a standard argument, which can
be found e.g. in the proof of Theorem 2.9 in [1]. It provides the existence of a
two-scale function v1 ∈ L2(D;H1

per(QY )) such that

ξ0(x, y) = ∇xv(x) +∇yv1(x, y) for (x, y) ∈ D ×QY . (2.6)



Effective Helmholtz Equation in a geometry with small resonators 11

We emphasize that characterization (2.6) heavily relies on the fact that the union
of exterior domains is connected.

The claim for y ∈ ΣY follows as in the proof of Proposition 2.1: We exploit
the vanishing volume fraction of the channels and the uniform bound for ∇uε.

Step 4. Characterization in D: The case y ∈ RY . For y ∈ RY we argue
as follows: Let θ ∈ C∞c (D) and Ψ ∈ C∞c (RY ,Rn) be arbitrary. In three space
dimensions, n = 3, we exploit the relation curl(∇uε) = 0, while in two space
dimensions the curl-operator has to be replaced by a rotated divergence. In the
following, we perform the calculations only for n = 3. Multiplying the identity
curl(∇uε) = 0 with ε θ(x)Ψ

(
x
ε

)
and integrating by parts one finds

0 =

∫
Ωε

curl(∇uε)(x) · εΨ
(x
ε

)
θ(x) dx

=

∫
Ωε

∇uε(x) ·
[
curlyΨ

(x
ε

)
θ(x)− εΨ

(x
ε

)
∧∇xθ(x)

]
dx

ε→0→
∫
D

∫
RY

ξ0(x, y) · curlyΨ(y)θ(x) dy dx .

Since θ ∈ C∞c (D) was arbitrary we conclude that for a.e.x ∈ D and every Ψ ∈
C∞c (RY ,R3) there holds ∫

RY

ξ0(x, y) · curlyΨ(y) dy = 0 .

We obtained that the (distributional) curl of ξ0 vanishes. Since the interior domain
RY is simply connected, ξ0(x, ·) must be a gradient: There exists a potential w1 ∈
L2(D;H1(RY )) such that ξ0(x, ·) = ∇yw1(x, ·) for a.e. x ∈ D. With an analogous
calculation the same result can be obtained also in two space dimensions, n = 2.

We next show that w1(x, ·) is constant for a.e.x ∈ D. This implies ξ0(x, y) =
∇yw1(x, y) = 0; with that, the lemma is proven.

We consider microscopic test-functions ψ ∈ C∞(R̄Y ) with vanishing values at
the entrance of the channel. More precisely, denoting by Γε,RY := R̄Y ∩ K̄ε

Y =

{yR}×Bn−1
αεp (0) the interface between RY and the channel Kε

Y we define, for δ > 0
fixed, the set

Aδ(RY ) :=
{
ψ ∈ C∞(R̄Y ) |ψ = 0 on {yR} ×Bn−1

δ (0)
}
. (2.7)

Note that for δ > 0 fixed and ε sufficiently small each ψδ ∈ Aδ(RY ) satisfies
ψδ = 0 on Γε,RY . Let now θ ∈ C∞c (D) and ψδ ∈ Aδ(RY ) be arbitrary. We multiply
−∆uε with ε θ(x)ψδ

(
x
ε

)
and integrate by parts to find

ε

∫
Ωε

(−∆uε)(x) θ(x)ψδ

(x
ε

)
dx

=

∫
Rε

∇uε ·
[
ε∇xθ(x)ψδ

(x
ε

)
+ θ(x)∇yψδ

(x
ε

)]
dx .

(2.8)
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Note that no boundary terms appear due to the Neumann boundary conditions of
uε and the fact that the test function Ψδ vanishes at the interface between RY and
the channel. We next pass to the limit in (2.8). Exploiting that ∆uε is uniformly
bounded in L2(Ωε) we find that the left hand side of (2.8) vanishes in the limit
as ε → 0. On the right hand side we use the uniform boundedness of ∇uε to
conclude that the first term vanishes in the limit, while for the second term we
obtain∫

Ωε

∇uε · θ(x)∇yψδ

(x
ε

)
dx

ε→0→
∫
D

∫
RY

ξ0(x, y) · ∇yψδ(y)θ(x) dy dx

=

∫
D

∫
RY

∇yw1(x, y) · ∇yψδ(y)θ(x) dy dx .

In the last line we used the characterization ξ0(x, y) = ∇yw1(x, y). Since θ was
arbitrary we conclude, for a.e. x ∈ D and every test function ψδ(y) ∈ Aδ(RY ),∫

RY

∇yw1(x, y) · ∇yψδ(y) dy = 0 . (2.9)

In the above equality the test functions ψδ are restricted to the set Aδ(RY ). We
claim that (2.9) holds for all functions ψ ∈ C∞(R̄Y ). Indeed, in the limit δ → 0
the set {yR} × Bn−1

δ (0) shrinks to a set of vanishing H1-capacity. In particular,
for every ψ ∈ C∞(R̄Y ) there exists an approximating sequence ψδ ∈ Aδ(RY ) with
ψδ → ψ in H1(RY ) as δ → 0. We therefore conclude that for every ψ ∈ C∞(R̄Y )∫

RY

∇yw1(x, y) · ∇yψ(y) dy = 0 .

We obtain that w1(x, ·) is a solution to

−∆yw1(x, ·) = 0 in RY ,

∂nw1(x, ·) = 0 on ∂RY .

All solutions to this elliptic problem are constant functions, as can be shown by
testing with w1. We obtain ξ0(x, y) = ∇yw1(x, y) = 0 for (x, y) ∈ D ×RY , which
concludes the proof.

In the next lemma we relate, via cell problems, the two-scale function v1 (the
exterior two-scale corrector) to the field v (which represents average values outside
the resonators). The procedure follows the standard arguments, our interest is
to show rigorously that the channels do not affect the equations for the exterior
corrector function v1. As before, n denotes exterior normal vectors on boundaries.

Lemma 2.3 (Characterization of v1). Let v and v1 be as in Proposition 2.1 and
Lemma 2.2. Then the microscopic function v1 can be written as

v1(x, y) =
n∑
i=1

χi(y)∂xiv(x) , (2.10)
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where the shape functions χi ∈ H1
per(QY ) with i ∈ {1, ..., n} satisfy the following

cell problem with Neumann boundary conditions on ∂QY \ ∂Y and periodicity
boundary conditions on ∂Y :

∆yχi = 0 in QY ,

∂nχi = −ei · n on ∂QY \ ∂Y .
(2.11)

Proof. For an arbitrary microscopic test function ψ ∈ H1
per(QY ) we will prove that

there holds, for a.e.x ∈ D,∫
QY

[∇xv(x) +∇yv1(x, y)] · ∇yψ(y) dy = 0 . (2.12)

Equation (2.12) implies the claim of the lemma. Indeed, (2.12) is the weak for-
mulation of the Neumann problem

−∆yv1(x, y) = −∇y · [∇xv(x) +∇yv1(x, y)] = 0 in QY ,

(∇xv(x) +∇yv1(x, y)) · n = 0 on ∂QY \ ∂Y ,

supplemented with periodicity boundary conditions on ∂Y . By linearity of this
problem, v1 depends linearly on ∇xv. This yields the representation formula
(2.10).

Derivation of (2.12): In the following we fix a small parameter δ > 0 in
such a way that the δ-neighbourhood of QY in Y does not intersect the interior
domain RY , i.e. Bδ(QY ) ∩ RY = ∅. Let θ ∈ C∞c (D) be arbitrary. We consider
microscopic test-functions ψ ∈ H1

per(Y ) with supp(ψ) ⊂ Bδ(QY ). We emphasize
that all H1

per(QY )-functions are admissible, we do not prescribe any boundary
conditions on the channel opening. We multiply the Helmholtz equation (1.1)
with ϕε(x) := εθ(x)ψ

(
x
ε

)
to find∫

Ωε

∇uε(x) ·
[
∇yψ

(x
ε

)
θ(x) + ε∇xθ(x)ψ

(x
ε

)]
dx = εω2

∫
Ωε

uε(x)θ(x)ψ
(x
ε

)
dx .

(2.13)

Due to the uniform H1-bound on uε the second term on the left hand side of
(2.13) and the right hand side vanish in the limit ε → 0. Concerning the first
term on the left hand side we calculate, using that supp(ψ) ⊂ QY ∪ ΣY and thus
Ωε ∩ supp

(
ψ
( ·
ε

)
θ
)
⊂ (Qε ∪Kε),∫

Ωε

∇uε(x) · ∇yψ
(x
ε

)
θ(x) dx

=

∫
Qε

∇uε(x) · ∇yψ
(x
ε

)
θ(x) dx+

∫
Kε

∇uε(x) · ∇yψ
(x
ε

)
θ(x) dx

ε→0→
∫
D

∫
QY

(∇xv(x) +∇yv1(x, y)) · ∇yψ(y)θ(x) dy dx .
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In the last line we exploited the uniform H1-bound of uε and the vanishing volume
fraction of the channels Kε. Moreover, we used characterization (2.4) for the two-
scale limit of ∇uε. We obtain∫

D

∫
QY

(∇xv(x) +∇yv1(x, y)) · ∇yψ(y)θ(x) dy dx = 0

and hence, since θ ∈ C∞c (D) was arbitrary, the claim (2.12).

3 Proof of the main result

In this section we prove that the external field v of Proposition 2.1 satisfies the
effective Helmholtz equation (1.6). Let us start by formulating the strong version
of our main result.

Theorem 3.1 (Characterization of two-scale limits of solutions). Let uε ∈ H1(Ωε)
be as in Theorem 1.1: For every ε, the function uε solves the Helmholtz equation
(1.1) in a domain Ωε, which is obtained by removing from Ω ⊂ Rn a family of
small resonators. We assume that the family uε satisfies the uniform bound (1.5).
Due to this boundedness, we can extract a two-scale convergent subsequence and
study v ∈ L2(Ω) of Proposition 2.1.

Then the field v is of class v ∈ H1(Ω) and it is a solution to the effective
Helmholtz equation

−∇ · (A∗∇v) = ω2Λ v in Ω , (3.1)

v = g on ∂Ω . (3.2)

The effective coefficients are Λ(x) = 1 and A∗(x) = 1Rn for x ∈ Ω \ D, whereas
for x ∈ D the factor Λ(x) = Λeff and the matrix A∗(x) = Aeff are defined in (1.3)
and (1.4).

In order to prove Theorem 3.1 we have to introduce an additional quantity,
namely the current j∗. To define this additional effective quantity, we first observe
that a rescaled flux in the channels is bounded in L1(Ω): The sequence

jε(x) := − 1

Lε
1Kε(x)∂x1u

ε(x) , (3.3)

where 1Kε is the characteristic function of the channels, satisfies∫
Ω

|jε| =
∫
Kε

1

Lε
|∂x1uε| ≤

|Kε|
1
2

Lε

(∫
Kε

|∂x1uε|2
) 1

2

≤ C,

where C is independent of ε. In the last inequality we exploited that the volume
of the channels is of order ε2 (opening area times length times number is ε3εε−2

for n = 2 and (ε2)2εε−3 for n = 3), and that uε is uniformly bounded in H1(Ωε).
In view of this estimate we find a subsequence ε → 0 and a limit j∗ ∈ M(Ω̄)

such that jε → j∗ weakly star in the space of Radon measures along the subse-
quence.
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Definition 3.2 (The current j∗). We define the current j∗ ∈ M(Ω̄) as the weak
star limit of jε in the space of Radon measures, i.e. through

− 1

Lε

∫
Kε

∂x1u
ε(x)θ(x) dx

ε→0→
∫

Ω̄

θ(x) dj∗(x) (3.4)

for all test-functions θ ∈ C(Ω̄).

At a later stage, cf. Proposition 3.3, we will see that the measure j∗ ∈M(Ω) is
absolutely continuous with respect to the Lebesgue measure and that its density
coincides, up to a prefactor, with the interior field w(·) from characterization (2.2).
In particular, the limit j∗ does not depend on the choice of the subsequence ε→ 0.

Note that, by definition of the set Kε, the current j∗ vanishes outside the
perforated region D̄. The integral on the right hand side of (3.4) may be replaced
by an integral over D̄:∫

Ω̄

θ(x) dj∗(x) =

∫
D̄

θ(x)dj∗(x) for all θ ∈ C(Ω̄) . (3.5)

The proof of Theorem 3.1 consists of three steps: (1) Establish a relation
between the current j∗ and the interior field w. This is achieved in Proposition
3.3. (2) Derivation of a geometric flow rule, which relates the current j∗ to the
difference v−w between exterior field v and interior field w. This is the result of
Proposition 3.4. (3) Derivation of a Helmholtz equation for v, cf. Proposition 3.6.

3.1 Relation between current and the interior field

In this subsection we prove that the current j∗ can be expressed in terms of the
interior field w. We recall that V = |RY | is the relative volume of the single
resonator domain.

Proposition 3.3 (Relation between the current and the interior field). In the
situation of Theorem 3.1, let the current j∗ ∈ M(Ω̄) be as in Definition 3.2 and
let w ∈ L2(D) be the interior field of Proposition 2.1. Then for every function
θ ∈ C∞c (Ω) there holds∫

Ω

θ(x) dj∗(x) = V ω2

∫
D

θ(x)w(x) dx . (3.6)

In particular, taking into account (3.5), one obtains that j∗ = j dx, where j is the
L2(Ω)-function

j(x) =

{
V ω2w(x) for x ∈ D ,

0 for x ∈ Ω \D .
(3.7)

Proof. Let θ ∈ C∞c (Ω) be arbitrary. Our aim is to multiply the Helmholtz equation
(1.1) with an oscillatory test function of the form ϕε(x) := θ(x)Φε

(
x
ε

)
1Y ε(x),



16 A. Lamacz, B. Schweizer

where Y ε :=
⋃
k∈K Y

ε
k denotes the union of ε-cubes that are contained in the

resonator region D. The function Φε : Y \ Σ̄ε
Y → R is defined as follows:

Φε(y) =


L for y ∈ RY (interior),

0 for y ∈ QY (exterior),

Φ(y1) for y ∈ Kε
Y (channel),

(3.8)

where L is the length of the channel and Φ(·) is affine on the interval (yR, yQ)
with Φ(yR) = L and Φ(yQ) = 0. In particular, Φε ∈ H1(Y \ Σ̄ε

Y ) with

∇yΦε(y) = −e1 1Kε
Y

(y) ,

where e1 denotes the first unit vector. We note that the oscillatory test function
ϕε is of class H1(Ωε), since the jump set ∂Y ε of the function 1Y ε is contained
in the set where Φε

( ·
ε

)
vanishes. We now multiply the Helmholtz equation (1.1)

with ϕε and integrate by parts to find∫
Ωε

∇uε(x) · ∇ϕε(x) dx = ω2

∫
Ωε

uε(x)ϕε(x) dx . (3.9)

Concerning the left hand side of (3.9) we calculate∫
Ωε

∇uε(x) · ∇ϕε(x) dx

=

∫
Ωε

∇uε(x) · ∇θ(x)Φε

(x
ε

)
1Y ε(x) dx− 1

ε

∫
Kε

∂x1u
ε(x)θ(x) dx

= L

∫
Rε

∇uε(x) · ∇θ(x) dx+

∫
Kε

∇uε(x) · ∇θ(x)Φε

(x
ε

)
dx

− 1

ε

∫
Kε

∂x1u
ε(x)θ(x) dx .

In the limit ε→ 0, the first term vanishes due to (2.5). The second term vanishes
due to the uniform bound (2.1) and the vanishing volume fraction of the channels.
In the third term we use the definition of j∗ in (3.4). Together, we find∫

Ωε

∇uε(x) · ∇ϕε(x) dx
ε→0→ L

∫
Ω̄

θ(x) dj∗(x) .

Concerning the right hand side of (3.9) we calculate, using the properties of the
microscopic test-function Φε,

ω2

∫
Ωε

uε(x)ϕε(x) dx = Lω2

∫
Rε

uε(x)θ(x) dx+ ω2

∫
Kε

uε(x)ϕε(x) dx

ε→0→ Lω2

∫
D

∫
RY

w(x)θ(x) dy dx = LV ω2

∫
D

w(x)θ(x) dx .

In the second line we again exploited the vanishing volume fraction of the channels
and characterization (2.2) of the two-scale limit u0.

Our calculations show that (3.9) provides, in the limit ε→ 0 and upon dividing
by L, relation (3.6). This concludes the proof of the proposition.



Effective Helmholtz Equation in a geometry with small resonators 17

3.2 Geometric flow rule: A second relation for the current

In this section we establish the geometric flow rule, which relates the current j∗
to the difference between the exterior field v and the interior field w.

Proposition 3.4 (Geometric flow rule). In the situation of Theorem 3.1, let
j∗ = j dx be the current from Definition 3.2, let w be the interior field and v the
exterior field of Proposition 2.1. Then there holds, for x ∈ D,

j(x) = −A
L

(v(x)− w(x)) . (3.10)

We call (3.10) a geometric flow rule, since it establishes a relation between a
suitable average of gradients ∂x1u

ε on the left hand side with an averaged slope
(v−w)/L, that is to be expected by the values near the end-points of the channel.

The geometric flow rule together with Proposition 3.3 provides already a rela-
tion between the exterior field v and the interior field w.

Remark 3.5. Combining the flux relation (3.7) with the geometric flow rule (3.10)
we obtain that, for almost every x ∈ D:

− A

V L
v(x) =

(
ω2 − A

V L

)
w(x) . (3.11)

In particular, resonances of the system occur for frequencies ω2 that are close to
the ratio A/(V L).

Proof of the geometric flow rule, Proposition 3.4. We will prove that for arbitrary
Lipschitz domains E ⊂ D the limit measure j∗ = j dx satisfies∫

E

j(x) dx = −A
L

∫
E

(v(x)− w(x)) dx . (3.12)

Once this is shown, we have verified (3.10) and hence the proposition. We will
use essentially the same test-function as in the proof of Proposition 3.3. But
while in Proposition 3.3 we concluded results from the Helmholtz equation, we
use the test-functions here in a more elementary way: We want to compare values
of functions with averages of derivatives.

Step 1. The two-scale test function. We use the microscopic test-function
Φε : Y \ Σ̄ε

Y → R that was defined in (3.8). In particular, Φε ∈ H1(Y \ Σ̄ε
Y ) with

∇yΦε(y) = −e1 1Kε
Y

(y) .

To construct a macroscopic test-function, we define Iε := {k ∈ Zn|Y ε
k ⊂ E}, the

set of all indices k such that the cell Y ε
k is contained in the test-set E ⊂ D. The

number of elements of Iε is of order Mε := |Iε| = O(ε−n). As a slightly smaller
test-set we use Y ε

E :=
⋃
k∈Iε Y

ε
k ⊂ E, the union of ε-cells that are contained in
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E. With the characteristic function Θε
E : Ω → [0, 1], Θε

E(x) = 1 for x ∈ Y ε
E and

Θε
E(x) = 0 for x 6∈ Y ε

E, we set

ϕε(x) := Θε
E(x)Φε

(x
ε

)
. (3.13)

We note that ϕε is of the class H1, since the jump set ∂Y ε
E of the function Θε

E is
contained in the set where the function Φε

( ·
ε

)
vanishes.

Step 2. First calculation of Bε. The proof of the proposition consists of
calculating, in two different ways, the following expression Bε:

Bε :=

∫
Ωε

∇uε(x) · ∇ϕε(x) dx .

On the one hand, we can calculate with the definition of j∗ = j dx:

Bε =
1

ε

∫
Y εE∩Rε

∇uε(x) · ∇yΦε

(x
ε

)
dx+

1

ε

∫
Y εE∩Kε

∇uε(x) · ∇yΦε

(x
ε

)
dx

+
1

ε

∫
Y εE∩Qε

∇uε(x) · ∇yΦε

(x
ε

)
dx

= −1

ε

∫
Y εE∩Kε

∂1u
ε(x) dx→ L

∫
E

j(x) dx .

In the first equality we decomposed the integral and in the second equality we
exploited that ∇yΦε is either 0 or −e1. In the last step we used the definition of
the limit measure j∗ = j dx and the fact that the volume of E \ Y ε

E vanishes in
the limit ε→ 0.

Step 3. Second calculation of Bε. In order to prepare the second calculation of
Bε (which is based on an integration by parts), we have to define the interface sets:
We recall that the channel in the periodicity cell is Kε

Y = (yR, yQ)×Bn−1
αεp (0) ⊂ Y ,

the interface to the inner set RY is therefore Γε,RY := K̄ε
Y ∩ R̄Y = {yR} ×Bn−1

αεp (0).
Analogously, the interface to the outer set QY is Γε,QY := K̄ε

Y ∩ Q̄Y = {yQ} ×
Bn−1
αεp (0).

The function Φε has the gradients 0 and −e1 on the two sides of Γε,RY , and
it has the gradients −e1 and 0 on the two sides of Γε,QY . Therefore, the jumps
(always right trace minus left trace) are given by

[∇Φε]Γε,RY
= −e1 , [∇Φε]Γε,QY

= e1 . (3.14)

We now calculate the number Bε by performing an integration by parts in
all the three integrals, Y ε

E ∩ Rε, Y
ε
E ∩Qε, and Y ε

E ∩Kε. Since the test-function is
harmonic, ∆ϕε = 0, in all the three sets, we obtain, denoting by ΓεR :=

⋃
k∈Iε ε(k+

Γε,RY ) and by ΓεQ :=
⋃
k∈Iε ε(k + Γε,QY ) the union of interfaces,

Bε = −
∫

ΓεR

uε e1 · [∇ϕε]ΓεR dH
n−1 −

∫
ΓεQ

uε e1 · [∇ϕε]ΓεQ dHn−1

=
1

ε

∫
ΓεR

uε dHn−1 − 1

ε

∫
ΓεQ

uε dHn−1 .
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In the remainder of this proof we want to compare the first integral with the values
of uε inside the resonators, i.e. with w, and the second integral with the values
outside the resonators, i.e. with v. More precisely, we claim that

1

ε

∫
ΓεR

uε dHn−1 → A

∫
E

w and
1

ε

∫
ΓεQ

uε dHn−1 → A

∫
E

v (3.15)

as ε → 0. Once (3.15) is shown, the proof of the proposition is complete: In
combination with Step 2 we have found

L

∫
E

j(x) dx = lim
ε→0

Bε = A

∫
E

(w − v)(x) dx

and hence (3.12).

Step 4. Verification of (3.15). In order to verify the limits (3.15) we want to
construct an averaged function, rescale and use Lemma A.1 in the appendix. We
consider the following function Uε on Y \ Σ̄ε

Y (we recall that Mε = |Iε| denotes
the number of considered cells)

Uε(y) :=
1

Mε

∑
k∈Iε

uε(ε(k + y)) . (3.16)

Linearity of the Helmholtz equation implies that the rescaled function Uε satisfies
−∆Uε = ω2ε2Uε on Y \Σε

Y . The (weak) two-scale convergence of uε(x) to u0(x, y)
with u0(x, y) = w(x) for y ∈ RY and u0(x, y) = v(x) for y ∈ QY implies the weak
L2-convergence of U ε to constant functions,

Uε|RY ⇀ −
∫
E

w and Uε|QY ⇀ −
∫
E

v . (3.17)

Since also the homogeneous Neumann boundary conditions on ∂Σε
Y are satisfied,

the sequence Uε satisfies all assumptions of Lemma A.1 in the appendix. Assertion
(A.5) of the lemma provides

−
∫

Γε,RY

Uε(y) dHn−1(y)→ −
∫
E

w and −
∫

Γε,QY

Uε(y) dHn−1(y)→ −
∫
E

v . (3.18)

It remains to relate inlet averages of Uε (which live in the unit cell Y ) with inlet
averages of uε (which live on Ω). With the number of resonators in E satisfying
Mεε

n → |E| we calculate

−
∫

Γε,RY

Uε(y) dHn−1(y) = −
∫

Γε,RY

1

Mε

∑
k∈Iε

uε(ε(k + y)) dHn−1(y)

=
1

Aε2

1

Mε

∑
k∈Iε

∫
Γε,RY

uε(ε(k + y)) dHn−1(y)

=
1

Aε2

1

Mε

1

εn−1

∫
ΓεR

uε(x) dHn−1(x)

=

(
1

A|E|ε
+
o(1)

ε

)∫
ΓεR

uε(x) dHn−1(x) .
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The convergence result (3.18) thus implies

1

Aε

∫
ΓεR

uε(x) dHn−1(x)→
∫
E

w(x) dx ,

as ε→ 0, which was the first claim in (3.15). The second claim follows analogously
from the second convergence in (3.18).

3.3 Effective equation

In this section we derive the effective equation for the exterior field v. We recall
that we denoted interior and exterior volume as V = |RY | and Q = |QY |.
Proposition 3.6 (Effective equation for the exterior field). In the situation of
Theorem 3.1, let v be the exterior field and w the interior field of Proposition 2.1.
Then there holds

−∇ · (A∗∇v) = Ξv,w in Ω (3.19)

in the sense of distributions with the effective coefficient matrix A∗, see (1.4). On
the right hand side, we used the abbreviation

Ξv,w(x) :=

{
v(x) for x ∈ Ω \D,
Qv(x) + V w(x) for x ∈ D.

(3.20)

Proof. Let θ ∈ C∞c (Ω) be arbitrary. The weak form of the Helmholtz equation
(1.1) provides ∫

Ωε

∇uε(x) · ∇θ(x) dx = ω2

∫
Ωε

uε(x)θ(x) dx . (3.21)

On the left hand side of (3.21) we can directly pass to the limit ε→ 0. Exploiting
the characterization from Lemma 2.2 one obtains∫

Ωε

∇uε(x) · ∇xθ(x) dx

ε→0→
∫

Ω

∫
Y

ξ0(x, y) · ∇xθ(x) dy dx

=

∫
D

∫
QY

[∇xv(x) +∇yv1(x, y)] · ∇xθ(x) dy dx+

∫
Ω\D
∇xv(x) · ∇xθ(x) dx

=

∫
D

∫
QY

[
∇xv(x) +

n∑
i=1

∇yχi(y)∂xiv(x)

]
· ∇xθ(x) dy dx

+

∫
Ω\D
∇xv(x) · ∇xθ(x) dx

=

∫
D

Aeff∇xv(x) · ∇xθ(x) dx+

∫
Ω\D
∇xv(x) · ∇xθ(x) dx

=

∫
Ω

A∗(x)∇xv(x) · ∇xθ(x) dx ,
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where in the fourth line we exploited the representation formula (2.10) for v1 and
in the last two lines the definitions of Aeff and A∗ from (1.4).

On the right hand side of (3.21) we use the characterization from Proposition
2.1 to find, in the limit ε→ 0,

ω2

∫
Ωε

uε(x)θ(x) dx

→ ω2

∫
Ω

∫
Y

u0(x, y)θ(x) dy dx

= ω2

∫
D

(∫
QY

v(x)θ(x) dy +

∫
RY

w(x)θ(x) dy

)
dx+ ω2

∫
Ω\D

v(x)θ(x) dx

= ω2

∫
D

(Qv(x) + V w(x)) θ(x) dx+ ω2

∫
Ω\D

v(x)θ(x) dx

= ω2

∫
Ω

Ξv,w(x)θ(x) dx .

To sum up, we obtain∫
Ω

A∗(x)∇xv(x) · ∇xθ(x) dx = ω2

∫
Ω

Ξv,w(x)θ(x) dx .

Since θ was arbitrary, this provides the claim (3.19).

Proof of Theorem 3.1. Theorem 3.1 is a direct consequence of Proposition 3.6. In-
deed, by exploiting the Relation (3.11) between v and w one immediately obtains,
for x ∈ Ω,

Ξv,w(x) = Λ(x)v(x) .

The effective equation (3.19) is therefore identical to the one of Theorem 3.1.

A Averages on channel interfaces

The proof of Proposition 3.4 is based on the following auxiliary lemma. It shows
that, in the limit ε→ 0, averages on interfaces coincide with bulk averages — on
the volume side of the interface.

Lemma A.1 (Averages on thin channel interfaces). We consider the obstacle
Σε
Y ⊂ Y that separates, inside the unit cell, the resonator RY from the outer

domain QY , but leaves a thin channel Kε
Y that connects RY and QY (as introduced

in Section 1.3). Let Uε : Y \Σε
Y be a sequence of H1-functions that is L2-bounded

and that solves the Helmholtz equation

−∆Uε = ω2ε2Uε in Y \ Σε
Y , (A.1)

∂nUε = 0 on ∂Σε
Y . (A.2)
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Note that we impose no boundary condition on ∂Y . The only additional assump-
tion is, for two numbers ξR, ξQ ∈ R, the weak convergence

Uε|RY ⇀ ξR in L2(RY ) , (A.3)

Uε|QY ⇀ ξQ in L2(QY ) , (A.4)

as ε → 0. We denote the interface between RY and channel Kε
Y by Γε,RY :=

R̄Y ∩K̄ε
Y = {yR}×Bn−1

αεp and, accordingly, the outer interface by Γε,QY := Q̄Y ∩K̄ε
Y =

{yQ} × Bn−1
αεp . Under the above assumptions we obtain, in the limit ε → 0, the

convergence of interface averages:

−
∫

Γε,RY

Uε(y) dHn−1(y)→ ξR and −
∫

Γε,QY

Uε(y) dHn−1(y)→ ξQ . (A.5)

Remark A.2. It is easy to obtain local H1-estimates for the solution sequence Uε
(as we will show in Step 1 of the proof). The assertion of the lemma is interesting
since the channels degenerate in the limit ε → 0. Indeed, let us imagine the
channels had a constant cross-section which does not degenerate in the limit ε→ 0.
In that case, the trace theorem provided that the traces of Uε along ΓεR converge
to the trace of the limit function, i.e. the trace of the constant function ξR, which
is ξR. The average of that function over Γε,RY is ξR, hence (A.5) follows.

Y

ε

ΣY

ε

δ

YK

B

R
Y

Figure 2: Sketch of the geometry around the end-point of the channel.

The subsequent proof is a sketch in so far as technical details in Step 2 are
omitted.

Sketch of proof. Step 1. Local H1 estimate. We choose a cut-off function θ ∈
C∞c (Y ) which is identical to 1 in RY ∪ Σε

Y ∪Kε
Y and use θ2Uε as a test function

in equation (A.1) to obtain∫
Y \ΣεY

|∇Uε|2θ2 = −2

∫
Y \ΣεY

θ∇Uε · ∇θ Uε + ω2ε2

∫
Y \ΣεY

|Uε|2θ2 .
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With Youngs inequality we conclude from the L2-boundedness of Uε the L2-
boundedness of θ∇Uε.

Step 2. Estimates for ∂1Uε. We now want to obtain estimates for higher
derivatives of the solution sequence. We recall that the lateral boundaries of the
channel are straight and aligned with e1. Furthermore, in a neighborhood of Γε,RY ,
the boundary ∂RY was assumed to be contained in a hypersurface with normal
e1.

We examine the solution in the ball Bδ := Bδ((yR, 0)), where δ > 0 is chosen so
small that the boundary ∂Σε

Y ∩Bδ consists of two pieces, a subset of the cylinder
∂Kε

Y and a subset of the plane {yR} × Rn−1.

We study the function Vε := ∂1Uε in Bδ. The function Vε solves the Helmholtz
−∆Vε = ω2ε2Vε (in the distributional sense) in Bδ \Σε

Y . On the plane part of the
boundary, ∂Σε

Y ∩ ({yR} × Rn−1) ∩ Bδ, it satisfies the Dirichlet condition Vε = 0
(since Uε satisfies the homogeneous Neumann condition). On the cylindrical part
of the boundary, ∂Kε

Y ∩∂Σε
Y ∩Bδ, it satisfies the homogeneous Neumann condition

(∂νVε = ∂1∂νUε = 0).

The homogeneous boundary conditions allow to derive an estimate for Vε:
Multiplication of the Helmholtz equation for Vε with the solution Vε (multiplied
with a cut-off function) provides local H1-estimates for Vε.

The above is not a rigorous proof: A priori, the function Vε is only of class
L2 (as a derivative of Uε), hence testing the equation with Vε is not allowed. To
obtain a rigorous proof, one has to proceed as follows: (a) Localize the problem
and formulate boundary value problems for Uε and Vε in Bδ (or, better, for their
truncated counterparts). (b) Show with the help of the Lax-Milgram lemma
that the Vε problem posesses a solution Vε of class H1. (c) Prove that the y1-
integrated solution solves the Uε-problem and conclude from the uniqueness of the
Uε-problem that the H1-function Vε coincides with ∂1Uε. We omit these technical
details.

Step 3. Full high order estimate. In two space dimensions, we have obtained
local H2 estimates at this point: The second derivatives in the second direction
can be expressed as ∂2

2Uε = −∂2
1Uε − ε2ω2Uε ∈ L2. We conclude that all second

derivatives are bounded, ‖ΘD2Uε‖L2 ≤ C for a cut-off function Θ.

In space dimension n = 3 we consider, for fixed ζ ∈ R, slices Sζ := {y =
(y1, y2, y3)| y1 = ζ}. In every slice Sζ the function Uε|Sζ solves the two-dimensional
problem ∆2Uε := (∂2

2 + ∂2
3)Uε = −∂2

1Uε − ε2ω2Uε ∈ L2(Sζ) for almost every ζ.
This provides estimates for all second spatial derivatives in L2, locally around the
interface.

Step 4. Sobolev embedding and conclusion. From the compact embedding
H2(RY ) ⊂ C0(RY ) we conclude that, up to a subsequence, the solution sequence
Uε|RY converges not only weakly in H2(RY ) to ξR, but also strongly in C0(RY ).
This implies the first claim of (A.5). The second claim is shown by exactly the
same calculation for Γε,QY .
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