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Abstract

We study the Helmholtz equation in a perforated domain Ωε. The domain
Ωε is obtained from an open set Ω ⊂ R3 by removing small obstacles of typical
size ε > 0, the obstacles are located along a 2-dimensional manifold Γ0 ⊂ Ω.
We derive effective transmission conditions across Γ0 that characterize solutions
in the limit ε → 0. We obtain that, to leading order O(ε0), the perforation is
invisible. On the other hand, at order O(ε1), inhomogeneous jump conditions
for the pressure and the flux appear. The form of the jump conditions is derived.
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1 Introduction
Our aim is to study the acoustic properties of complex domains. Assuming that
acoustic waves are described by the linear wave equation, the acoustic properties of
a domain Ωε are determined by the Helmholtz equation

−∆pε = ω2pε + f in Ωε, (1.1)

where ω is the frequency of waves and f is a right hand side that models sound sources
in the domain Ωε ⊂ R3. Equation (1.1) is accompanied by a boundary condition on
∂Ωε.

We use a small parameter ε > 0 and write Ωε for the domain, since we assume
that the domain contains structures of typical size ε. More specifically, we investigate
a perforated domain: We investigate three-dimensional domains that contain many
obstacles (the number of obstacles is of order ε−2) with the small diameter ε > 0, we
denote the single obstacle by Σε

k, where k ∈ Z2 is an index to number the obstacles.
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We assume that the obstacles are periodically distributed along a 2-dimensional hy-
perplane Γ0 ⊂ R3. The domain Ωε is obtained from an ε-independent domain Ω ⊂ R3

by removing the obstacles, Ωε = Ω \
⋃
k Σε

k. Every point in the open set Ω \ Γ0 does
not touch any obstacle for sufficiently small ε > 0 (compare Figure 1).

We ask for the effective influence of the perforations along Γ0. A rigorous descrip-
tion can be obtained by the analysis of solution sequences pε to (1.1) in the sense of
homogenization. Denoting a weak limit of the solution sequence pε by p, we ask for
the system of equations that determines p. We will show rigorously that the limit p
is characterized by the Helmholtz equation in the domain Ω, hence the effect of the
perforation gets lost at leading order, see (1.6).

At first glance, this result seems to be counter-intuitive: One might expect some
influence of the perforation, some jump conditions for the pressure function across Γ0

and/or some jump conditions for the velocities −∇p across Γ0. On the other hand,
using analytical knowledge, our first result cannot be much of a surprise: The solution
sequence is bounded in H1(Ωε), a subsequence is converging weakly in this space, the
space H1(Ωε) admits to evaluate traces, the continuity of the trace operator implies
that the limit function cannot have a jump of traces. Hence we expect no jumps of
the limit function p across Γ0, we write this as [p] = 0. Similar arguments can be
used for the flux: If the flux into the obstacles vanishes on the ε-level (∂npε = 0 on
∂Σε

k), then, effectively, no source can appear along Γ0. We therefore expect [∂νp] = 0
along Γ0, where ν denotes a normal vector on Γ0. The two conditions are established
rigorously in Theorem 1.1.

A deeper insight can be gained by studying first order effects: The intuition (and
some rule-of-thumb equations of the more physical literature) can be confirmed if one
considers effects of order ε, or, in more technical terms, if one analyzes the weighted
difference vε := (pε−p)/ε. Our result in Theorem 1.2 provides the form of the system
for a weak limit v of the sequence vε: The function v solves the Helmholtz equation
on the domain Ω \Γ0, and the functions v and ∇v satisfy jump conditions across Γ0.
These jump conditions contain the pressure function p and its derivatives as specified
in (1.10): The jump [v] of v is proportional to the slope ∂νp of p along Γ0. The jump
[∂νv] of the velocity corrector is proportional to the second derivative ∂2

νp of p along
Γ0. Our limit system includes a correction coefficient α (introduced in assumption
(1.9)), which is unfortunately not yet characterized. We hope that we can derive a
cell problem for this parameter in a later work.

1.1 Comparison with the literature

The Helmholtz equation (1.1) describes the distribution of sound waves of a fixed
frequency ω in a prescribed geometry. The geometry studied here is of much interest
in applications, for example in the design of sound absorbing structures. If a wall
with holes is used to separate two chambers, this wall can have a decisive effect on
the distribution of sound waves.

The acoustic properties of a perforation. With this applications in mind, many
contributions from a very practical point of view are available. An effective descrip-
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Figure 1: Left: The domain Ωε with many small obstacles Σε
k. Right: Each obstacle

is a scaled and shifted copy of a standard obstacle Σ ⊂ R3.

tion of the perforation that is used in the literature can be written as

∂νp
+ = ∂νp

− = −iωρ
Z

(p+ − p−) . (1.2)

In this formula, ρ denotes the density, ω the frequency, ν a normal vector on Γ0,
pointing into the domain Ω+, and Z is a complex number, the transmission impedance,
a parameter that characterizes the effective behavior of the obstacles (we cite from
equation (2) of [13], where reference is given to [7]).

Let us compare the empirical formula (1.2) with our findings. As a first observa-
tion, we note that in both, in (1.2) and in our results, the normal component of the
pressure gradient has no jump. The second equation in (1.2) seems to contradict our
finding that also the effective pressure function p has no jump. But we may as well
compare the pressure difference p+ − p− with the jump of the first order corrector,
scaled with ε, i.e.: p+ − p− behaves like ε[v]. If we do so, we may also say that (1.2)
is consistent with our formula α [v] = |Σ| ∂νp from (1.10), where α is a correction
factor that is close to 1 for small obstacles. The comparison provides a formula for
the transmission impedance: Z = −iωρε|Σ|/α.

We note that a more mathematical treatment of a related problem has been
performed in [13]. In that work, the authors obtain a non-trivial effective transmission
condition for the pressure p. Their formula (29) can be written as

−iωDβ∂βp+ ω2Fg0 =
−iω
ε0

(p+ − p−) .

In this formula, Dβ and F are effective coefficients and are given by cell problems, ∂β
denotes derivatives in direction β, g0 is a “fictitious acoustic transverse velocity”, which
re-appears in their second transmission condition, ε0 is a thickness parameter. Also
this formula can be compared to our result: After a division by −iω, the gradient
of p on the left hand side is set in relation with (p+ − p−)/ε0 on the right hand
side. Neglecting g0, the comparison suggests for the normal direction β = ν that
Dβ = |Σ|/α.

Transmission conditions for perforated domains. Transmission problems have
been studied also in many other contributions, see e.g. [1, 3, 9, 11]. The case with
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homogeneous Neumann boundary conditions at the inclusions was treated in [9].
The authors show that the perforation is invisible in the limit problem and provide
rates of convergence. In [3], the problem is investigated with the periodic unfolding
method. In [1], a coating of the inclusions with an absorbing material is introduced;
this coating can lead to losses and to more complex impedance parameters Z. The
geometry of our problem has been studied also in [11], where equations are formulated
in the inclusions. Using an appropriate scaling with factors ε−1, the authors obtain
a non-trivial effective problem (jump conditions appear also at lowest order, whereas
a jump condition appears in our setting only in the first order term). Related works
are [12], where the problem is further analyzed, and [10], where an oscillatory (on
small scales) boundary instead of an interface is studied. The transmission problem
where the interface consists not of holes but of small inclusions of a second material
is studied in [5], where also the asymptotic expansion of solutions is derived.

There are equations where order-1 effects are introduced by the perforation (even
without an ε−1 boundary condition). An example is the Stokes flow in a perforated
geometry, see [6, 14]. But even for the Helmholtz equation with a fixed frequency
ω, order-1 effects are possible, namely in a Helmholtz resonator geometry. For a
mathematical study of the Helmholtz resonator we refer to [15]. We emphasize that
the lowest order effect of [15] is only possible by introducing three scales: The macro-
scopic scale (order 1, size of Ω), the microscopic scale ε (size of the resonator), and a
sub-micro-scale which is small compared to ε (the diameter of a channel connecting
the interior of the resonator to the exterior).

That effects of leading order can be created by small structures is also known
from a related equation, namely the time homogeneous Maxwell equation (of which
the Helmholtz equation is a special case): Using split-ring microscopic geometries,
the effective behavior of solutions to Maxwell equations can be changed dramatically:
Negative index materials with negative index of refraction can occur as homogenized
materials, see [2, 8]. We note that in these works, again, three scales are used: Each
microscopic element of size ε contains a substructure of a size that is small compared
to ε (in this case: the diameter of the slit in the ring).

1.2 Mathematical setting and results

Let Ω ⊂ R3 be a domain with Lipschitz boundary, containing the origin. We use
the unit cell Y :=

[
−1

2
, 1

2

)2 ×
[
−1

2
, 1

2

]
and the obstacle shape Σ ⊂ Y . We assume

that Σ is a domain with Lipschitz boundary, which is strictly contained in Y , i.e.
Σ ⊂

(
−1

2
, 1

2

)3. To construct the obstacles in the complex geometry, we scale and
shift the set Σ: We use k ∈ Z2 to label the different obstacles and set

Y ε
k := ε (Y + (k1, k2, 0)) , Σε

k := ε (Σ + (k1, k2, 0)) for k = (k1, k2) ∈ Z2 . (1.3)

The indices of cells inside Ω are Iε := {k ∈ Z2| Y ε
k ⊂ Ω}. The number of elements of

Iε is of order ε−2. We denote by Σε :=
⋃
k∈Iε Σε

k the union of all obstacles in Ω and
define the perforated domain by setting Ωε := Ω \ Σε.

We denote by n the outer normal of Ωε on ∂Ωε. The perforation Σε is located
along the submanifold Γ0 := (R2 × {0}) ∩ Ω. The submanifold Γ0 separates the
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domain Ω into two subdomains:

Ω+ :=
[
R2 × (0,∞)

]
∩ Ω and Ω− :=

[
R2 × (−∞, 0)

]
∩ Ω,

leading to the disjoint decomposition Ω = Ω+ ∪ Γ0 ∪ Ω−.
Our analysis concerns the following Helmholtz equation on Ωε:

−∆pε = ω2pε + f in Ωε,
∂np

ε = 0 on ∂Σε,
pε = 0 on ∂Ω.

(1.4)

In this equation, f ∈ L2(Ω) is a given source term and the frequency ω > 0 is a fixed
parameter. The natural space of solutions of (1.4) is

Hε :=
{
u ∈ H1(Ωε) |u|∂Ω = 0

}
.

The weak formulation of (1.4) is: find pε ∈ Hε such that
ˆ

Ωε

∇pε · ∇ϕ =

ˆ
Ωε

ω2pεϕ+

ˆ
Ωε

fϕ ∀ϕ ∈ Hε . (1.5)

We assume that ω2 is not an eigenvalue of the operator −∆ to Dirichlet conditions
on ∂Ω, i.e. ω2 6∈ σ (−∆). In what follows, we denote by Pε : L2(Ωε) → L2 (Ω) the
extension operator that continues every function by 0 to all of Ω.

Our first result characterizes limits p of solution sequences pε. We obtain that the
perforation is invisible in the limit ε→ 0.

Theorem 1.1 (Limit behavior of solutions). Let f ∈ L2 (Ω) be a source function and
let pε ∈ Hε be a sequence of weak solutions to (1.4). We assume ω2 6∈ σ (−∆).

Effective system. The norms ‖Pεpε‖L2(Ω) and ‖Pε∇pε‖L2(Ω) are bounded. There
exists p ∈ H1

0 (Ω) such that Pεpε → p strongly in L2 (Ω) and Pε∇pε ⇀ ∇p
weakly in L2(Ω). The limit p is the unique weak solution of

−∆p = ω2p+ f in Ω . (1.6)

Rate of convergence. If f has the regularity H1 ∩ C0 in an open neighborhood of
Γ0 and if ∂Ω is of class C3 in a neighborhood of Γ̄0 ∩ ∂Ω, then there exists a
constant C = C(f) > 0, independent of ε > 0, such that

‖p− Pεpε‖L2(Ω) + ‖∇p− Pε∇pε‖L2(Ω) + ‖∆p− Pε∆pε‖L2(Ω) ≤ Cε1/2 . (1.7)

In order to see the effect of the interface, we have to study the first order behavior
of solutions. We consider solutions pε to the ε-problem (1.4) and the limit function
p ∈ H1 (Ω) of Theorem 1.1. We define vε as the variation of order ε,

vε :=
pε − p
ε

on Ωε . (1.8)
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In order to formulate our result, we will use some notation that is explained in more
detail in Section 2: For v ∈ W 1,1(Ω \ Γ0) with ∆v ∈ L1(Ω \ Γ0), we denote by [v]
and [∂νv] the jump of v and of its normal derivatives across Γ0. In our setting, the
normal vector is ν = e3. We denote by H2 the two dimensional Hausdorff measure.

Our second theorem provides a corrector result, i.e. formulas for limits of vε. This
second theorem has the weakness that the a priori bounds on vε and the existence
of a limit function v must be assumed. Furthermore, a characterization of the limit
of gradients must be assumed. Both assumptions are collected in (1.9), for more
comments on this assumption see Remark 1.5 below.

Theorem 1.2 (First order behavior). Let the situation be as in Theorem 1.1, in
particular, let pε ∈ Hε is a sequence of weak solutions to (1.4) and let p be the solution
of the effective system (1.6). Let the corrector vε be defined by (1.8), vε = (pε− p)/ε.
Let f be of class H1 ∩ C0 in an open neighborhood of Γ0, and let ∂Ω be of class C3.
We assume that for some factor α ∈ C0(Γ0,R) the sequence vε satisfies the following:
There exists a limit function v ∈ W 1,1(Ω \ Γ0) such that, as ε→ 0,

Pεvε ⇀ v weakly in L1(Ω) and Pε∇vε ⇀ ∇v + α [v] νH2bΓ0 , (1.9)

the latter weakly in the sense of measures on Ω. Under these assumptions, the limit
v is determined by the following system of equations:

−∆v = ω2v in Ω \ Γ0 ,
α [v] = |Σ| ∂νp on Γ0 ,
[∂νv] = − |Σ| ∂2

νp on Γ0 .
(1.10)

Let us provide some further remarks on the two theorems.
Remark 1.3 (Well-defined expressions in the limit system of Theorem 1.2). The regu-
larity property v ∈ W 1,1(Ω\Γ0) implies that the jump [v] is well-defined on Γ0 in the
sense of traces in L1(Γ0). Moreover, relation (1.10)1 implies that ∆v is an L1-function
on both sides of Γ0, hence the jump [∂νv] is well-defined on Γ0 as a distribution. Since
f is of class H1(Ω), the solution p of the Helmholtz equation in Ω is of class H3(Ω).
This implies that the right hand side of (1.10)2,3 is well defined in the sense of traces.
Remark 1.4 (Rate of convergence). Let us try to depict the microscopic situation in
the vicinity of one obstacle. The function p is a smooth function: the gradient ∇p is
essentially constant in an ε-neighborhood of the single obstacle. In contrast to that,
the function pε sees the obstacle: the gradient ∇pε always has a vanishing normal
component at the boundary of the obstacles due to the homogeneous Neumann con-
dition. This implies that the values of ∇pε have variations of order 1 in the vicinity
of the obstacle. In turn, the gradients ∇pε and ∇p necessarily differ by the order 1
in the neighborhood of the perforation.

This picture helps to develop an idea about the rates of convergence that can
be expected. If we calculate the L2-norm of the difference of the gradients, already
an ε-layer around the obstacles (with volume of order ε) induces a contribution of
order ‖∇p−∇pε‖L2(Ωε) & (12 · ε)1/2 = ε1/2. This order of convergence is consistent
with (1.7). In particular, we can expect that the rate ε1/2 is the optimal rate of
convergence for gradients in the L2-norm.
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On the other hand, the situation changes if we consider the L1-norm. The contri-
bution of an ε-layer around the obstacles is now ‖∇p−∇pε‖L1(Ωε) & (11 · ε)1/1 = ε.
We can therefore hope that this error is of order O(ε) when the L1-metric is used.
This order of convergence is consistent with our assumption (1.9): If ∇vε is bounded
in L1, we can select a subsequence which converges in the sense of measures.

Remark 1.5 (On assumption (1.9)). The assumption essentially contains two points:
(i) The boundedness of the sequence vε in W 1,1. (ii) The characterization of the
factor α (possibly with a cell-problem).

Let us assume that the boundedness of vε in the space W 1,1(Ωε) can be shown,
i.e. ‖vε‖W 1,1(Ωε) ≤ C. This estimate implies that the trivial extension of the gra-
dient is bounded in L1, wε := Pε∇vε satisfies ‖wε‖L1(Ω) ≤ C. This boundedness
implies that we can select a subsequence ε→ 0 and a limit measure µ ∈M(Ω) with
Pε∇vε = wε ⇀ µ in the sense of measures as ε → 0. We can restrict all the further
considerations to this subsequence.

For an arbitrary subdomain Ω̃ ⊂⊂ Ω \ Γ0 we can exploit the fact that the em-
bedding W 1,1(Ω̃) ⊂ L1(Ω̃) is compact. This implies that vε converges on Ω̃ strongly
in L1 to a function v. Since a family of sets Ω̃ can be chosen to cover all of Ω \ Γ0

(and we can continue to take subsequences), the limit function v is defined on Ω \Γ0.
Furthermore, since the bound ‖vε‖W 1,1(Ω̃) ≤ C is satisfied independent of Ω̃, the limit
function satisfies v ∈ W 1,1(Ω\Γ0) ⊂ L1(Ω). This implies the first part of assumption
(1.9).

Again restricting ourselfs to an arbitrary subset Ω̃ ⊂⊂ Ω \ Γ0, we note that
∇vε → ∇v holds in the sense of distributions on Ω̃ since vε → v holds in L1. On
the other hand, we have ∇vε → µ in the sense of measures on Ω̃. This implies the
characterization µ = ∇v on Ω \Γ0. At this point we have verified for the second part
of (1.9) that Pε∇vε ⇀ µ with µ = ∇v on Ω \ Γ0.

In order to verify (1.9), it remains to characterize the singular part of µ as
α [v] νH2. Let us assume that vε can be extended across the obstacles to a func-
tion ṽε with ‖ṽε‖W 1,1(Ω) ≤ C. Such an extension is known to exist in L2-based
Sobolev spaces (see (2.3)), but we are not aware of a reference in L1 (nevertheless,
we expect the result to be true). Since W 1,1(Ω) is a subset of the space of func-
tions with bounded variation, W 1,1(Ω) ⊂ BV (Ω) with continuous embedding, the
sequence ṽε is a bounded sequence in BV (Ω). Compactness in BV (Ω) implies that
there is a subsequence and a limit function ṽ ∈ BV (Ω) such that ṽε ⇀ ṽ in BV (Ω).
In particular, we have ṽε → ṽ in L1(Ω), hence ṽ = v. Furthermore, the gradients
∇ṽε converge in the sense of measures to the measure-valued gradient of v, which
is ∇ṽε ⇀ ∇v|Ω\Γ0 + [v] νH2 in the sense of measures. This fact seems to suggest
that the singular part of the measure µ is given by [v] νH2, but we have to take into
account the error Pε∇vε −∇ṽε 6= 0.

We have introduced the volume factor α > 0 in order to capture the corresponding
error, i.e. the measure valued limit of ∇ṽε|Σε on the obstacles Σε. We note that we
can expect this contribution to be small for small obstacles, we therefore expect α < 1
to be close to 1 for small obstacles.
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Methods of proof. Astonishingly, our proofs do not use any of the typical homog-
enization tools, such as two-scale convergence, periodic unfolding, or compensated
compactness (while in [3] periodic unfolding is used). This seems to be a special
feature of the transmission problem (sometimes also called the “sieve-problem”): The
behavior of the solution is very regular except for a lower dimensional manifold.

The only homogenization tool that we use is the extension operator P̃ε, which
extends H1(Ωε)-functions to functions of the same class in all of Ω. Otherwise,
only elementary calculations are performed (integration by parts, cut-off functions,
dominated convergence). An interesting method of proof is used in the derivation
of a priori estimates and convergence rates: We argue by contradiction and exploit
compactness arguments, similar to the more intricate reasoning in [2] or [8].

2 Notation and preliminaries

For Q ⊂ R3, we write L2(Q) for the space of square integrable functions over Q and
Hk(Q) = W k,2(Q) for the Bessel-potential spaces. We further denote Hk

0 (Q) the
closure of Ck

c (Q) in Hk(Q). For a measurable domain Q ⊂ R3 of finite measure and
g ∈ L1(Q), we write

ffl
Q
g := |Q|−1 ´

Q
g for the average of g over Q.

With Ω ⊂ R3 and Γ0 as in the introduction, we note that the hypersurface Γ0

cuts Ω into the two subdomains Ω± := {x ∈ Ω | ± x3 > 0}. For p ∈ W 1,1(Ω \Γ0), we
denote by p± the trace of p|Ω± on Γ0, respectively. Furthermore, if ∆p ∈ L1(Ω \ Γ0),
we use

∂±ν p := ∇p± · ν ,

where ν = e3 is the outer normal of Ω− on Γ0. The jumps of p and ∇p are introduced
as

[p] := p+ − p− ,
[∂νp] := ∂+

ν p− ∂−ν p .

Note that p ∈ H1(Ω \ Γ0) together with [p] = 0 is equivalent to p ∈ H1(Ω). This
leads to the following observation:

Remark 2.1. Let p ∈ H1(Ω \ Γ0) and f ∈ L2(Ω). The partial differential equation

−∆p = ω2p+ f in Ω (2.1)

is equivalent to the system

−∆p = ω2p+ f in Ω \ Γ0 ,

[p] = 0 on Γ0 ,

[∂νp] = 0 on Γ0 .

(2.2)

Both equations (2.1) and (2.2)1 are understood in the sense of distributions or, equiv-
alently, in the weak sense. We emphasize that (2.2)1 guarantees ∆p ∈ L2(Ω±), hence
[∂νp] is well defined.
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In the proofs of our main theorems, we are dealing with sequences pε ∈ Hε =
{u ∈ H1(Ωε) |u|∂Ω = 0}. Since these functions are defined on Ωε and not on Ω, we
need suitable extension operators. The most elementary operator is the extension by
0, which we denote as Pε : L2(Ωε) → L2(Ω). Furthermore, it is well known, that
there exists a family of extension operators P̃ε : H1 (Ωε)→ H1 (Ω) , such that∥∥∥P̃εpε∥∥∥

H1(Ω)
≤ C ‖pε‖H1(Ωε) (2.3)

for some C > 0 independent of ε ([4], Chapter 1). Essentially, P̃ε is defined by using
in each obstacle the harmonic extension of the boundary values.

The subsequent elementary lemma will turn out to be useful in the proofs. Note
that the assumptions of the lemma are not yet checked for solution sequences pε.

Lemma 2.2 (A compactness criterion in perforated domains). Let pε ∈ H1(Ωε)
satisfy the a priori estimate ‖Pεpε‖L2(Ω) + ‖Pε∇pε‖L2(Ω) ≤ C for every ε > 0. Then,
there exists p ∈ H1(Ω) and a subsequence ε → 0 such that Pεpε → p strongly in
L2(Ω), Pε∇pε ⇀ ∇p weakly in L2(Ω) and P̃εpε ⇀ p weakly in H1(Ω). Furthermore,
if pε|∂Ω = 0 holds for every ε > 0, then also p|∂Ω = 0.

Proof. In what follows, we successively pass to subsequences of pε, keeping the nota-
tion pε for each subsequence. Since ‖Pεpε‖L2(Ω) + ‖Pε∇pε‖L2(Ω) ≤ C, upon changing

the constant, there also holds
∥∥∥P̃εpε∥∥∥

H1(Ω)
≤ C. Thus, there is p ∈ H1 (Ω) such that

P̃εpε ⇀ p weakly in H1(Ω) and P̃εpε → p strongly in L2(Ω). By the trace theorem,
the condition pε|∂Ω = 0 for all ε > 0 implies p|∂Ω = 0.

For δ > 0 let φδ ∈ L∞(R) be the indicator function φδ(z) = 1 for |z| < δ and
φδ(z) = 0 for |z| ≥ δ. We set ϕδ : Ω→ R, ϕδ(x) := φδ(x3) and obtain for ε < δ:

lim sup
ε→0

ˆ
Ω

∣∣∣Pεpε − P̃εpε∣∣∣2 = lim sup
ε→0

ˆ
Σε

∣∣∣P̃εpε∣∣∣2 ≤ lim sup
ε→0

ˆ
Ω

∣∣∣P̃εpε∣∣∣2 ϕ2
δ

= lim sup
ε→0

∥∥∥ϕδP̃εpε∥∥∥2

L2(Ω)
= ‖ϕδp‖2

L2(Ω) .

The last limit follows from the strong convergence ϕδP̃εpε → ϕδp in L2(Ω). Since
δ > 0 was arbitrary, the right hand side is arbitrarily small. We conclude that
Pεpε → p converges strongly in L2(Ω).

Similarly, we obtain for every ψ ∈ L2(Ω;R3):

lim
ε→0

ˆ
Ω

Pε∇pε · ψ = lim
ε→0

ˆ
Ω

Pε∇pε · ψ(1− ϕδ) + lim
ε→0

ˆ
Ω

Pε∇pε · ψϕδ

=

ˆ
Ω

∇p · ψ(1− ϕδ) + lim
ε→0

ˆ
Ω

Pε∇pε · ψϕδ .

Since lim supε→0

∣∣´
Ω
Pε∇pε · ψϕδ

∣∣ ≤ lim supε→0 ‖Pε∇pε‖L2(Ω) ‖ψϕδ‖L2(Ω) → 0 as δ →
0, we obtain Pε∇pε ⇀ ∇p weakly in L2(Ω).
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3 Limit of pε

Proof of Theorem 1.1. We will prove Theorem 1.1 in three steps: In Step 1, we prove
the homogenization result under the assumption that ‖pε‖L2(Ωε) is bounded. In Step
2, we use Step 1 to prove boundedness of ‖pε‖L2(Ωε) by a contradiction argument. In
Step 3, we prove the convergence rates (1.7).

Step 1: Limit behavior of pε. We assume here that ‖pε‖L2(Ωε) is bounded. We
use pε as a test function in (1.5) and obtain

‖∇pε‖2
L2(Ωε) ≤ ‖p

ε‖L2(Ωε)

(
ω2 ‖pε‖L2(Ωε) + C

)
, (3.1)

which implies boundedness of ‖∇pε‖2
L2(Ωε).

From the estimates for ‖pε‖L2(Ωε) and ‖∇pε‖2
L2(Ωε) and Lemma 2.2, we conclude

the existence of p ∈ H1
0 (Ω) such that Pεpε → p strongly in L2(Ω) and Pε∇pε ⇀ ∇p

weakly in L2(Ω) along a subsequence. We choose a test function ϕ ∈ C∞c (Ω), and
obtain from (1.5) and Lemma 2.2ˆ

Ω

∇p · ∇ϕ = lim
ε→0

ˆ
Ω

Pε∇pε · ∇ϕ

= lim
ε→0

ˆ
Ω

ω2Pεpεϕ+ lim
ε→0

ˆ
Ωε

fϕ =

ˆ
Ω

ω2pϕ+

ˆ
Ω

fϕ . (3.2)

This provides (1.6) and hence the homogenization result under the assumption of
boundedness. We note that the above calculations also hold if in (1.5), f is replaced
by a sequence (fε)ε>0 with fε → f strongly in L2(Ω) as ε→ 0.

Step 2: L2(Ω)-boundedness of pε. Let us assume for a contradiction argument
that the sequence ‖pε‖L2(Ωε) is not bounded. For every ε > 0, we define rescaled
quantities by setting

p̃ε :=
pε

‖pε‖L2(Ωε)

in Ωε and f̃ ε :=
f

‖pε‖L2(Ωε)

in Ω . (3.3)

We achieve ‖p̃ε‖L2(Ωε) = 1 for every ε > 0 and
∥∥∥f̃ ε∥∥∥

L2(Ω)
→ 0 for ε → 0. Since pε

solves (1.4), we conclude that p̃ε solves

−∆p̃ε = ω2p̃ε + f̃ ε in Ωε,
∂np̃

ε = 0 on ∂Σε .
(3.4)

Since ‖p̃ε‖L2(Ωε) is bounded, we can apply Step 1 and obtain the existence of p̃ ∈
H1

0 (Ω) such that Pεp̃ε → p̃ strongly in L2(Ω) and Pε∇p̃ε ⇀ ∇p̃ weakly in L2(Ω),
where p̃ solves

−∆p̃ = ω2p̃ in Ω. (3.5)

Since p̃ ∈ H1
0 (Ω) solves (3.5) and ω2 is not an eigenvalue of −∆ on Ω, we conclude

p̃ = 0. We obtain the desired contradiction between the strong convergence Pεp̃ε → 0
in L2(Ω) and ‖Pεp̃ε‖L2(Ω) = 1 for every ε > 0.
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Step 3: Rate of convergence. It remains to prove (1.7). For a contra-
diction argument, let us assume ε−1/2 ‖Pεpε − p‖L2(Ω) → ∞, which also implies

Gε := ε−1/2
∥∥∥P̃εpε − p∥∥∥

L2(Ω)
→∞ by the uniform boundedness of p in Σε. We study

the sequence of functions wε := G−1
ε ε−1/2(P̃εpε − p) with ‖wε‖L2(Ω) = 1, satisfying

−∆wε = ω2wε in Ωε,

∂nw
ε = −G−1

ε ε−
1
2∂np on ∂Σε,

wε = 0 on ∂Ω,

with the weak formulationˆ
Ωε

∇wε · ∇ϕ = −
ˆ
∂Ωε

G−1
ε ε−

1
2∂npϕ dH2 +

ˆ
Ωε

ω2wεϕ ∀ϕ ∈ H1
0 (Ω) . (3.6)

Due to our assumptions on Ω and f , the functions ∆p and ∇p are of class C0 and
bounded in an open neighborhood of Γ0. This allows to estimate the boundary
integral as∣∣∣∣ˆ

∂Ωε

ε−
1
2∂npϕ dH2

∣∣∣∣ =

∣∣∣∣∣∑
k∈Iε

ˆ
∂Σε

k

ε−
1
2∂npϕ dH2

∣∣∣∣∣ =

∣∣∣∣∣∑
k∈Iε

ˆ
Σε

k

ε−
1
2 (−∆pϕ−∇p · ∇ϕ)

∣∣∣∣∣
≤ ε−

1
2 ‖|∆p|+ |∇p|‖L2(Σε) · ‖|ϕ|+ |∇ϕ|‖L2(Σε) ≤ C ‖ϕ‖H1(Σε) .

(3.7)

Using ϕ = wε as a test function in (3.6), exploiting ‖∇wε‖L2(Σε) ≤ C ‖∇wε‖L2(Ωε)

from (2.3), we obtain
ˆ

Ωε

|∇wε|2 ≤ CG−1
ε ‖wε‖H1(Ωε) + ω2 ‖wε‖2

L2(Ωε) , (3.8)

and thus the boundedness of wε in H1(Ωε). From the construction of wε and Lemma
2.2 we conclude that, for a limit function w ∈ H1

0 (Ω) and a subsequence, there holds
Pε (wε|Ωε) → w strongly in L2(Ω) and Pε (∇wε|Ωε) ⇀ ∇w weakly in L2(Ω) and
wε → w strongly in L2(Ω).

Since G−1
ε → 0 as ε→ 0, (3.6) yields the following limit equation for w:

ˆ
Ω

∇w · ∇ϕ =

ˆ
Ω

ω2wϕ ∀ϕ ∈ H1
0 (Ω) .

Since ω2 is not an eigenvalue of −∆, we find w = 0. We obtain the desired con-
tradiction, since the strong convergence of wε to 0 contradicts the normalization
‖wε‖L2(Ω) = 1.

With this contradiction to the assumption Gε → ∞, we have ‖p− Pεpε‖L2(Ω) ≤
Cε

1
2 . Estimate (3.8) is valid in general and provides the estimate with improved

regularity: boundedness of ∇wε in L2(Ωε) and thus ‖∇p− Pε∇pε‖L2(Ω) ≤ Cε
1
2 . The

estimate ‖∆p− Pε∆pε‖L2(Ω) ≤ Cε
1
2 follows from the Helmholtz equations (1.4)1 and

(1.6).
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4 First order behavior
Proof of Theorem 1.2. We prove the theorem in three steps. In Step 1, we reduce the
proof of the statement to the convergence behavior of a boundary integral. In Step
2, we prove the convergence of this boundary integral. In Step 3, we show that the
weak limit problem is equivalent to the distributional formulation of (1.10).

Step 1: Reduction to one boundary integral. Our aim is to analyze the
first order corrector function vε := ε−1(pε − p). The function vε solves the following
Helmholtz equation:

−∆vε = ω2vε in Ωε ,

∂nv
ε = −1

ε
∂np on ∂Σε ,

vε = 0 on ∂Ω .

(4.1)

System (4.1) has the following weak formulation: vε ∈ H1(Ωε) satisfies vε|∂Ω = 0 and
ˆ

Ωε

∇vε · ∇ϕ = −
ˆ
∂Ωε

1

ε
∂npϕ dH2 +

ˆ
Ωε

ω2vεϕ ∀ϕ ∈ H1
0 (Ω) . (4.2)

Our aim is to analyze the limit ε→ 0 in relation (4.2). On the right hand side, we
use assumption (1.9), which contains the weak L1-convergence of Pεvε ⇀ v and hence
the convergence of the bulk integral. Also on the left hand side, we use assumption
(1.9), but now the measure convergence Pε∇vε ⇀ ∇v + α [v] νH2bΓ0 . For smooth
test-functions ϕ we obtain
ˆ

Ω

∇v · ∇ϕ+

ˆ
Γ0

α[v]ν · ∇ϕ dH2 = − lim
ε→0

ˆ
∂Ωε

1

ε
∂npϕ dH2 +

ˆ
Ω

ω2vϕ ∀ϕ ∈ C∞c (Ω) .

(4.3)
The main step of the proof is therefore to determine the limit of the boundary integral.
We will derive in Step 2

lim
ε→0

ˆ
∂Ωε

1

ε
∂npϕ dH2 = − |Σ|

ˆ
Γ0

(
∂2
νpϕ+ ∂νp ∂νϕ

)
dH2 ∀ϕ ∈ C∞c (Ω) . (4.4)

Inserting the characterization (4.4) in (4.3) will provide the limit system for v.

Step 2: Proof of (4.4). Let ϕ ∈ C∞c (Ω) be a test function. We consider the
contribution of the boundary integral for every obstacle; we recall that the obstacles
are numbered with indices k ∈ Iε. The contribution of the boundary integral in the
cell with number k is denoted by F ε(k), i.e.: For every k ∈ Iε, we set

F ε(k) := ε−2

ˆ
∂Σε

k

1

ε
∂npϕ dH2 .

An integration by parts can be used to evaluate F ε(k) as

F ε(k) = ε−2

ˆ
Σε

k

−1

ε
(∆pϕ+∇p · ∇ϕ) = − |Σ|

 
Σε

k

(ϕ∆p+∇p · ∇ϕ) ,
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where we have used that n is the inner normal of Σε
k and that the measure of obstacle

k is |Σε
k| = ε3 |Σ| for every k ∈ Iε.

Our next aim is to construct out of the sequence (F ε(k))k∈Iε a function that lives
on the interface Γ0. To this end, let ε > 0 be fixed and let y ∈ Γ0 be any point on
the interface. We define the index k(y, ε) ∈ Z2 to be that index such that y ∈ Y ε

k(y,ε).
This index is well-defined for almost every y ∈ Γ0.

The elliptic equation −∆p = ω2p+ f and our regularity assumptions imply that
the functions ∇p and ∆p are of class C0 in a neighborhood of Γ0. This allows to
calculate, for almost every point y ∈ Γ0, the limit of the above functions:

F (y) := lim
ε→0

F ε(k(y, ε))

= − lim
ε→0
|Σ|

 
Σε

k(y,ε)

(∆pϕ+∇p · ∇ϕ) = − |Σ| (∆pϕ+∇p · ∇ϕ) (y) . (4.5)

We now want to conclude from this point-wise convergence a convergence for
integrals, more precisely, the convergence

´
∂Ωε

1
ε
∂np(y)ϕ(y)dH2(y)→

´
Γ0
F (y)dH2(y)

as ε→ 0. Since the interface area in the single cell is |Y ε
k ∩ Γ0|H2 = ε2 for every k ∈ Iε,

we obtain
ˆ
∂Ωε

1

ε
∂npϕ dH2 =

∑
k∈Iε

ˆ
∂Σε

k

1

ε
∂npϕ dH2

=
∑
k∈Iε

F ε(k) |Y ε
k ∩ Γ0|H2 =

ˆ
Γ0

F ε(k(y, ε)) dH2(y) . (4.6)

By definition of F in (4.5)1, we have the pointwise convergence F ε(k(y, ε))→ F (y).
Since ∇p and ∆p are bounded in a neighborhood of Γ0, the family F ε(k) is uniformly
bounded. We can therefore apply Lebesgue’s dominated convergence theorem and
obtain, in the limit ε→ 0,

ˆ
∂Ωε

1

ε
∂npϕ dH2 →

ˆ
Γ0

F dH2 = − |Σ|
ˆ

Γ0

(∆pϕ+∇p · ∇ϕ) dH2 . (4.7)

Since ϕ|Γ0 ∈ C∞c (Γ0), we may integrate by parts in the last expression with respect to
the tangential coordinates x1 and x2, with vanishing boundary integrals. We obtain

ˆ
Γ0

F dH2 = −
ˆ

Γ0

|Σ|
(
∂2

3pϕ+ ∂3p ∂3ϕ
)
dH2 . (4.8)

Because of e3 = ν, we have thus obtained (4.4).

Step 3: The limit equations. It remains to insert (4.4) into (4.3), which
provides

ˆ
Ω

∇v · ∇ϕ+

ˆ
Γ0

α[v]∂νϕ dH2 =

ˆ
Γ0

|Σ|
(
∂2
νpϕ+ ∂νp ∂νϕ

)
dH2 +

ˆ
Ω

ω2vϕ .
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for every ϕ ∈ C∞c (Ω). This relation is the weak formulation of (1.10), since a formal
integration by parts yields

−
ˆ

Ω

∆v ϕ−
ˆ

Γ0

[∂νv]ϕ dH2 +

ˆ
Γ0

α[v]∂νϕ dH2

=

ˆ
Γ0

|Σ|
(
∂2
νpϕ+ ∂νp ∂νϕ

)
dH2 +

ˆ
Ω

ω2vϕ

for every smooth ϕ. Comparing the factors of ϕ in the bulk provides −∆v = ω2v (the
equation thus holds rigorously in the sense of distributions in Ω\Γ0). Comparing the
factors of ∂νϕ in boundary integrals provides (1.10)2. Comparing the factors of ϕ in
boundary integrals provides (1.10)3.
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