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Abstract: We study an imbibition problem for porous media.
When a wetted layer is above a dry medium, gravity leads to
the propagation of the water downwards into the medium. In
experiments, the occurence of fingers was observed, a phenomenon
that can be described with models that include hysteresis. In the
present paper we describe a single finger in a moving frame and
set up a free boundary problem to describe the shape and the
motion of one finger that propagates with a constant speed. We
show the existence of solutions to the travelling wave problem and
investigate the system numerically.
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1 Introduction

Standard models for flow in unsaturated porous media fail in the description of a
fundamental process, namely the imbibition into a dry medium with gravity as the
driving force. While standard Richards models predict the formation of uniform
imbibition fronts, the experimentally observed fingers [11,26] can only be described
with a model that incorporates hysteresis.

Models for incompressible unsaturated porous media flow typically use the water
pressure p and the water saturation s as primary variables. The Darcy law for the
velocity together with the mass balance equation leads to

∂ts = ∇ ⋅ (k(s)[∇p + gez]) , (1.1a)

we refer to [2, 13, 22, 25] for the modelling. In the Richards equation (1.1a), the
function k ∶ [0,1]→ R is the permeability function which has to be determined from
experiments, g is the gravitational acceleration, ez is the normal vector pointing
upwards. It is always assumed that s takes only values in [0,1].

Equation (1.1a) must be accompanied by a relation between saturation s and
pressure p. Models without hysteresis demand either the algebraic relation p = pc(s)
for some given function pc ∶ [0,1] → R̄, or they include the “τ -correction” and
demand, for some physical parameter τ > 0, known as the dynamic capillary number,
that p = pc(s)+τ∂ts; this latter model takes inertia in the material law into account,
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see [12]. If, additionally, hysteresis in an imbibition process shall be modelled, a
possible simple law is

∂ts =
1

τ
[p − pc(s)]+ , (1.1b)

where [⋅]+ ∶= max{0, ⋅} denotes the positive part. Our aim is a travelling wave
analysis of equation (1.1). We recall that pc ∶ (0,1) → R is a given imbibition
capillary pressure function and τ > 0 is a given constant.

Regarding the modelling we note that, if both imbibition and drainage should
be modelled, one replaces (1.1b) by the model of [4],

∂ts =
1

τ
[p − pc(s)]+ +

1

τ
[p − pd(s)]− . (1.2)

Here, pd ∶ (0,1) → R is a drainage capillary pressure function with pd(s) ≤ pc(s) for
all s ∈ (0,1), and [⋅]− ∶= min{0, ⋅} is the negative part function. Equation (1.2) is a
hysteresis model since, pointwise in space and time, all pressure values in the closed
interval [pd(s), pc(s)] are permitted for a fixed saturation s. The play-type hysteresis
model with dynamic capillary pressure was analyzed in [4, 15–17, 19, 21, 23, 24, 27].
Since we are interested in an infiltration problem with ∂ts ≥ 0, we restrict ourselves
to the case pd(s) = −∞ as in [9], i.e., we study (1.1b) instead of (1.2).

Figure 1: Motivation for this contribution. Left: A snapshot of a solution to the
time dependent system (1.1). Fingers are clearly visible; the solution is comparible
to experimental observations [21]. Middle: With another choice of boundary values
and pc, a single finger is generated. A small squared region of size 2 × 2 around the
finger-tip is marked [15]. Right: Enlargement of the marked region. We see the
typical shape of the single finger in time-dependent calculations. The aim of this
contribution is to analyze the travelling wave equations corresponding to (1.1) in
order to obtain the shape of the single finger without a time-dependent calculation.

Numerical results for the time dependent system (1.1) are shown in Figure 1,
originally published in [15, 21]. The figure illustrates a gravity driven imbibition
process into an originally dry medium. Several fingers evolve in the process. It is
observed that each finger travels approximately with constant speed. This has also
been verified experimentally [26]. The present work aims at the description of a
single finger in a co-moving frame of coordinates.

Travelling wave ansatz, domains and boundary conditions. Since we are
interested in imbibition fronts in columns of porous media, we choose a cylindrical
spatial domain Ω∞. Restricting to two dimensions for convenience and denoting the
width of the cylinder by L > 0, we consider Ω∞ ∶= (0, L) ×R ⊂ R2. Points in R2 are
denoted as x = (y, z). We seek time-dependent solutions to (1.1) that move with
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a constant speed c > 0 in negative z-direction, i.e., downwards. This motivates the
travelling wave coordinates

z̃ = z + ct , p(y, z, t) = p(y, z̃) , s(y, z, t) = s(y, z̃) . (1.3)

In the following, we omit the tilde symbol and write z instead of z̃. The new
coordinates transform system (1.1) into

c∂zs = ∇ ⋅ (k(s)[∇p + gez]) , (1.4a)

cτ∂zs = [p − pc(s)]+ . (1.4b)

Even though the physical interpretation of a travelling wave solution requires
the study of domains Ω∞ that extend to z → ±∞, we choose here to study problem
(1.4) on the semi-infinite domain

Ω ∶= (0, L) ×R+ with bottom Σ ∶= (0, L) × {0} = {(y,0) ∶ 0 < y < L} .

Truncations of the domain are necessary for numerical calculations and facilitate
the analysis. The problem is translation invariant; one should consider the bottom
Σ = {z = 0} as being far below the finger.

The boundary data are given by a prescribed saturation s0 > 0 and a prescribed
pressure p0 at the bottom Σ of the domain, and by a prescribed total influx F∞ on the
top of the domain. More precisely, we assume that we are given s0 ∶ [0, L] → [0,1],
p0 ∶ [0, L]→ R, and F∞ ∈ R+ = (0,∞), and impose the boundary conditions

∫
L

0
k(s(y, z))[∂zp(y, z) + g]dy → F∞ as z → +∞ , (1.5a)

s = s0 at z = 0 , (1.5b)

p = p0 at z = 0 . (1.5c)

If the initial saturation of the medium is given by a number s∗ ∈ (0,1), a natural
choice for the boundary data is s0 ≡ s∗ and p0 ≡ pc(s∗). Along the lateral boundaries
of Ω we impose homogeneous Neumann conditions (no flux).

Main results. We perform an analysis of the travelling wave problem (1.4)–(1.5)
on Ω. For the most part of this article, we prescribe the relaxation parameter τ ,
the frame speed c, and the boundary data s0, p0, and F∞. Only in our last result,
Theorem 4.7, we choose c in dependence of the other parameters in order to satisfy
a physically adequate flux condition on the lower boundary.

The first part of our results concerns the system (1.4)–(1.5) on the bounded
truncated domain ΩH = (0, L)×(0,H). We choose boundary conditions on the upper
boundary appropriately and show that the system has a solution. The solution can
be found with a variational principle, the analysis is given in Section 3.

The numerical part of this paper deals with this truncated problem. One result
is the calculation of a finger solution, see Figure 2. The numerical method and the
results are described in Section 5.

The limit H →∞ for the solutions on the bounded domain is studied in Section
4. We find that every sequence of solutions (sH , pH) to truncated domain problems
possesses a subsequence and a limit (s, p) which is a solution of the original problem
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(1.4). The limit process shows an interesting dichotomy: In one case, the flux
boundary condition for z → ∞ as in (1.5) remains satisfied (“large solution”). In
the other case (“small solution”), only a corresponding inquality is satisfied.

The two cases are analyzed further. We find that “large solutions” are of the
type that we would like to see in the fingering process: they possess a free boundary,
the pressure p tends to −∞ as z →∞, and the solution is “large” in the sense that
the saturation exceed a certain threshold. In the second case, the properties are
reverted: The solution has a bounded pressure and it is “small” in the same sense
as the solution was “large” in the other case. Interestingly, both types of solutions
are found numerically, see Section 5.

Free boundary problem. Let us emphasize that we treat a free boundary
problem. By (1.4b), one has to distinguish between the subdomain {x ∈ Ω ∣∂zs(x) >
0} (expected to be in the bottom) and the subdomain {x ∈ Ω ∣∂zs(x) = 0} (expected
in the top part). In physical terms, this means that an imbibition process occurs
near and below the finger-tip, whereas, in the region around the developed finger, the
saturation does not change any more. With reference to the hysteresis relation, we
note that the z-independent saturation implies that the pressure can take arbitrary
values (below minpc(s)). Therefore, the pressure profile does not have to reflect the
saturation profile and the fingers can remain stable in their upper part; no blurring
by pressure differences occurs.

Figure 2: A numerical solution of the free boundary travelling wave problem. The
gray scale indicates the values of the saturation s (left) and the pressure p (right).
The level line Γ = {x ∣p = pc(s)} is marked in the left image. The line Γ shows
the free boundary: Below the line, the saturation is increasing, above the line, the
saturation remains constant (increasing in vertical direction and, hence, increasing
in time when interpreted as a time dependent solution).

With Theorem 4.7 we provide the result that, for every F∞ within appropriate
bounds, there exists a wave speed c such that a physical flux condition at the lower
boundary is satisfied.

Literature. The classical porous media equation is obtained by setting τ = 0
and by replacing (1.1b) by the algebraic law p = pc(s). This classical equation is
interesting when the permeability coefficient is degenerate k(0) = 0. For existence
and uniqueness results in this classical case we refer to [1,20]. The hysteresis model
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(1.1b) was introduced in [3, 4, 12]. It combines dynamic effects (τ > 0) with a play-
type hysteresis relation; the latter allows for an interval of pressure values p for a
fixed saturation s. For a review of the modelling, we refer to [25].

For the model (1.1), well-posedness results have been obtained in one space
dimension in [4], and in higher dimension in [15, 21]. Existence of solutions for an
extension of the play-type model was shown in [16]. In [23], it was shown that the
model does not define an L1-contraction; in this sense, it can explain the fingering
effect. The fingers were found numerically for unsaturated media in [15], for the
two-phase flow in [14]. Fingers were also observed numerically in [5, 7], where a
free-energy based approach is used for modelling the capillary pressure. For a result
with a degenerate pc-curve, see [24]. A uniqueness result was derived in [6].

Travelling waves for the model have been analyzed in [17, 19, 27]. An analysis
for pure imbibition (∂ts ≥ 0 allows to set pd(s) = −∞) was previously performed
for one space dimension in [9]. The present work extends the results to two space
dimensions. Let us note that the methods are independent of the dimension and
that, up to notation, the results remain valid, e.g., in three space dimensions. The
dimension enters only in Sobolev embeddings that are used for regularity statements
in the appendix.

2 Preliminaries

The coefficient functions k and pc are fixed throughout this work. We make as-
sumptions that are quite common and consistent with experiments, see [13]. For an
illustration see Figure 3.

Assumption 2.1. The functions k ∶ [0,1]→ [0,∞) and pc ∶ (0,1)→ R satisfy:

(Ass-pc) The function pc is differentiable and for some ρ > 0 holds p′c ≥ ρ on (0,1).
Upon normalization of the pressure, we can set pc(s∗) = 0 for a given saturation
value s∗ ∈ R. We assume pc(s)→ −∞ as s↘ 0 and pc(s)→∞ as s↗ 1.

(Ass-k) The function k is differentiable, k∣(0,1) ∈ C2, and k′(.), k′′(.) > 0 on (0,1).

pc

k

s∗ 10

s

Figure 3: Typical functions pc and k.
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The free boundary description. What qualitative behavior can we expect for
solutions of the travelling wave problem (1.4)–(1.5)? We expect that the pressure
stabilizes, as z → +∞, to an affine function with ∇p ≈ −gF ez. If s (and hence k(s))
does not depend on z, then both sides of (1.4a) can vanish. This is what we expect
for solutions in the upper part of the domain. We will be interested in solutions
(p, s) that satisfy, for some h ∈ R+,

∂zs = 0 and p ≤ pc(s) for all (y, z) with y ∈ (0, L) and z > h . (2.1)

For such a solution we can define a function Ψ ∶ [0, L]→ [0,∞) as

Ψ(y) ∶= inf {z0 > 0∣ ∂zs(y, z) = 0 for all z ≥ z0} . (2.2)

The graph of Ψ is a part of the free-boundary, {(y,Ψ(y))∣ y ∈ (0, L)} ⊂ Γ. For the
rest of the paper, we define the function s∗ ∶ [0, L]→ [0,1] as

s∗(y) ∶= lim
z→∞

s(y, z). (2.3)

By positivity ∂zs(y, z) ≥ 0 and boundedness of s, the function s∗ is well-defined for
solutions (s, p) of (1.4). When a solution satisfies (2.1), there holds s(y, z) = s∗(y)
for all z > h.

Γ

p < pc(s)

p > pc(s)

z

y

y
s∗

Figure 4: When interpreted as a solution of the time-dependent problem, the finger
moves with a constant speed downwards. The dashed line represents the boundary
of the finger; one may think of an isoline of the saturation. The graph at the top
part of the Figure indicates a profile of the limiting saturation s∗ as defined in (2.3).

We refer to Figure 4 for an illustration. It is important not to confuse the
free boundary Γ with the shape of the finger (the region of high saturation). We
emphasize that the saturation profile remains unchanged (independent of z) above
Γ; in particular, the finger extends to z → +∞.

Relations in the travelling wave formulation. A fundamental problem in
travelling wave analysis is the determination of free parameters, in our case the
wave speed c. The other parameters are fixed: τ, g > 0 are physical constants, L > 0
a geometrical constant, and the boundary conditions fix F∞ > 0 and s∗ > 0. In the
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travelling wave formulation, c ≥ 0 is a further unknown of the system. Nevertheless,
for the most part of our analysis, we fix boundary values s0 and p0 and treat the
problem with prescribed c. Only in our final result we determine c from an additional
boundary condition for z → −∞.

Let us collect some properties of the real parameters.

Lemma 2.2 (Wave speed and limiting pressure in the doubly infinite domain). Let
(s, p) ∈ C1(Ω∞) ×C2(Ω∞) be a classical solution to (1.4) on Ω∞ with the boundary
condition (1.5a) and the two conditions s → s∗ and k(s)∇p → 0 as z → −∞. Then,
with s∗ as in (2.3), the wave speed satisfies

c = (F∞ − k(s∗)gL)/(∫
L

0
(s∗(y) − s∗)dy) . (2.4)

If the solution possesses a free boundary, i.e. (2.1) holds for some h > 0, then

gF ∶= g − (F∞/∫
L

0
k(s∗(y))dy) (2.5)

satisfies gF > 0 and there holds ∇p(y, z) + gF ez → 0 as z →∞ for every y ∈ (0, L).

Proof. Integrating (1.4a) over (0, L) × (−H,H) yields

c∫
L

0
s(y, z)dy∣

H

z=−H

= ∫
L

0
k(s(y, z))[∂zp(y, z) + g]dy∣

H

z=−H

.

Sending H →∞ provides (2.4).
Relation (2.1) implies that s(y, z) = s∗(y) holds for z > h. Therefore, the elliptic

equation reduces to

∇ ⋅ (k(s∗)∇p) = 0 in (0, L) × (h,∞) . (2.6)

In particular, the flux quantity ∫L0 k(s∗)∂zp(y, z)dy is independent of z for z > h.
The boundary condition (1.5a) allows to evaluate this flux for z →∞; we find

∫
L

0
k(s∗(y))∂zp(y, z)dy = F∞ − g∫

L

0
k(s∗(y))dy = −gF ∫

L

0
k(s∗(y))dy . (2.7)

This provides that, for z > h, the weighted average of ∂zp coincides with −gF .
Solutions p of the elliptic equation (2.6) with homogeneous Neumann boundary

conditions on unbounded domains have the property that ∇p stabilizes to a constant
as z →∞ (a consequence of the strong maximum principle for ∂zp). Relation (2.7)
shows that this constant is −gF ez.

Let us assume for a contradiction gF < 0. Then p is a growing function for z →∞.
This is in contradiction with (1.4b), in which the left hand side vanishes for z > h
and pc(s) is independent of z for z > h.

Let us now assume gF = 0 in order to exclude also this case. We use a maximum
principle for p in the interior of the set {(y, z)∣∂zs = 0} = {(y, z)∣p ≤ pc(s)}. The
minimum of p is attained at the boundary. At the lower boundary of this set,
there holds p = pc(s). This implies that the minimum is attained in a point of
the form (y, z) = (y,Ψ(y)). We now use, for any ε > 0, the strong maximum
principle: p(y,Ψ(y) + ε) > p(y,Ψ(y)) = pc(s(y,Ψ(y))) = pc(s(y,Ψ(y) + ε)). This
implies p > pc(s) in (y,Ψ(y) + ε) and hence ∂zs(y,Ψ(y) + ε) > 0, in contradiction to
the construction of Ψ.
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Notation. Together with the domain Ω = (0, L) ×R+ with bottom boundary Σ =
(0, L)×{0} we also use, for any H > 0, the bounded domain ΩH ∶= (0, L)×(0,H) with
the top boundary ΣH ∶= (0, L)×{H}. We recall that we always impose homogeneous
Neumann conditions at the lateral boundaries {0} ×R+ and {L} ×R+ (accordingly
for the truncated domain).

The function sign ∶ R→ {0,1} is defined as sign(u) ∶= 0 for u ≤ 0, and sign(u) ∶= 1
otherwise. The letter C denotes a generic positive constant and the value may
change from one line to the next in calculations. We already introduced [q]+ =
max{0, q} = (q + ∣q∣)/2 and [q]− = min{0, q} = −[−q]+.

3 Existence result for bounded domains

Let τ > 0, s∗ ∈ (0,1), and two functions p0 ∈ H 1
2 (Σ) ∩ C0(Σ̄) and s0 ∈ H1(Σ) be

given. We assume s∗ ≤ s0 ≤ 1 and p0 ≥ pc(s0). For a height parameter H > 0 we
introduce the following truncated problem.

Definition 3.1 (Truncated domain travelling wave problem). Let c,F∞ > 0 be given.
A pair (s, p) ∈ H1(ΩH) ×H2(ΩH) on the domain ΩH = (0, L) × (0,H) with upper
boundary ΣH and lower boundary Σ is a truncated domain travelling wave solution
(TWH-solution) if there holds

c∂zs = ∇ ⋅ (k(s)[∇p + gez]) in ΩH , (3.1a)

cτ∂zs = [p − pc(s)]+ in ΩH , (3.1b)

s = s0 , p = p0 on Σ , (3.1c)

p ≡ p∗ ∈ R on ΣH , (3.1d)

∫
ΣH

k(s)[∂zp + g] = F∞ . (3.1e)

We emphasize that the constant pressure value p∗ ∈ R is a free parameter and part
of the solution of the problem.

We note that for every TWH-solution (s, p), the flux quantity

Fc(z) ∶= ∫
L

0
k(s(y, z))[∂zp(y, z) + g] − cs(y, z) dy (3.2)

is independent of z ∈ (0,H) by (3.1a). Evaluating this flux in the upper and in the
lower boundary provides, by (3.1e),

∫
Σ
k(s0)∂zp + ∫

Σ
(k(s0)g − cs0) = F∞ − ∫

ΣH
cs . (3.3)

Remark 3.2. Let us give a sloppy description of the consequences of (3.3) for small
boundary data s0. There is the possibility that ∂zp is large at Σ. This means that
a sharp transition occurs near the lower boundary. In the opposite case (without
boundary layer), the left hand side of (3.3) is small. In this case, a moderate flux
F∞ > 0 forces the system that s is not small at ΣH . This is the desired behavior for
finger-like travelling wave solutions; they should connect a small saturation at z = 0
with a moderate or large saturation at z =H.
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Remark 3.3 (A condition for the wave speed c). Let us highlight another conse-
quence of the fact that Fc of (3.2) is independent of z. When (s, p) is a solution on
the doubly unbounded domain Ω∞ then we expect, in the limit z → −∞, that s→ s∗,
p → pc(s∗), and ∂zp → 0. In this situation, the constant flux quantity is necessarily
Fc = (gk(s∗) − cs∗)L.

We use this observation in order to choose a closure condition for the case when
the speed c is treated as an unknown: Even when we solve a Dirichlet problem in the
truncated domain Ω with boundary conditions s0 and p0 at the lower boundary Σ,
we will seek for c and solutions to the Dirichlet problem that satisfy the additional
relation

Fc = ∫
Σ
(k(s0)[∂zp + g] − cs0) = (gk(s∗) − cs∗)L . (3.4)

Theorem 4.7 yields that, given s0, p0, s∗, and F∞, we find a speed c such that (3.4)
is satisfied.

In the remainder of this section, we seek for TWH-solutions (s, p). We use the
space of functions

H1
♯
(ΩH) ∶= {u ∈W 1,2(ΩH)∣ tr(u) = 0 on Σ , ∃u∗ ∈ R ∶ u = u∗ on ΣH} . (3.5)

The weak formulation of (3.1a) and (3.1e) is:

∫
ΩH

c∂zsφ + ∫
ΩH

k(s)[∇p + gez] ⋅ ∇φ = ∫
ΣH

F∞ φ for all φ ∈H1
♯
(ΩH) . (3.6)

Theorem 3.4 (Existence of TWH-solutions to prescribed data). Let H, c, τ,F∞ > 0

and s∗ ∈ (0,1) be given, let p0 ∈H
1
2 (Σ) ∩C0(Σ̄) and s0 ∈H1(Σ) satisfy

s∗ ≤ s0 < 1 , and 0 < p0 − pc(s0) on Σ .

Then there exists a TWH-solution (s, p) with s, ∂zs ∈ L2(ΩH), p ∈H1(ΩH)∩H2
loc(ΩH).

Proof. We use an iteration over saturation fields.

Definition of the iteration. Let there be given a saturation field

si−1 ∈ Y ∶= {s ∈ L2(ΩH) ∣ s∗ ≤ s ≤ 1} .

We define the coefficient functions a ∶= k(si−1) and b ∶= pc(si−1) on ΩH . We seek a
solution p of

1

τ
[p − b]+ = ∇ ⋅ (a [∇p + gez]) in ΩH , (3.7)

with the boundary conditions p = p0 on Σ and (3.1d)–(3.1e). This solution can be
found with a variational method. We define the space of admissible functions as
Xp0 ∶= {u ∈H1(ΩH) ∣u = p0 on Σ , ∃u∗ ∈ R ∶ u = u∗ on ΣH} and minimize the func-
tional

A ∶Xp0 → R , A(p) ∶= ∫
ΩH

1

2τ
[p − b]2

+
+ 1

2
a ∣∇p + gez ∣2 − F∞∫

ΣH
p . (3.8)

The functional is convex and coercive, which implies that a minimizer p exists. The
Euler-Lagrange equation for p reads

∫
ΩH

1

τ
[p − b]+ϕ + a [∇p + gez] ⋅ ∇ϕ = F∞∫

ΣH
ϕ ∀ϕ ∈H1

♯
(ΩH) .
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Since arbitrary compactly supported test-functions ϕ can be inserted, equation (3.7)
holds for p. The Euler-Lagrange equation additionally encodes the boundary con-
dition ∫ΣH a (∂zp + g) = F∞. Given pi = p, we can solve the family of ordinary
differential equations

cτ∂zs = [pi − pc(s)]+ , (3.9)

with initial data s = s0 on z = 0; this system is related to (3.1b) together with the
first equation in (3.1c). We denote the solution of this system by s =∶ si.

Fixed point of the iteration. We claim that, for some constant C = C(H, c, τ)
independent of si−1, the pressure p = pi satisfies

∥p∥2
L2(ΩH)

+ ∥∇p∥2
L2(ΩH)

≤ C . (3.10)

In order to show this estimate, we first choose an H1-extension p̂0 of the data p0,
vanishing at the upper boundary. We can now multiply equation (3.7) with p − p̂0

and integrate to obtain

∫
ΩH

1

τ
[p − b]+ ([p − b] − p̂0 + b) + ∫

ΩH
(a [∇p + gez]) ⋅ ∇(p − p̂0) = ∫

ΣH
F∞ p .

One of the integrals on the left hand side is an upper bound for k(s∗)∥∇p∥2
L2(ΩH)

, the

other term with quadratic growth in p is on the left hand side and positive because
of [p− b]+[p− b] ≥ 0. The remaining terms have linear growth in p and can therefore
be estimated with Youngs inequality and with the Poincaré inequality.

The corresponding solutions si = s of the ordinary differential equation satisfy
0 ≤ s ≤ 1 by the growth assumption on pc. In particular, there holds si ∈ Y . With
R ∶= ∣ΩH ∣1/2 = ∣LH ∣1/2, we find that the above construction provides a map

T ∶ Y ⊃ BR(0)→ BR(0) ⊂ Y , si−1 ↦ si .

We claim that the map T is compact. We will show the compactness below
with the characterization of compact subsets of L2(ΩH) by Kolmogorov-Riesz. An
application of Schauder’s fixed point theorem yields the existence of the desired
solution s.

Let us turn to compactness of T . We consider the family p = pi of solutions for
s = si−1 ∈ BR(0). This family of solutions is bounded in H1(ΩH), hence the finite
differences p(y, .) − p(y + δ, .) ∈ L2((0,H);R) are small for δ > 0 small, independent
of s. More precisely,

∫
L−δ

0
∫

H

0
∣p(y, z) − p(y + δ, z)∣2 dz dy ≤ η(δ) ,

with η(δ) → 0 as δ → 0, independent of s. We now consider two solutions of
the ordinary differential equation (3.9), s(y, .) and s(y + h, .) to inputs p(y, .) and
p(y + h, .). The solutions differ only as much as their right hand sides and their
initial values differ. Because of our assumption s0 ∈ H1(Σ), we therefore find also
for the solutions

∫
L−δ

0
∫

H

0
∣s(y, z) − s(y + δ, z)∣2 dz dy ≤ Cη(δ) .

On the other hand, since ∂zs is bounded in L2(ΩH), the corresponding estimate

∫
L

0 ∫
H−δ

0 ∣s(y, z + δ) − s(y, z)∣2 dz dy ≤ Cη(δ) is clear. This shows compactness of the
image set of s-fields.
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4 Unbounded domain solutions for H →∞
In this section we analyze the solutions (sH , pH) in the limit H → 0. Again, for
the larger part of this section, we keep τ > 0, s∗ ∈ (0,1), F∞, and c > 0 fixed;
only in Theorem 4.7 we determine c from the other parameters. The main result
of this section is the following: Let (sH , pH) denote the TWH-solution as discussed
in Theorem 3.4. Then, for H →∞, there holds (sH , pH) → (s, p) in an appropriate
sense for some limit pair (s, p), which is defined on the unbounded domain Ω. The
pair (s, p) is a travelling wave solution for the semi-infinite domain Ω.

It turns out that two different limiting solution types are possible. Type I is
the “large solution”. It is characterized by the following properties: 1) The solution

is large in the sense that ∫
L

0 gk(s(y, z0))dy ≥ F∞ for some z0. This means that
a certain F∞-dependent threshold is exceeded by the saturation variable. 2) The
solution has a free boundary: For some h > 0 there holds ∂zs(y, z) = 0 for every
z ≥ h. 3) The solution has an unbounded pressure, p→ −∞ as z →∞.

Accordingly, Type II solutions are the “small solutions”. They have a bounded
pressure and no free boundary.

To proceed with the analysis, we consider different assumptions.

Assumption 4.1. The following properties can be considered for the solution se-
quence (sH , pH) of (3.1), obtained in Theorem 3.4.

Bounds for parameters The limiting saturation s∗ ∈ (0,1), the wave speed c, and
the flux F∞ satisfy

gk′(s∗) < c < g(k(1) − k(s∗))/(1 − s∗) , (4.1a)

gL[k(s∗) + k′(s∗)(1 − s∗)] <F∞ < gLk(1) . (4.1b)

Bound for the pressure For a real number p̄ <∞ independent of H holds

pH ≤ p̄ in ΩH . (4.2)

Local bound for the gradient There exists CP > 0 such that, for every H > 0,

∥∇pH∥L∞(ΩH) ≤ CP . (4.3)

Regularity The saturation has the regularity properties

sH , ∂zsH ∈H1(ΩH) . (4.4)

The assumptions have a quite different character. Inequalities (4.1) are ranges
for the physical parameters; we expect the existence of travelling waves in this
parameter regime. The uniform upper bound of (4.2) is expected to hold, but it
should be derived from the system of equations, which we did not succeed to do.
The regularity estimate (4.3) and the local regularity (4.4) can be shown with the
tools of elliptic regularity theory, see [10]. We formulate them here as assumptions,
since the regularity theory is not the focus of this contribution.

We note that the relations (4.2)–(4.3) imply three further estimates:

∥sH∥L∞(ΩH) ≤ s̄ ∶= pc−1(p̄) < 1 . (4.5a)
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In Lemma A.3 we prove that, for a constant Cs = Cs(CP , s0, p0),

∥∇sH∥L∞(ΩH) ≤ Cs . (4.5b)

Since (4.5b) provides ∥∂zsH∥L∞(ΩH) < Cs, one also has from (3.1b) that

pH ≤ pc(sH) + cτCs in ΩH . (4.5c)

Our main result on unbounded domains is the following.

Theorem 4.2 (Limits of TWH-solutions). Let c,F∞, τ > 0, s∗ ∈ (0,1), and boundary
data s0, p0 ∈ C1(Σ) with s∗ ≤ s0 < 1 and pc(s0) < p0 be given. Let all the properties
of Assumption 4.1 be satisfied. For a sequence H →∞, let (sH , pH) be solutions to
(3.1). Then, for a limiting pair (s, p), there holds (sH , pH)→ (s, p) locally in L2(Ω).
The limits satisfy s ∈ C0

b (Ω), ∂zs ∈ L2(Ω), p ∈H2
loc(Ω)∩H1

loc(Ω∪Σ), (s, p) = (s0, p0)
on Σ, and (1.4). The solution (s, p) is either of Type I or of Type II:

Type I: “Large solution” The solution has a free-boundary: There exists h ∈ R+

such that ∂zs = 0 for all y ∈ (0, L) and z ≥ h. The solution is large in the

sense that, with s∗(y) ∶= limz→∞ s(y, z), there holds g ∫
L

0 k(s∗(y))dy ≥ F∞, with
strict inequality if p, s, and ∂zs are continuous. Furthermore, p(y, z) → −∞
as z →∞ in this case.

Type II: “Small solution” The solution has a bounded pressure, there holds p ∈
L∞(Ω). Furthermore, ∇p ∈ L2(Ω). The solution is “small” in the sense that

g ∫
L

0 k(s∗(y))dy ≤ F∞.

Type I solutions satisfy additionally the boundary condition (1.5a).

The theorem follows from Propositions 4.4 and 4.5. Before we can prove these
results, we have to establish an a priori estimate, which is the basis for both propo-
sitions.

Lemma 4.3 (A priori estimate for TWH-solutions). Let F∞, c, τ, s∗ > 0 and s0, p0 ∈
C1(Σ) with s∗ ≤ s0(y) < 1 and pc(s0) < p0. For a sequence 0 < H →∞, let (sH , pH)
be solutions to (3.1). We assume that the solution sequence satisfies relations (4.3)
and (4.4). We use the characteristic functions 1

>
∶= 1{∂zsH>0} and 10 ∶= 1{∂zsH=0} on

ΩH . There exists a constant C1 ∶= C1(c, τ, s0, p0,CP ), independent of H, such that

∫
ΩH

1
>
pc
′(sH)∣∇sH ∣2 + ∫

ΩH
10

1
pc′(p−1c (pH))

∣∇pH ∣2 + cτ ∫
ΣH

∣∇sH ∣2 ≤ C1 . (4.6a)

If, additionally, (4.2) is satisfied, there exists C2 ∶= C2(c, τ, s0, p0,CP , p̄) such that

∫
ΩH

1
>
∣∇pH ∣2 + ∫

ΩH
∣∇(∂zsH)∣2 ≤ C2 . (4.6b)

Proof. Within this proof, we write (s, p) instead of (sH , pH) to have shorter formulas.
With C > 0 we refer to generic constants that may depend on c, τ, s0, p0,CP , p̄, but
not on H.
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Step 1: Test function K(s). We use K ∶ [0,1] → [0,∞), defined as K(s) ∶=
∫
s

0 k(%)−1 d%. Equivalently, we may say that K is the primitive of k−1, satisfying

K ′(s) = 1

k(s)
, K(0) = 0 .

Below, we will use additionally the primitive of K; we denote by K̃ the function
that satisfies K̃ ′(s) =K(s) and K̃(0) = 0.

We use K(s)(y, z) =K(s(y, z)) as a test function in (3.1a) and study

c∫
ΩH

K(s)∂zs = ∫
ΩH

K(s)∇ ⋅ (k(s)[∇p + gez]) .

Using an integration by parts, we may write this relation as

c∫
ΩH

∂zK̃(s) + ∫
ΩH

k(s)[∇p + gez] ⋅ ∇K(s)

= ∫
ΣH

K(s)k(s)[∂zp + g] − ∫
Σ
K(s0)k(s0)[∂zp + g] . (4.7)

We have constructed K such that ∇K(s) = k(s)−1∇s. This gives a simple formula
for the second integral. With another integration by parts and with 1 = 1

>
+ 10 we

find

c∫
ΣH

K̃(s) − c∫
Σ
K̃(s0) + ∫

ΩH
1
>
∇p ⋅ ∇s + ∫

ΩH
10 ∂yp∂ys + ∫

ΩH
gez ⋅ ∇s

= ∫
ΣH

K(s)k(s)∂zp − ∫
Σ
K(s0)k(s0)∂zp + g∫

ΣH
K(s)k(s) − g∫

Σ
K(s0)k(s0) .

(4.8)

We note that the last two integrals on the right hand side and the first two integrals
on the left hand side are bounded. Since we assumed (4.3), actually the entire
right hand side of (4.8) is bounded. The last integral of the left hand side can be
integrated, which shows that also this term is bounded. We therefore find

∫
ΩH

1
>
∇p ⋅ ∇s + ∫

ΩH
10 ∂yp∂ys ≤ C . (4.9)

We want to rewrite the first integral. With this aim, we observe that cτ∂zs =
[p − pc(s)]+ in ΩH implies cτ∇∂zs = (∇p − pc′(s)∇s)1> (we recall that we assumed
∂zs ∈H1(Ω)). This yields

∫
ΩH

1
>
∇p ⋅ ∇s = cτ ∫

ΩH
∇s ⋅ ∇∂zs + ∫

ΩH
1
>
p′c(s)∣∇s∣2 . (4.10)

The first term on the right hand side of (4.10) is

cτ ∫
ΩH

∇s ⋅ ∇∂zs = cτ ∫
ΩH

∂z (
1

2
∣∇s∣2) = cτ

2 ∫ΣH
∣∇s∣2 − cτ

2 ∫Σ
∣∇s∣2

= cτ
2 ∫ΣH

∣∇s∣2 − 1

2cτ ∫Σ
[p0 − pc(s0)]2

+
− cτ

2 ∫Σ
∣∂ys0∣2 . (4.11)

At this point, we obtained from (4.9)

∫
ΩH

10 ∂ys∂yp + ∫
ΩH

1
>
p′c(s)∣∇s∣2 +

cτ

2 ∫ΣH
∣∇s∣2 ≤ C . (4.12)
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Step 2: Test function Φ. We next consider the new test function

Φ ∶= [K(s) −K(pc−1(p))]+ ∈H1(ΩH) .

Note that ∂zs > 0 ⇐⇒ p > pc(s) ⇐⇒ pc−1(p) > s ⇐⇒ K(pc−1(p)) > K(s). This
shows

Φ = [K(s) −K(pc−1(p))]10 .

Using Φ as a test function for (3.1a) and exploiting that Φ ≠ 0 only when ∂zs = 0,
we find

∫
ΩH

Φ∇ ⋅ (k(s)[∇p + gez]) = c∫
ΩH

Φ∂zs = 0 . (4.13)

Also on the left hand side, the term Φ∇⋅[k(s)gez] = Φk′(s)g∂zs vanishes identically.
Integration by parts in (4.13) yields, using Φ = 0 on Σ,

∫
ΩH

k(s)∇Φ ⋅ ∇p = ∫
ΣH

Φk(s)∂zp . (4.14)

Because of ∇Φ = ( 1
k(s)∇s −

1
k(pc−1(p))

1
p′c(pc

−1(p))∇p)10, we find

∫
ΩH

∇s ⋅ ∇p10 − ∫
ΩH

k(s)
k(pc−1(p))

∣∇p∣2
p′c(pc−1(p))

10 = ∫
ΣH

Φk(s)∂zp . (4.15)

The first integral is ∫ΩH ∇s ⋅ ∇p10 = ∫ΩH ∂ys∂yp10, hence it coincides with the first
term in (4.12). Since k(s)10 > k(pc−1(p))10, from (4.12) we arrive at

∫
ΩH

1
p′c(pc

−1(p)) ∣∇p∣
2
10 + ∫

ΩH
1
>
pc
′(s)∣∇s∣2 + cτ

2 ∫ΣH
∣∇s∣2 ≤ C , (4.16)

where we exploited once more (4.3). At this point, we have shown (4.6a).

Step 3: Test function ∂zs. To show (4.6b), we use the test function ∂zs =
1
cτ [p − pc(s)]+ ∈H1(ΩH) in (3.1a). With an integration by parts we obtain

1

cτ ∫ΩH
k(s)∇p ⋅ ∇[p − pc(s)]+

= ∫
ΣH

∂zsk(s)∂zp − ∫
Σ
∂zsk(s0)∂zp + ∫

ΩH
(gk′(s) − c)∣∂zs∣2 .

(4.17)

We observe that, by (4.3) and (4.5b), the first two integrals on the right hand side are
bounded. Furthermore, the middle term of (4.16) shows that also the last integral
is bounded.

Using the algebraic manipulation 2a(a − b) = a2 − b2 + (a − b)2, the left hand side
of (4.17) is written as

1

cτ ∫ΩH
k(s)∇p ⋅ ∇[p − pc(s)]+ =

1

cτ ∫ΩH
k(s)∇p ⋅ (∇p −∇pc(s))1>

= 1

2cτ ∫ΩH
k(s)[∣∇p∣2 + ∣∇(p − pc(s))∣2 − ∣∇pc(s)∣2]1>

= 1

2cτ ∫ΩH
k(s)[1

>
∣∇p∣2 + (cτ)2∣∇(∂zs)∣2 − 1>(pc′(s))2∣∇s∣2] .

Inequality (4.16) along with (4.5a) shows that the negative term has a bounded
integral. This shows (4.6b) and concludes the proof.
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To investigate the free-boundary structured solution described in Theorem 4.2
we define the function h ∶ R+ → R+ with (2.1) in mind: For H > 0 and (sH , pH)
solving (3.1), h = h(H) is defined as

h(H) ∶= inf{z0 ∈ [0,H] ∶ ∂zsH = 0 a.e. in (0, L) × (z0,H)} . (4.18)

The height h marks a horizontal line such that, above that line, ∂zs vanishes. We
note that h ∈ [0,H] is well-defined and that h =H is possible.

Proposition 4.4 (Free-boundary solutions). We consider the situation of Theo-
rem 4.2 with a sequence (sH , pH) of TWH-solutions for H → ∞. Additionally, we
assume for the sequence H →∞ that the height

h(H) is bounded. (4.19)

Under this assumption, a free-boundary travelling wave solution (s, p) exists. More
precisely, there exists a pair (s, p) with s ∈ C0

b (Ω), ∂zs ∈ L2(Ω), p ∈H2
loc(Ω)∩H1

loc(Ω∪
Σ), satisfying (1.4)–(1.5). The solution is of free boundary type in the sense that
there exists h∗ > 0 such that ∂zs = 0 for all y ∈ (0, L) and z ≥ h∗. The flux satisfies

F∞ ≤ g∫
L

0
k(s∗(y))dy . (4.20)

Under the additional regularity assumptions s, ∂zs, p ∈ C0(Ω), the strict inequality
holds in (4.20).

Proof. Let h∗ > 0 denote an upper bound of the function h(H), i.e.

h(H) ≤ h∗ for all H. (4.21)

Step 1: An additional a priori estimate. We consider once more the function

s∗H(y) = sH(y, h∗) for all y ∈ (0, L) . (4.22)

Let g
F,H

∈ R be the number

g
F,H

∶= g − (F∞/∫
L

0
k(s∗H(y))dy) , (4.23)

and let p̃H ∈H1(ΩH) be the function

p̃H(y, z) ∶= pH(y, z) + g
F,H
z for (y, z) ∈ ΩH . (4.24)

We note that these definitions reflect the observations of Lemma 2.2. We finally
define ϕH ∈ C2([0,1]) as the function

ϕH(s) ∶= cs − (g − g
F,H

)k(s) . (4.25)

This allows to write (3.1a) in the form

∇ ⋅ [k(sH)∇p̃H] = ∂zϕH(sH) . (4.26)
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We observe that, by (3.1e) and the choice of g
F,H

in (4.23),

∫
ΣH

k(sH)∂zp̃H = F∞ + (g
F,H

− g)∫
ΣH

k(sH) = 0 . (4.27)

The test function p̃H in (4.26) provides the identity

∫
ΩH

p̃H ∇ ⋅ [k(sH)∇p̃H] = ∫
ΩH

p̃H ∂zϕH(sH) . (4.28)

The left hand side of (4.28) is calculated with an integration by parts, exploiting
the fact that pH on the upper boundary is constant, pH ≡ p∗H on ΣH . In the last line
of the calculation we use (4.27).

∫
ΩH

p̃H∇ ⋅ [k(sH)∇p̃H]

= −∫
ΩH

k(sH)∣∇p̃H ∣2 + ∫
ΣH

p̃Hk(sH)∂zp̃H − ∫
Σ
p̃Hk(sH)∂zp̃H

= −∫
ΩH

k(sH)∣∇p̃H ∣2 + (p∗H + g
F,H
H)∫

ΣH
k(sH)∂zp̃H − ∫

Σ
p0 k(s0)[∂zpH + g

F,H
]

= −∫
ΩH

k(sH)∣∇p̃H ∣2 − ∫
Σ
p0 k(s0)[∂zpH + g

F,H
] .

The right hand side of (4.28) is treated with two integrations by parts,

∫
ΩH

p̃H ∂zϕH(sH)

= −∫
ΩH

ϕH(sH)∂zp̃H + ∫
ΣH

p̃H ϕH(s∗H) − ∫
Σ
p̃H ϕH(sH)

= −∫
ΩH

ϕH(sH)∂zp̃H + [∫
ΩH

∂zp̃H ϕH(s∗H) + ∫
L

0
p0ϕH(s∗H)] − ∫

Σ
p0ϕH(s0)

= ∫
ΩH

(ϕH(s∗H) − ϕH(sH))∂zp̃H + ∫
L

0
(ϕH(s∗H) − ϕH(s0))p0 .

Boundedness of many of the above terms can be concluded from the facts that g
F,H

is bounded, ϕH ∈ C1([0,1]), and boundedness of ∂zp from (4.3). From (4.28) and
Young’s inequality we obtain

∫
ΩH

k(sH)∣∇p̃H ∣2 ≤ C − ∫
ΩH

(ϕH(s∗H) − ϕH(sH))∂zp̃H

≤ C + ∫
ΩH

1

2k(sH)
∣ϕH(s∗H) − ϕH(sH)∣2 + ∫

ΩH

k(sH)
2

∣∂zp̃H ∣2 .

We have applied Young’s inequality in such a way that the last term on the right
hand side can be substracted from both sides. Since ϕH(s∗H)−ϕH(sH) = 0 holds for
z ≥ h∗, the first integral on the right hand side is bounded. We conclude

∫
ΩH

k(sH)∣∇p̃H ∣2 ≤ C(1 + h∗) .

Recalling additionally the estimates from Lemma 4.3, we have the following esti-
mates for the solution sequence:

∫
ΩH

[∣∇p̃H ∣2 + ∣∂zsH ∣2 + ∣∇∂zsH ∣2] ≤ C . (4.29)
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Step 2: Limit equations. It remains to exploit the bounds of (4.29) to construct
the limit solution for H → ∞. Since the sequence g

F,H
is bounded, we can choose

a subsequence {Hi}i∈N with limHi = ∞ and gF ∈ R such that g
F,Hi

→ gF . In the
following, we only use this subsequence. The estimate (4.29) allows to choose a
further subsequence and a pair (s, p) with s ∈H1

loc(Ω)∩L∞(Ω) and p ∈H1
loc(Ω) such

that, for any bounded compact subset Ω′ ⊂ Ω, there holds

sH → s and ∂zsH → ∂zs strongly in L2(Ω′) , (4.30a)

pH ⇀ p weakly in H1(Ω′) and pH → p strongly in L2(Ω′) . (4.30b)

These convergences imply that also the limit (s, p) satisfies (1.4) in Ω and the
boundary conditions at the lower boundary. Furthermore, ∂zsH ≡ 0 for all H on
{z ≥ h∗} implies ∂zs ≡ 0 on {z ≥ h∗}.

Step 3: Flux relations. Regarding the flux we use that the quantity

FH
c (z) ∶= ∫

L

0
k(sH(y, z))[∂zpH(y, z) + g] − csH(y, z)dy (4.31)

is independent of z ≥ 0 (compare Fc in (3.2)). Since the saturation sH is independent
of z for z ≥ h∗, also the quantity

FH(z) ∶= ∫
L

0
k(sH(y, z))[∂zpH(y, z) + g]dy (4.32)

is independent of z for z ≥ h∗. Because of this independence and because of FH(H) =
F∞, we find, as H →∞, for every z ≥ h∗,

F∞ = FH(z)→ ∫
L

0
k(s(y, z))[∂zp(y, z) + g]dy . (4.33)

This shows that the boundary condition (1.5a) is satisfied by the limit functions.

We have found a free boundary solution on an unbounded domain. As in Lemma
2.2, there follows gF ≥ 0 and, under the regularity assumptions s, ∂zs, p ∈ C0(Ω), the

strict inequality gF > 0. This implies F∞ = (g−gF ) ∫
L

0 k(s∗(y))dy ≤ g ∫
L

0 k(s∗(y))dy,
and hence (4.20).

Proposition 4.5 (Bounded pressure solutions). Let the situation be that of Theo-
rem 4.2, with TWH-solutions (sH , pH) along a sequence H → ∞. We assume here
that the sequence of heights h(H) diverges,

h(H)→∞ as H →∞ . (4.34)

Then, a bounded pressure travelling wave solution (s, p) exists. More precisely, there
exists a pair (s, p) with s ∈ C0

b (Ω), ∂zs ∈ L2(Ω), p ∈H2
loc(Ω) ∩H1

loc(Ω ∪Σ) satisfying
(1.4). For C > 0 there holds

∥p∥L∞(Ω) + ∥∇p∥L2(Ω) + ∥∂zs∥H1(Ω) ≤ C .

The solution satisfies

g∫
L

0
k(s∗(y))dy ≤ F∞ . (4.35)

We note that we do not obtain the flux condition (1.5).
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Proof. In this proof, we only write H → ∞ and h → ∞ for the two sequences. We
furthermore use Ωh = [0, L] × (0, h).

Step 1: L∞-bound for the pressure. The upper bound for the pressure was
assumed in (4.2), pH ≤ p̄ in ΩH . Our aim in this step is to show a lower bound for
the pressure.

On the lower boundary Σ there holds pH = p0 ≥ 0. We claim that there is a lower
bound also along the upper boundary Σh of Ωh. Indeed, by definition of h in (4.18),
there is a subset of non-vanishing measure in (0, L) × (h − 1, h) on which ∂zsH > 0
holds, i.e. pH > pc(sH) ≥ 0. The Lipschitz bound (4.3) implies that pH ≥ −CL holds

on Σh for CL = CP
√

1 +L2.
We can now exploit a maximum principle to obtain

−CL ≤ pH ≤ p̄ a.e. in Ωh . (4.36)

The maximum principle is derived by using [pH +CL]− as a test function in (3.1a),
which results in

∫
Ωh

[pH +CL]−∇ ⋅ [k(sH)∇pH] = ∫
Ωh

[pH +CL]−(c − gk′(sH))∂zsH .

An integration by parts yields

∫
Ωh
k(sH)∣∇[pH +CL]−∣2 = ∫

Σh
[pH +CL]−k(sH)∂zpH

− ∫
Σ
[pH +CL]−k(sH)∂zpH + ∫

Ωh
[pH +CL]−(c − gk′(sH))∂zsH .

As analyzed before, the boundary terms vanish because of pH +CL ≥ 0 along Σ and
along Σh. Regarding the last integral we note that in every point x with ∂zs(x) > 0,
there holds pH(x) ≥ pc(sH(x)) ≥ pc(s∗) = 0, and hence [pH + CL]− = 0. This shows
that all terms on the right hand side vanish. We obtain (4.36).

Step 2: A further a priori estimate. From the uniform pressure bound (4.36) we
conclude that p−1

c (pH) is bounded away from 1. With this information, the bound
of (4.6a) provides, with a constant C > 0 independent of H, the inequality

∫
Ωh
10 ∣∇pH ∣2 + ∫

ΩH
1
>
pc
′(sH)∣∇sH ∣2 ≤ C .

Similarly, (4.6b) implies

∫
ΩH

1
>
∣∇pH ∣2 + ∫

ΩH
∣∇(∂zsH)∣2 ≤ C.

Combining both of these inequalities with (4.36), and recalling ∂zsH = 0 in ΩH ∖Ωh,
we obtain

max
Ωh

∣pH ∣2 + ∫
Ωh

∣∇pH ∣2 + ∫
ΩH

[∣∂zsH ∣2 + ∣∇∂zsH ∣2] ≤ C . (4.37)

Step 3: Limit H → ∞. Because of h → ∞, we find a limiting pair (s, p) such
that the local convergences of (4.30) hold for any compact subset Ω′ of Ω. It is
straightforward to verify that (s, p) solves (1.4). Moreover, (4.37) together with
h → ∞ implies the additional properties ∇p ∈ L2(Ω) (as a bounded solution to an
elliptic equation) and ∂zs ∈ L2(Ω).
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Regarding the limiting flux, we start from the relation ∫ΣH k(sH)(∂zpH+g) = F∞.
In order to calculate limits, we once more use the quantity FH

c (z) of (4.31), which is
independent of z. The local strong convergence of sH and the local weak convergence
of ∇pH yield, for almost every z, as H →∞,

∫
L

0
k(s(y, z))[∂zp(y, z) + g] − cs(y, z)dy =∶ Fc(z)

← FH
c (z) ∶= ∫

L

0
k(sH(y, z))[∂zpH(y, z) + g] − csH(y, z)dy

= FH
c (H) = ∫

L

0
k(sH(y,H))[∂zpH(y,H) + g] − csH(y,H)dy

= F∞ − c∫
L

0
sH(y,H)dy .

Because of sH(y,H) ≥ sH(y, z) for every z, and sH → s, there holds

lim
z→∞
∫

L

0
s(y, z)dy ≤ lim

H→∞
∫

L

0
sH(y,H)dy .

Taking in the above calculation both limits, z → ∞ and H → ∞, exploiting ∇p ∈
L2(Ω), we find

∫
L

0
gk(s∗(y))dy = lim

z→∞
∫

L

0
gk(s(y, z))dy ≤ F∞ .

This concludes the proof.

Remark 4.6 (Both solution types occur). The one-dimensional travelling wave
results in [9] indicate that both solution types exists for a given s∗ ∈ (0,1) and F∞
satisfying (4.1). Type I (large) solutions occur in the one-dimensional model when
τ is large. On the other hand, if ∥p0 − pc(s∗)∥L∞(Σ) is small, then Type II (small)
solutions are expected to occur for small τ values. Our numerical results confirm
that both solution types occur.

We finally want to show that, for a given flux F∞, it is possible to find a wave-
speed c such that condition (3.4) is satisfied.

Theorem 4.7 (Selecting a wave-speed c in dependence of F∞ and s∗). Let τ > 0,
s∗ ∈ (0,1), and boundary data s0, p0 ∈ C1(Σ) be given, pc(s∗) ≤ pc(s0) < p0 on Σ,
furthermore F∞ in the bounds of (4.1). We assume that, for all c ∈ [c1, c2] with
c1 ∶= k′(s∗)g and c2 ∶= g(k(1) − k(s∗))/(1 − s∗), a sequence (sH , pH) of solutions to
(3.1) satisfying Assumption 4.1 exists. We consider the corresponding limit solutions
(s, p) and their fluxes

Fc = ∫
Σ
(k(s0)[∂zp + g] − cs0) , (4.38)

and assume that Fc depends continuously on c. Then there exists a wave-speed
c̄ ∈ (c1, c2) such that the corresponding pair (s, p) satisfies (3.4), Fc = (gk(s∗)−cs∗)L.

Proof. We consider the continuous function G ∶ [c1, c2]→ R

G(c) ∶= Fc − (gk(s∗) − cs∗)L . (4.39)
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We recall that G depends in an explicit way on c, but also implicitely, since s and
p (and hence Fc) depend on c. The flux quantity Fc is independent of z, we choose
to evaluate it at z →∞. We denote the limit of the first two terms as

F0 ∶= F0(c) ∶= lim
z→∞
∫

L

0
k(s(y, z))[∂zp(y, z) + g]dy .

We observe that, by Theorem 4.2,

F0 =
⎧⎪⎪⎨⎪⎪⎩

F∞ if g ∫
L

0 k(s∗) > F∞ ,
g ∫

L

0 k(s∗) if g ∫
L

0 k(s∗) ≤ F∞ .

In both cases holds F0 ≤ F∞ and F0 ≤ g ∫
L

0 k(s∗). The function G can be written as

G(c) = F0 − k(s∗)gL − c∫
L

0
(s∗(y) − s∗)dy .

Showing G(c) > 0 as c→ c1. If the solution is of Type II (small solution, second case

in the above distinction), then

G(c) = ∫
L

0
(s∗(y) − s∗)dy

⎛
⎝
g
∫
L

0 (k(s∗(y)) − k(s∗))dy

∫
L

0 (s∗(y) − s∗)dy
− c

⎞
⎠
.

We exploit that s∗ > s0 ≥ s∗ implies, for every y ∈ (0, L), that k(s∗(y)) − k(s∗) >
k′(s∗)(s∗(y)−s∗). This implies that, for c close to c1 = k′(s∗)g, there holds G(c) > 0.
On the other hand, if (s, p) is of Type I (large solutions), then

G(c) = F∞ − k(s∗)gL − c∫
L

0
(s∗(y) − s∗)dy

≥ F∞ − k(s∗)gL − c(1 − s∗)L
≥ gLk′(s∗)(1 − s∗) − c(1 − s∗)L + ε
= (gk′(s∗) − c)(1 − s∗)L + ε ,

where we exploited the lower bound gL[k(s∗) + k′(s∗)(1 − s∗)] + ε ≤ F∞ for some
ε > 0. We see that, also in this case, for c close to c1 = k′(s∗)g, there holds G(c) > 0.

Showing G(c) < 0 as c→ c2. Consider solutions of Type II (small solutions). For
µ ∶= (k(1)−k(s∗))/(1−s∗), we show that in this case, there exists ε > 0 independent
of c ∈ [c1, c2] such that

∫
L

0
(k(s∗) − k(s∗)) ≤ (µ − ε)∫

L

0
(s∗ − s∗) . (4.40)

Since (k(s) − k(s∗))/(s − s∗) is a strictly increasing function for s > s∗, ∫
L

0 (k(s∗) −
k(s∗)) = µ ∫

L

0 (s∗ − s∗) if and only if s∗(y) ∈ {s∗,1} for all y ∈ (0, L). From Jensen’s
inequality, one has

k ( 1

L ∫
L

0
s∗) ≤ 1

L ∫
L

0
k(s∗) ≤ F∞

gL
< k(1) , (4.41)

implying 1
L ∫

L

0 s∗ < 1. Hence, the possibility s∗ ≡ 1 in (0, L) is ruled out. Moreover,
since s∗ > s0 ≥ s∗, the possibility s∗ ≡ s∗ in (0, L) is also ruled out. From Lemma A.3,
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∥∇s∥L∞(Ω) is bounded. Hence s∗ cannot take both the values s∗ and 1 without
transitioning through the intermediate values. Thus (4.40) holds.

If the solution is of Type II, then, for c close enough to gµ = g(k(1)−k(s∗))/(1−
s∗), we obtain from (4.40),

G(c) = F0 − k(s∗)gL − c∫
L

0
(s∗ − s∗) = ∫

L

0
[g(k(s∗) − k(s∗)) − c(s∗ − s∗)]

≤ ∫
L

0
(s∗ − s∗) [gµ − gε − c] ≤ 0 .

If the solution is of Type I, then for gF > 0 as defined in (2.5) (see also Proposi-
tion 4.4), one has

G(c) = F∞ − k(s∗)gL − c∫
L

0
(s∗ − s∗)

= ∫
L

0
[g(k(s∗) − k(s∗)) − c(s∗ − s∗)] − gF ∫

L

0
k(s∗)

≤ (gµ − c)∫
L

0
(s∗ − s∗) − gF ∫

L

0
k(s0) .

Consequently, G(c) < 0 for c close enough to c2 = gµ. Hence, there exists a zero c̄ of
G(⋅) in (c1, c2). This was the claim.

5 Numerics

5.1 Numerical solution of system (3.1)

The primary numerical task is to solve system (3.1) for s and p, where the speed
c and the total influx F∞ are given. The existence of a solution was established in
Theorem 3.4. We use an iterative method in order to deal with the nonlinearities.
With a positive number M > 0, we use the iteration (si−1, pi−1) ↦ (si, pi) that is
given by

Mpi −∇ ⋅ [k(si−1)(∇pi + gez)] =Mpi−1 − 1

τ
[pi−1 − pc(si−1)]+ , (5.1a)

∂zs
i − ε∆si = 1

cτ
[pi − pc(si−1)]+ . (5.1b)

The equations are solved in the rectangular computational domain ΩH for some
initial guess (s0, p0). They are supplemented by the boundary conditions (3.1c)–
(3.1e) and no-flux conditions at the lateral boundaries.

For ε = 0, a fixed point of the iteration scheme (5.1) provides a solution of (3.1).
The set-up is such that the equations can be solved subsequently: One can solve the
first equation for pi, then the second equation for si. The iteration strategy is based
on the L-scheme [18], the iteration is expected to converge for M ≥ τ−1, irrespective
of the initial guess. We introduce an elliptic regularization in the second equation
(which is first order in s), numerical experiments are run with a small number ε > 0.

In order to discretize (5.1), we introduce a uniform triangulation ΩH
h of the

domain ΩH and apply linear finite elements. In this sense, the discretization is based
on the weak formulation in (3.5)–(3.6). The resulting scheme has been implemented
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in the adaptive finite element tool box AMDiS [28]. The linear equations arising
from the discretization are treated with the direct solver UMFPACK, [8].

The physical parameters of the problem are chosen as in [15],

pc(s) = s , k(s) =
⎧⎪⎪⎨⎪⎪⎩

κ for s < a ,
κ + (s − a)2 for s ≥ a ,

(5.2)

and
g = 1 , τ = 2 , κ = 0.001 , a = 0.32 , F∞ = 0.056 .

The domain is ΩH = (−1,1)2; up to a shift of the domain, this coincides with L = 2
and H = 2 in analytical results. The parameters for the numerical code are

M = 4 , ε = 0.0008 .

The initial values for the iteration have been chosen as

p0 = 4.5 , s0 = 10−5 .

Regarding the lower boundary, we use the constant function s0 = 10−5 and the
slightly perturbed pressure boundary condition

p0(y) = pc(s0) + δe−(y/d)
2

.

The postive parameter δ = 0.078 measures the amplitude of the perturbation and
the scaling factor d = 0.25 measures the width of the perturbation.

Figure 5 shows results for four different values of the speed c. We see a remarkable
difference between the solution for c = 0.04785 and the solution for c = 0.04786. The
abrupt change finds its counterpart in Theorem 4.2 (we recall that the theorem is
treating unbounded domains while the numerical results are for a fixed bounded
domain): The two images on the left show Type I solutions, i.e., “large solutions”
with a free boundary. The two images on the right show “small solutions”.

Figure 5: The discrete solutions s
h

of the iteration scheme for (from left to right)
c = 0.04, c = 0.04785, c = 0.04786, c = 0.05013166020.

In the above experiments, we have solved system (3.1) for different values of c.
We now ask: What is the correct wave speed c in the sense of (3.4)? We use the
following finite domain approximations: s∗ can be neglected, hence, in particular,
k(s∗) = κ. Furthermore, s0 is constant and so small that also k(s0) can be replaced

by κ. Condition (3.4) then reads G1(c) ∶= c − (κ ∫Σ ∂zph)/(Ls0)
!= 0. We find the

values as displayed in Table 1. We conclude that G1(c̄1) = 0 is satisfied for some
c̄1 ∈ [0.0476,0.0477]. Up to the above finite domain approximations, we expect the
travelling wave speed to be about 0.0477. This is remarkably close to the jump
point, compare Figure 5. We furthermore note that the value is not far from the
value c = 0.053 that can be extracted from simulation results reported in [15].
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c 0.0476 0.0477
G1(c) 0.0476 + 0.0218 > 0 0.0477 − 0.3304 < 0

Table 1: Values for G1(c) for various c-values.

5.2 Path-following algorithm to adjust c

So far, for each value of c, we started the iterative scheme (5.1) with constant
functions s0 and p0 as initial guess. Since we are interested in solutions for a whole
range of c-values, there is a very natural idea to speed up calculations: After having
changed the value of c, instead of starting the iterative scheme from scratch, we
start the iteration with the solution of the last value of c. Thereby, we increased c
in every interation step by 10−4 in some experiments, by 10−11 in others.

Interestingly, it turns out that this scheme produces results that are different
from those reported in Section 5.1. Results are displayed in Figure 6, and once
more, we observe that, below a critical value for c, solutions are “large solutions”,
above the critical value, we find “small solutions”. This feature is as in the sequence
of Figure 5, but the critical value of c is now different: It is about c̄2 = 0.050 and no
longer about c̄1 = 0.048. For values of c below c̄1 and for values above c̄2, the results
of the two schemes coincide.

Figure 6: Plots of the discrete solutions s
h

of the path-following iteration scheme for
(from left to right) c = 0.04, c = 0.05013166020, c = 0.05013166023, c = 0.0625.

We conclude with an evaluation of the integral condition in Theorem 4.2, where
the criterion for a “large solution” was g ∫

L

0 k(s∗(y))dy ≥ F∞ for the saturation
values s∗(y) ∶= limz→∞ s(y, z) at infinity. With the approximation s∗ ≈ s∣ΣH and
with (3.1e), the criterion for a “large solution” reads

G2(c) ∶= ∫
ΣH

k(s)∂zp ≤ 0 . (5.3)

Our simulations yield the values in Table 2. We observe that the change of sign of
G2 occurs only after the point that the solution switched to the “small solution”.

c 0.04 0.05013166020 0.05013166023 0.0625
G2(c) −0.1948 −0.1630 −0.1492 0.0183

Table 2: Values for G2(c) for various c-values.

Our observations may be interpreted as follows: For a range of values of c, there
are two solutions of system (3.1). This is not in contradiction with our analysis, since
Theorem 3.4 provides the existence, but not the uniqueness of solutions. A numerical
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scheme has the tendency to find the “stable” solution (“stable” has to be interpreted
appropriately). In a path-following code as described here (in Section 5.2), due to
numerical stabilization aspects, the code can follow one path beyond the point where
it looses stability. We conjecture that this is what is visible in the observation c̄2 > c̄1.

Conclusions

We studied the travelling wave equations for a porous media imbibition problem with
hysteresis. Denoting by c the unknown speed of the travelling wave, we treat a free
boundary problem with an additional parameter. Our analysis shows that, after a
domain truncation and for boundary conditions within physically reasonable limits:
(i) For a prescribed speed c, travelling wave solutions exist. In the limit of infinite
domains, different types of limit solutions can occur. (ii) A critical wave speed c
can be selected by a flux condition. (iii) Numerical experiments provide solutions
with the shape of a finger. We find values of c that are in good agreement with
time-dependent calculations. Different numerical algorithms yield slightly different
values for c, an effect that may be related to non-uniqueness of solutions.

A Appendix

The following result on solution sequences (sH , pH) does not rely on Assumption
4.1, but follows directly from the variational principle.

Lemma A.1 (Large solution sequences have unbounded pressure). For a sequence
0 < H → ∞, let (sH , pH) be solutions to (3.1). We assume that, for some height
parameter z0 > 0 and some bound Ck > 0, every solution sH satisfies the integral
condition

∫
L

0
gk(sH(y, z0))dy ≥ Ck > F∞ . (A.1)

In this situation, the sequence of pressure functions is unbounded,

∥pH∥L∞ →∞ . (A.2)

In particular, it generates a “large” Type I solution.

Proof. For a contradiction argument we assume that, for some p̄ > 0, the pressure
functions are bounded, ∣pH ∣ ≤ p̄ on ΩH . We recall that pH is the minimizer for the
functional A of (3.8), for given s = sH . This provides a lower bound for A: For any
function ϕ ∈Xp0 , there holds, by Lemma A.2,

A(ϕ) ≥ A(pH) ≥ ∫
ΩH

1

2
k(sH)∣∇pH + gez ∣2 − F∞Lp̄

≥ 1

2
g2 (∫

ΩH
k(sH)) −C1(p̄) − F∞Lp̄ .

Our aim is to find a contradiction, which we obtain by constructing a comparison
function with lower energy. We choose a function p̃H that connects, in the domain
{z ∈ (0,1)}, the boundary data p0 in a smooth way with p̃H ≡ 0 for z = 1. For larger
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z, we set p̃H(y, z) = −gF (z − 1), where the coefficient gF ∈ (0, g) is chosen below. We
calculate for the energy

A(p̃H) ≤ C2 +
1

2
∣g − gF ∣2 (∫

ΩH
k(sH)) + F∞HgF .

Combining the two inequalities and using C̄k ∶= (g ∫
L

0 ∫
H

z0
k(sH)) /(H − z0), we

find
1

2
gC̄kH ≤ C3 + F∞HgF +

HC̄k
2g

∣g − gF ∣2 . (A.3)

Optimizing in gF leads to the choice gF ∶= g − q with q ∶= (gF∞)/C̄k < g. In order to
compare the prefactors of H on both sides we study

1

2
C̄kg −

C̄k
2g

∣g − gF ∣2 − F∞gF = 1

2
C̄kg −

C̄k
2g

∣q∣2 − F∞(g − q)

= C̄k
2g

(g2 − q2 − 2q(g − q)) = C̄k
2g

(g2 + q2 − 2qg) = C̄k
2g

(g − q)2 > 0 .

For large H, this yields a contradiction in (A.3).

Lemma A.2 (A Jensen type inequality). For ΩH = (0, L) × (0,H) with points
x = (y, z), k ∶ ΩH → [0, k0] monotonically increasing in z, and u ∶ ΩH → R with the
uniform bound ∥u∥L∞ ≤ ū, there exists a constant C1 = C1(ū, k0), independent of H,
such that

∫
ΩH

k ∣∇u + gez ∣2 ≥ −C1 + g2∫
ΩH

k . (A.4)

Proof. We use the averaging operator M ∶ L2(ΩH)→ R, defined by

M(v) ∶= (∫
ΩH

kv)/(∫
ΩH

k) .

This operator is linear and maps the constant function v ≡ a ∈ R to M(v) = a. We
furthermore use the convex function ψ ∶ R → R, ξ ↦ ∣ξ + g∣2. Jensen’s inequality
provides

M(ψ(∂zu)) ≥ ψ(M(∂zu)) .
In our setting and with m ∶= ∫ΩH k, this yields

∫
ΩH

k ∣∇u + gez ∣2 ≥ ∫
ΩH

k ∣∂zu + g∣2 =mM(ψ(∂zu)) ≥mψ(M(∂zu)) .

We calculate, using that k is increasing in z,

∣M(∂zu)∣ = ∣ 1

m ∫ΩH
k∂zu∣ ≤

1

m
∣∫

L

0
k u∣

H

0

− ∫
ΩH

∂zk u∣

≤ 1

m
(2k0ū + ū∫

ΩH
∂zk) ≤

3k0ū

m
.

Inserting above we obtain

∫
ΩH

k ∣∇u + gez ∣2 ≥mψ(M(∂zu)) =m ∣g +M(∂zu))∣2 ≥mg2 − 6gk0ū .

This shows the claim.



26 Travelling wave solutions for gravity fingering

Lemma A.3 (Lipschitz continuity of sH). Let F∞, c, τ, s∗ > 0 and s0, p0 ∈ C1(Σ) with
s∗ ≤ s0 < 1 and p0 ≥ pc(s0) be fixed. For H > 0, let (sH , pH) be the TWH-solution to
(3.1) satisfying (4.3) and (4.4). Then, for ρ = min{pc′} > 0, there holds

∥∂zsH∥L∞(ΩH), ∥∂ysH∥L∞(ΩH) ≤ CP /ρ+∥∂ys0∥L∞(Σ)+ 1
cτ ∥p0−pc(s0)∥L∞(Σ) =∶ Cs . (A.5)

Proof. To prove the lemma, we consider a regularization of the signum function,
denoted as signε ∶ R → [−1,1]. A possible choice is signε(η) ∶= η/ε for η ∈ [−ε, ε],
signε(η) ∶= −1 for η < −ε and signε(η) ∶= 1 for η > ε. We also introduce the primitive
Hε(η) = ∫η0 signε(%)d%. We demand that, as ε → 0, there holds signε(η) → sign(η),
Hε(η)→ ∣η∣, and η signε(η)→ ∣η∣.

We differentiate relation (3.1b), in the sense of distributions, with respect to xj
for xj = y and for xj = z. The regularity assumption (4.4) on sH allows to write

cτ∂z∂xjsH + pc′(sH)∂xjsH sign(∂zsH) = ∂xjpH sign(∂zsH) .

Multiplying both sides with signε(∂xjsH) yields

cτ∂zHε(∂xjsH) + pc′(sH) signε(∂xjsH)∂xjsH sign(∂zsH)
= sign(∂zsH) signε(∂xjsH)∂xjpH .

(A.6)

Passing to the limit ε→ 0, we obtain for xj = z the relation

cτ∂z ∣∂zsH ∣ + pc′(sH)∣∂zsH ∣ ≤ ∣∂zpH ∣ ≤ CP , (A.7)

where we used (4.3) in the last inequality. We exploit that, for z = 0, there holds
∂zsH = 1

cτ [p0−pc(s0)]+, and hence also ∣∂zsH ∣ ≤ 1
cτ ∥p0−pc(s0)∥L∞(Σ). Inequality (A.7)

implies that ∣∂zsH ∣ cannot exceed the value Cs of (A.5).
We now study xj = y in (A.6). In the limit ε→ 0, exploiting ∂zsH ≥ 0, we find

cτ∂z ∣∂ysH ∣ + pc′(sH)∣∂ysH ∣ sign(∂zsH) ≤ ∣∂ypH ∣ sign(∂zsH) . (A.8)

With the uniform bound ∣∇pH ∣ ≤ CP of (4.3) we can write

cτ∂z ∣∂ysH ∣ ≤ (CP − ρ∣∂ysH ∣) sign(∂zsH) . (A.9)

For z = 0, there holds ∂ysH = ∂ys0. Inequality (A.9) implies that ∣∂ysH ∣ cannot
exceed the value Cs of (A.5).
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