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Abstract: We study systems of reaction diffusion type for
two species in one space dimension and investigate the dy-
namics in the case that the second species does not diffuse.
We consider competing species with two stable equilibria and
front solutions that connect the two stable states. A free en-
ergy function determines a preferred state. If the diffusive
species is preferred, traveling waves may appear. Instead, if
the non-diffusive species is preferred, stationary fronts are the
only monotone traveling waves. We show that these fronts are
unstable and that the non-diffusive species can propagate at
a logarithmic rate.

1 Introduction

Reaction diffusion equations are a common model in the description of non-
linear systems such as chemical processes, ecological systems, or nerve-pulse
propagation. Recently, Luckhaus and Triolo [7] studied a discrete stochas-
tic model for tumor growth and derived a limiting continuous model for the
densities u and v of malignant and healthy tissue. In one space dimension
the system can be written as

Ou = 02u+ f(u,v),

o = g(u,v). (1-1)

In the discrete system the malignant cells are mobile which results in a pos-
itive diffusivity in the first equation, but the healthy cells are immobile and
there is no diffusion in the second equation. A feature of the nonlinearities in
(1.1) is competition, which results from the fact that in the discrete model the



two species are competing for space. In the continuous model competition is
expressed by
Oy f(u,v) <0, 0Oug(u,v) <O0. (1.2)

Due to competition, (1.1) defines a monotone dynamical system. The mono-
tonicity has many analytical consequences such as a comparison principle
for solutions. In the case of a positive diffusion in the second equation the
existence and stability of traveling fronts is well-understood [6, 9]. We will
analyze traveling waves for (1.1) and see, how the missing diffusivity changes
the qualitative picture.

Our setting will be such that at position x = —oo only healthy cells are
present, while at x = 400 only tumor cells are present. We are therefore
interested in front solutions that connect the states S_ = (0,1) (healthy
tissue) with S, = (1,0) (tumor tissue),

(u,v)(z) = S_ =(0,1) for z — —o0, L3
(u,v)(x) = S, = (1,0) for x — +o0. (1.3)
It is possible to associate to every state (u,v) € [0,1]? a free energy
H(u,v). We will see that the energy difference between the states S_ and
Sy determines the dynamics of the system. In the case H(S_ ) > H(S,),
the system prefers the tumor (state S, = (1,0)) over the healthy state S =
(0,1). In fact, in this case there exist traveling wave solutions with non-
vanishing speed, i.e. the tumor cells can invade at a finite rate. Furthermore,
these waves are unique and stable (compare [5]).
In this work we study the opposite inequality,

H(S. ) < H(S,). (1.4)

In this case one may expect waves traveling right, corresponding to an in-
vasion of healthy cells. Instead, no traveling waves with finite speed exist
and there are only stationary front solutions. The phenomenon has some
similarity to the blocking of propagation in an inhomogeneous medium with
a highly varying diffusivity, where the existence of steady states prevents
propagation [4]. We analyze the stability of the blocked waves. It turns out
that the stationary fronts are unstable and that a sublinear penetration may
occur. A global analysis shows that, with an arbitrarily small perturbation
of the front, an invasion of the v-component at a logarithmic rate is possible.

For a similar competitive system we refer to Aronson, Tesei and Wein-
berger [1] concerning a model for pattern formation. They considered (1.1)
on a bounded domain and with a diffusion coefficient in the first equation that



depends on the second species. They show the existence of many discontinu-
ous steady states and verify their stability. In their model, the assumptions
on the reaction term differ from ours, in particular, the bistable case is not
considered.

Assumption 1.1. The nonlinearities f,g € C*([0,1]*,R) satisfy
1. Preserving positivity: f(0,v) =0 = g(u,0) for all u,v € [0, 1].

2. Bistability: There are exactly two stable equilibria S_ = (0,1) and Sy =
(1,0), and two linearly unstable equilibria (0,0) and (Useadie, Vsaddie)-

3. Strict Competition: 0y f(u,v) < 0 and dyg(u,v) <0 for u,v € (0,1).

4. All nontrivial solutions (u,v) of g(u,v) = 0 are given by u = T'(v) for a
monotonically decreasing function T'. Setting T'(1) = 0 and I'(0) = u®,
[ has an inverse v € C([0,u°],[0,1]), which we extend trivially to a
function v € C°(]0,1], 0, 1]).

5. Non-degeneracy: For some ¢,C >0, and all u € [0,u°),

c<=0,7y<C, Dg(u,y(u))#0, 0,0,9(u,0)<0. (1.5)

In item 2., linearly stable means that the two eigenvalues of the Jaco-
bian D,,)(f, g) have negative real part, linearly unstable that at least one
eigenvalue has positive real part.

Our main results are collected in the following theorem.

Theorem 1.2. Let f, g satisfy Assumption 1.1 and let S_ be the preferred
state, i.e. H(S ) < H(Sy) with H defined in (2.1). Then there exists
a unique monotone traveling wave solution (u,v) of (1.1) with asymptotics
(1.8). This wave is blocked, the wave speed is ¢ = 0.

The stationary solution is unstable. There are initial data, arbitrarily
close to the stationary front in L*(R), such that the corresponding time-
dependent solutions satisfy, for all x € R,

(u,v)(z,t) = S for t— oc.

Proof. The first part of the theorem is a special case of Theorem 2.1, the
second part is shown in Theorem 3.3, where, additionally, the rate of conver-
gence is determined. O



Figure 1: Possible zero-sets in the phase diagram

2 A Lyapunov function

The system (1.1) possesses a free energy function H, as was, to our knowl-
edge, first noted by S. Luckhaus. The free energy allows to give a sufficient
and necessary condition for the existence of standing waves. We set

H(u,v) = —/Ouf(a, v) do — /UI/OF(T) 0, f(o,7) do dr, (2.1)

and recall g(I'(r),7) = 0. We have normalized H such that H(S_) =
H((0,1)) = 0. We want to verify that H has indeed the meaning of
an energy. For functions w,v € L*(R,[0,1]) with d,u € L?*(R) and
H(u,v) — H((1,0))x; € L'(R) we set

B((u,v)) ;:/R{%axmuﬂ(u, v) —H((I,O))X+}dx. (2.2)

The term H((1,0))x is inserted to ensure finiteness of the integral for so-
lutions sharing the asymptotics of the traveling wave. Classical solutions
satisfy

OE((u,v)) = /(—8§u)8tu + 0, Hoyu + 0, HOw
R
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We exploit that 0, f is non-positive and that
g(u,v) >0 for u < T(v), g(u,v) <0 foru>T(v),

to conclude that E is decreasing.

2.1 Monotone traveling waves

Our next aim is to find stationary solutions of (1.1). In the stationary case,
the second equation reduces to the algebraic relation g(u,v) = 0. For fixed
u € [0,1], the equation g(u,v) = 0 admits only the solutions v = 0 and
v = v(u) (not necessarily different), hence all stationary solutions of (1.1)
can be found by solving with ¢ : R — {0, 1} the scalar equation

O%u + f(u,v) =0,
v(x) = ¥(2)y(u(z)).

If we furthermore demand that v is monotone and connects the states 1 and
0, we must chose for ¢ the characteristic function of an interval (—oo, z*).
After a translation of the solution we may assume z* = (0. By monotonicity
of v it suffices to study monotonically increasing functions u that connect 0
with 1 and solve (2.3) with ¢ = x_, the characteristic function of (—oc, 0).

(2.3)

Theorem 2.1 (Existence and uniqueness). Assume 1.1, 1.-4., and
H(S ) < H(S,) (2.4)

There exists a monotone function v € L¥(R), d,u € L*(R), connecting 0
with 1 such that, with v(x) = v(u(z))x_ (), the pair (u,v) is a weak sta-
tionary solution of (1.1). There exists no monotone traveling wave solution
with speed ¢ # 0 and, up to translations, only the above standing wave. The
condition (2.4) is necessary for the existence of a stationary solution u.



Figure 2: A standing wave solution

The qualitative behavior of the standing wave is depicted in Figure 2.
Note that the profile v is non-smooth; there is a unique point where v or d,v
has a discontinuity.

Proof. Step 1. Necessity. Let firstly (u,v) : R — R? be a monotone station-
ary solution of (1.1). After a shift we may assume that (u,v) solves (2.3)
with ¢ = x_. We will calculate an integral formula for the solution. For
U € R we set

foU) = f(U,0),  AU) = fU~U)), (2:5)

and introduce

R(U) = - / L) dn, F(U) = / f1(n) dn. (2.6)

By standard elliptic theory, the solution is smooth away from x = 0, which
allows the multiplication of 9u + f(u,v) = 0 with d,u and to conclude

O [%8Iu(:1:)2 + Fo(u(x))] =0 forz>0, (2.7)
9, [%8Iu(a:)2 + Fl(u(x))} —0 forz<0. (2.8)

We have defined Fy and F; such that Fy(1) = 0 and F(0) = 0. Thus, the
squared brackets of (2.7) and (2.7) both vanish on R, and, in particular,



they coincide in x = 0. Thus, a necessary condition for the existence of the
solution w is the existence of u* = u(0) € R such that

Ar) = /0 fi+ /1 fo = Fy(u*) — Fy(u*) = 0. (2.9)

It remains to study the function A. There holds A(0) > 0 by definition, A is
monotonically decreasing on U € (0,u°) by f; < fo, and A(U) = A(u®) for
all U > u°. Therefore the solvability of (2.3) implies A(u°) < 0.

In order to relate this condition to the energy, we calculate H(Sy) =

H((1,0)) as
/fu()du—// ) du dv
/qudu—/f,*y du+/ f(u,0) d
/ fol(u du—/ fi(u = —A(u®)

Because of H(S_ ) = 0, the necessary condition A(u°) < 0 is equivalent to

(2.4).

Step 2. Erxistence and uniqueness of standing waves. We can define Fj,
Fi, and A as in Step 1. Again, A(0) is positive by definition. Assumption
(2.4) yields that A(u°) is non-positive. We therefore find a point u* € (0, u°]
with A(u*) = 0. Because of

Oy A(u) = f(u,y(u)) = f(u,0) <0

for u € (0,u°), this zero u* is unique. We will construct a solution with
u(0) = u*. Equation (2.7) suggests to set

2

1
p = <2/*1f(s,0) ds) > 0,

and to define u as the solution of (2.3) on both Ry and R_ for the initial
values u(0) = u* and 9,u(0) = p.

Let us first consider the set > 0. The same calculation as before yields
that u solves

Opu(z) = \/2Fy(u(x)),

where Fj is positive on [u*, 1) and Fy(1) = 0. Furthermore f(1,0) = 0 implies
that \/2F,(U) is a Lipschitz function in U € [u*,1]. We conclude that the
solution u(z) is monotone and satisfies u(z) — 1 for x — +oc.
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The solution u(x) on the set z < 0 is analyzed in the same way. We
consider u as the solution of

Opu(x) = /2F(u(x)).
We claim that F;(U) = 0 has no solution on (0, u*]. Once this is shown, the
proof is finished as for z > 0.

Since Fi(u*) > 0 and F;(0) = 0, it suffices to assume that F; has a non-
positive minimum @ on (0, u*), and to find a contradiction. In the minimum
we have

Fi(u) <0, 0= Fj(a) = —f(a,7(a)),
whence @ is the unique value for u such that in S = (@,~(@)) there holds
f(S) = 0. In this point we have (9, + 7'0,)f(S) > 0 by Assumption 1.1, 2.
This yields a contradiction, since in a minimum of F} necessarily

0< Fl'(it) = —(du +7'3,) f(S).

The uniqueness of the solution u follows from the uniqueness of the values
u(0) = u* € [0,u°] and 0,u(0) = p, and from the Lipschitz properties of the
functions y/2F;. Tt remains to note that, in the case H(S,) = H(S_), the
choice of any other u* € [u° 1] yields only a shifted version of the above
solution, since Fy and Fj coincide on [u®, u*].

Step 3. Other traveling wave solutions. A traveling wave solution is
a pair u,v : R — R together with a wave-speed ¢ € R, such that (z,t) —
(u,v)(x+ct) is a weak solution of the time-dependent problem. For the proof
of Theorem 2.1 it remains to exclude the existence of monotone traveling
wave solutions with ¢ # 0. To this end, let (u,v) : R 3 & — (u(§),v(£)) be
monotone with the asymptotics (1.3), and ¢ € R such that

cOgu = Ofu+ f(u,v),

cOgv = g(u,v). (2.10)

We note that, in the case ¢ # 0, an iteration argument yields that every weak
solution of system (2.10) is necessarily C'*°.
a) Exclusion of positive c. To derive a sign condition on ¢ # 0 we calculate

cO¢ <—%|8§u2 + H (u, v)) = c((—0fu + 0,H)¢u + 0, HOev)
T(v)
= c(—0%u — f(u,v))deu + / Oy f(s,v)ds - g(u,v)

= —*|0¢ul* — / Oy f(s,v)ds - / Oug(s,v)ds.
I'(v) I'(v)



This expression is non-positive on R, since, for u(£) > I'(v(§)), both integrals
of the last line are positive, in the opposite case both integrals are negative.
Since the traveling wave connects the equilibrium S_ = (0,1) with S; =
(1,0), an integration over R yields

¢ [H(S,) — H(S_)] < 0. (2.11)

In the case of interest, H(S_) < H(Sy), we conclude ¢ < 0. This is the
information that we can expect from the energy difference: Since the state
S_ is preferred, waves can, if they have a non-trivial speed, only travel to
the right.

b) Exclusion of negative c. Assume now ¢ < 0. We will find a contra-
diction by exploiting the missing diffusivity in the v-equation of (2.10). The
monotonicity of v implies g(u(§),v(§)) = cdev(§) > 0 for all € € R, and hence
v < y(u) on R. Then u(§) — 1 for & — 400 implies u > u°® on [£y, 00) for
some & € R and thus v = 0 on [£y, o0). But as a solution of the v-equation
of (2.10) with initial values v(&y) = 0, v must vanish identically and can not
satisfy the asymptotic behavior at £ = —oco. A contradiction. O

2.2 Non-monotone waves: Lack of asymptotic stability

Due to the absence of diffusion in the v-equation we can characterize station-
ary solutions of (1.1) by the scalar equation (2.3). So far, we have restricted
our analysis to monotone solutions and thus to ¥ = y_. We here want to
show that, leaving the class of monotone solutions, there are many station-
ary solutions of (1.1). Theorem 2.1 provided a solution u corresponding to
Y = x_, that is, v(z) = x_(2)y(u(z)). With the help of the implicit func-
tion theorem, we will show that there are many other solutions nearby. This
proves that the monotone front is not asymptotically stable in any LP-norm
for p < oc.

Proposition 2.2 (Many non-monotone stationary solutions). Assume
H(S_) < H(S;). There exists & > 0 such that for all 0 < §; < 6y < ¢
there is a stationary solution of (1.1) with v(x) = x(x)y(u), where x is the
characteristic function of the set (—o0,0) U (d1,02), that is, a function u
solving

Ofu+ f(u, xv(u)) = 0. (2.12)

Proof. With P = (0,0, u*, u*,u*) we construct a function

G:R° DBp(P) —)Rg, G(61,62,ﬂ0,ﬂl,ﬂ2) GRg,



with G(P) = 0 and such that zeros of G correspond to solutions of (2.12).
We then use the implicit function theorem to find points (g, @1, 42) solving
G (81, 02, Ug, @y, uz) = 0 for small dy, ds.

We consider the two (i = 0, 1) autonomous equations

dfu+ fi(u) =0, for
fou) = f(u,0), fi(u) = f(u,~(u)).

The two equations define two flow maps,

@, R 5 (u(0), 0u(0)) = ((¥3)1, (P})2) = (u(x), deu(x)) € R

Given (6, ﬂ) = (61, 62, Ug, U1, ﬂg) we set

- (—2 /0 " ) ds) "

which we expect to be the derivative of v in z = 0. We furthermore set

G1(0,1) := (®§,)1 (T, p) — T,
G (6 ﬂ) = ((b(b 61>1 © (1)6 (uoap) ﬂg,
1 1
Gy(6.7) = 3 [(®},_4,)2 0 B4, (70, )]’ —/ fols) ds.
(@8, 5,010, (0,p)

By definition, G(P) = 0. If we find a point (4, a) with G(d, @) = 0, we can
construct a solution to (2.12) by gluing together the above flows. It remains
to calculate the derivatives of G' in the point P.

0aG1(P) - (W, W, Wa) = Wy — Wr,
0uGa(P) + (o, Wy, wy) = Wy — Wy,
0aG'3(P) - (wo, w1, we) = p - aﬂop wo + fo(u™) - wo
= g, |p\2+f0( ") -y
= (—fl( ")+ fo(u®)) - wp.

The strict inequality H(S_) < H(S,) implies u* < u° and thus f;(u*) <
fo(u®). Tt follows that the 3 x 3-matrix 0;G(P) is invertible. The implicit
function theorem can be applied and provides the solutions. O

Note that, with the same proof, one can construct solutions with any
finite (odd) number of interfaces.
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3 Orbital stability of a creeping front

In this section we study again the strict inequality H(S_) < H(S;). We
have seen that there exists a monotone stationary solution (ug, vg) of (1.1) of
the special form vs(z) = v(us(x))x—(x), i.e. ug solves

O2ug + f(us, y(us)x_) = 0. (3.1)

and ug(x) — 0 for © — —o0, us(x) — 1 for z — +oo. By constructing
other stationary solutions that are nearby we have seen in Subsection 2.2
that (us,vs) is not asymptotically stable for equation (1.1). We will see
that the solution is indeed unstable. This is shown by constructing small
perturbations of (us,vs) such that the corresponding solutions (u,v)(t) of
the initial value problem move arbitrarily far from (ug, vy).

More precisely, we will construct (u,v) which keep the shape of (us, vs)
for all times, but the functions are shifted by a penetration depth X (¢) € R,
i.e. the deviations u(X(¢)+.,t) —us(.) and v(X(¢)+.,t) —vs(.) remain small.
By showing that the position X (¢) satisfies X () — oc for t — oo, we prove
Theorem 1.2.

3.1 The linearized operator

In this subsection we derive some properties of the linearized system. They
will be the key for our construction of orbitally stable solutions. We linearize
(2.12) in us. The corresponding linear operator is

L:H'(R) 3w+ Lwe H'(R), Lw(z)=-0 w(z)— plx)w(xz) (3.2)
with

() = { (Ou + ') f (us(x), vs(x)) for z < 0,

Ou f (us(x),0) for z > 0.
Note that u(x) — p— < 0 for x — —oo and u(z) = py < 0 for z — 4oc.

The comparison principles. In order to have comparison principles, one
needs the existence of a non-negative function w with Lw > 0. Such a
function is given to us by construction, we can choose w = d,u;. We have
the following two comparison principles.

1. Elliptic equation. Assume that there exists w € H'(R), w > 0, with
Lw > 0. Then every function z € H'(R) solving

Lz >0,

11



satisfies z > 0.

2. Parabolic equation. Every function z : [0,00) — H'(R) solving d;z +
Lz > 0 and z(0) > 0 satisfies z(¢) > 0 for all £ > 0.

We refer to [8] for proofs. We will actually not use the elliptic comparison
principle in the above form, but a variant which is developed in the next two
paragraphs.

Positivity of the bilinear form. We study the bilinear form correspond-
ing to L,

O(u) = /R Bpu(2)|* — p(z)u(z)|* da. (3:3)

Lemma 3.1. Assume that there exists a non-negative function w € H'(R)
with Lw > 0, Lw # 0. Then the bilinear form ® is positive,

O(u) >0 VYu € H'(R),u # 0, (3.4)
and coercive, i.e. for a constant ¢ > 0 we have
®(u) > cljul/3: Vu € H'(R). (3.5)
Proof. The definition of ® implies that for some constants ¢, C > 0
®(u) > —Cllullf2 +cllullfp Yue H'(R). (3.6)

Step 1. In order to show (3.4), let us assume that for some u # 0 we
have ®(7) < 0. We minimize ® on the 1-sphere of L? and find a sequence
of functions u, with |ju,| 2 = 1. Without loss of generality we can assume
®(u,) < 0. Replacing u, by either its positive part (u,), or by (—u,)y, we
can additionally assume that all u,, are non-negative.

Estimate (3.6) yields c|lu,|/%: < Clluyl/2, + ®(u,) < C. We choose a
subsequence u, — w in H' and u, — u in Lfoc. We can assume in the
following that ®(u,) < —J§ < 0, since in the case ® > 0 we only need to
normalize a solution u of ®(u) = 0 and can proceed with Step 2.

There holds ®(u) < liminf ®(u,) by the weak lower semicontinuity of
norms and the strong local convergence. We claim that ||ul/z2 = 1. Indeed,
|lul[r2 < 1 is clear by the weak convergence u, — u in L?. Furthermore
|lu|| > 0 is clear by ®(u) < —0. If ¢g := ||u||z2 < 1 we consider & = u/¢q with
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®(u) = ®(u)/ct < liminf ®(u,), again impossible, since u,, was a minimizing
sequence.

Step 2. We found a minimizer u of ® on the 1-sphere of L2 As such, u
is an H'-eigenfunction of L with non-positive eigenvalue,

Lu = Au, u >0, \g <0.

The sign of A follows easily by testing the eigenvalue equation with wu.
We next multiply the eigenvalue equation with w and find, using the non-
negativity of u and w,

0> Ao (u,w) = (Lu,w) = (u, Lw) > 0,

which yields A\g = 0. As a solution of Lu = 0 the function u is C'. It can
not vanish anywhere, since otherwise also the derivative vanishes by non-
negativity, and as a solution of a linear ordinary differential equation u had
to vanish identically. We can repeat the above calculation and find

0=\ (u,w) = (u, Lw) >0,

by Lw # 0. We found a contradiction.

Step 3. We now show (3.5). Let us assume the contrary, the existence
of a sequence u,, with ||u,|/ g1 = 1 and with ®(u,) — 0. For a subsequence
we find a limit v such that w, — w in H' and u, — u in L}, Estimate
(3.6) yields ¢ = c|luy||%: < Cllugl|2s + P(uy,) and therefore a lower bound for
[[tn]I72

We claim that w is not trivial. For arbitrary ¢ > 0 the convergence
®(u,) — 0 yields for large n

et [l 2 [ 0P+ [ )l

The function (u(.)); is supported on a compact subset I C R and we have
L? convergence u, — u on I. We find ng such that

e [ Ol 2 [0+ [ (Cu)slun ¥n =

Let us assume u = 0. Then, for appropriate choice of § > 0 and M > 0,

M

% > 5 un 2 = 6jun|Zs — 5/ 2. ¥ > no.
R\(—M,M) -M

The second term on the right tends to zero by u = 0. For € > 0 small we
find a contradiction to the lower bound for ||u,|| .

The lower semicontinuity of ® for the above convergence yields for the

limit » that ®(u) < 0, a contradiction to (3.4). O
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Positivity of solutions. We have seen that L defines a symmetric non-
negative functional. We next study positivity of solutions, not only for L,
but also for positive perturbations of L. We assume that we are given a
bounded function ¢ € C(R,[0,00)) and define the operator Ly = L + 1.

The bilinear form corresponding to L, is again positive, coercive, and
symmetric. This implies that L, : H'(R) — H '(R) is invertible. We now
study positivity of solutions. We claim that for ¢ € H~'(R)

Lyz=¢>0 = 22>0. (3.7)

The function z is the minimizer of the coercive functional

1
By(2) = 5 (2 Lyz) = (9. 2).
Let us assume z were negative somewhere. We then write z = 2z, + z_ with
zy(x) := max(0, z(z)) and z_ # 0 and calculate

1 1
By(2) = 5 (20 Lyze) = (0, 2) + 5 (2 Ly ) = {,2) > B 21),
using that L, is a positive form. We find that the comparison function 2
yields a lower value of the functional, a contradiction.

We claim that the solution z of (3.7) with 0 # ¢ > 0 is everywhere
positive, z(x) > 0 for all x € R. For a short proof we assume that ¢ > ¢ =
€d,,, which will actually be the case in our application. Since qul preserves
non-negativity, the solution z of L,z = ¢ satisfies 0 < zZ < z. Assume that
z(z) = 0 for some x € R. Then also Z(z) = 0. In the case x # x, we find
0,Z(x) = 0 and as a solution of an ordinary differential equation, z(x) = 0.
The jump condition [0,z](xy) = —¢ yields a contradiction to non-negativity.
In the case x = xg, the jump condition yields immediately the contradiction.

We finally study the asymptotic behavior of non-negative solutions u of
Lu> ¢ for 90(1‘) = e_nxX{x>Mo}'

We claim that for some 6 = 6(My) > 0 the inequality u(z) > dp(x) holds
for all # > M,. We study for ji = inf(p) the operator L := —0? — ji. The
Green’s function of L is given by G(z,y) = e N*7¥/2) with A = \/—fi. We
compare u with the positive solution @ of Lii = ¢, given by

a(z) = / G, €) ol€) de.

14



There holds
Lu—u)=Lu—Lui+ (L— L)a> (—j+pu > 0.

Therefore v > 1, since L ™! is positivity preserving. The asymptotic behavior
of u follows from the explicit form of the Green’s function.

The comparison function. Let again a bounded function ¢ €
C(R,[0,00)) be given. We write x_ and x. for the characteristic function of
R_ and Ry, respectively. We recall that we set w = 0, u;.

Lemma 3.2. For appropriate ¢ > 0 and n > 0, depending on v, the function
Up(z) := w(z) + ce” !

and the H'-solution U of
LyU = ¢Uox - (3.8)
satisfy B
U(z)
Us()

O = sup{

x € R} < 1. (3.9)

Proof. We first note that U, is positive, that U exists by the invertibility of
Ly, and that U # 0 is non-negative, since Uy is.
We calculate

Lw = (=0; = p)dyus = [f(u”,0) = f(u",v")]d =: fod,
where dg is the Dirac distribution in z = 0 and fy € R, fy > 0. Furthermore
Le "(z) = (=n” — p(x))e ™" + 2n6p.
We introduce z. = Uy — U and our aim is to show

inf { 50((?)} > 0. (3.10)

In terms of z. equation (3.8) yields

Lyz. = LUy + YUy — pUpx — ,
and therefore
Lyz. = (fo+ 2n¢)80 + e(—n" — p(z))e "™ + vUsx . (3.11)
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We find that in the case ¢ = 0 the right hand side is non-negative. In the
last paragraph on positivity of solutions we have seen that z5 > 0 for € = 0.

Let us consider now a small € > 0. This means that we enlarge 2z, by the
solution 2 = z, — zg of

Ly2=¢f,

with f = 21 8 + (=12 — p(z))e "2, For n? small compared to the limit
values of —j, we have seen that the solution 2 behaves like +de~"*! outside
a compact interval. Therefore, outside this interval, Z is positive. Inside the
interval Z might be negative, but since z5 > 0 in the interval, we can choose
e > 0 small to have z. positive.

In particular, z, satisfies for some 4 > 0 and M > 0 the asymptotic
estimate z,(x) > ede "7 for all |z| > M. We can therefore compare z, to
Us. Result (3.10) and the lemma follow. O

For later convenience we note that we also have an upper bound for
solutions u. With some constant C' = C(¢, Up) there holds

Outside a large interval this estimate follows from the fact that both U, and u
have the decay of e"*!. Inside the interval the estimate follows immediately
from the positivity of Uy and the boundedness of w.

3.2 Orbital stability of a creeping front

The aim in this section is to study solutions (u,v) of the time dependent
problem with initial values that are close to the stationary profiles (us, vy).
We recall some steps of the construction of the stationary solution. Recall
that nontrivial solutions (u, v) € [0, 1]? of g(u, v) = 0 are parametrized by v =
v(u) = T7'(u). The solution u, was found by setting v,(z) = v(u,(z))x_ ()
and solving (2.12). u; is monotonically increasing with us(0) = u*, and v (z)
is monotonically decreasing with vs(07) = y(u*) =: v* and vy = 0 on Ry.
We will see that, for appropriate initial values, the instationary solution
(u,v) remains in shape near to (us,vs), but shifts its position. In order
to associate a position to (u,v) we choose a small number p € (0,1) (the
smallness will be specified later), and define X (¢) € R to be the position with
v(X(¢),t) = pv*. We will see that the position X (¢) is uniquely determined.

In order to verify that (u,v)(X(¢) + .,t) is close to (us, vs)(.), we study
the differences,

U t) =u(X(t)+&t) —us(§), V(L) =v(X(t)+E&t)—vs(E). (3.13)
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Figure 3: A solution (u,v)(.,t) and the stationary solution (us, v;)

Our results on shape-stability and on instability of the stationary solution
are summarized in the following theorem.

Theorem 3.3 (Creeping front). We assume 1.1 and H(S_) < H(Sy) and
study the unique stationary front solution (us,vs). There exist initial values
(ug,vo), arbitrarily close in the L?-norm to (us,vs), such that for the corre-
sponding solution (u,v) of the initial value problem the functions (U, V')(t)
remain small in L= x L* for all t. The front travels to infinity, X (t) — +o00
for t — oo, with a logarithmic rate.

The theorem is proved on the basis of the time-dependent system for U,
V,and X,

OU = 92U + X - Ogu + f(u,v) — f(us, vy) on R, (3.14)
8,V = X - 9v + g(u,v) on R\ {0}, (3.15)
V(07) =(p— 1)o7, (3.16)
V(01) = pv*. (3.17)

In the equations appear u and v; in this context u(§) and v(&) are short
notations for the expressions us(§) + U(&,t) and vg(€) + V (&, 1).

We can interpret this system in the spirit of free boundary problems:
There appear two conditions for V(¢,0). This overdetermination of V' deter-
mines the position X ().

We make the following choice of initial values.

U(£,0) =0 VE e R, (3.18)
V(E,0) = pvre ™ Ve € (0,00), (3.19)
V(€,0) = —(1 - p)vret VE € (—0,0). (3.20)
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We will choose p > 0 small, and, more importantly, A > 0 large. More general
initial values can be treated. Essential are the properties v(.,0) smooth and
monotonically decreasing, smallness of V(.,0) in L? and of U(.,0) in L,
monotonicity of u(.,0).

The proof of Theorem 3.3 is based on the fact that a weighted L>°(R) x
L*(R)-smallness condition for (U, V) remains satisfied for all times. In
particular, this implies that the front has always a positive speed (com-
pare Lemma 3.6 for estimates). Indeed, in the point & = 0 we have
(u,v)(&,t) = (us(0) + U(0,1),v5(07) + V(0F, 1)) = (u* + U(0,¢t), pv*). Small-
ness of |U(0,¢)| implies that (u,v)({ = 0,¢) is close to (u, pv*), hence
g((u,v)(& = 0,t)) is always positive. We evaluate (3.15) in & = 0T, where the
left hand side vanishes. By monotonicity of the system, the solution (u,v)

remains monotone in x. In particular, we have d¢v(0,7) < 0 for all times.
This shows X (¢) > 0.

PU A
7

Figure 4: The solutions (U, V)(.,1).

The proof of the theorem is based on the subsequent lemmas 3.4 to 3.6.
The lemmas make the following heuristical observations precise.

1) For L%small V and small X, (3.14) provides a small uniform bound
for U.

2) For ) large, X bounded from below, and |U| small, (3.15) implies that
V(.,t) is small in L? for all times.

3) The bounds for U imply a smallness of X () € R.

4) As a tool in the above results: The speed X is bounded from below.
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The key for the proof of the theorem is the following: the smallness of U
found in 1) improves the smallness assumption on U in 2). Vice versa,
the smallness of V' found in 2) improves the smallness assumption on V
in 1). These improvements are based on the fact that the factor © from
(3.9) satisfies © < 1. We can then conclude as follows: As long as U and V'
satisfy their smallness conditions, they satisfy even sharper conditions. By
continuity, the estimates remain valid for all times.

Some of the constants below depend only on the functions f and ¢ and
on the position of the jump, u*. We will call such constants geometric in the
following.

Ad 1) Results on the stabilty of U = 0 exploit the properties of the
operator L = —82 — p(.) and its perturbations. We consider the positive
perturbation of L given by (&) = 7/ (us)0, f(us, vs) x_. We use Uy from
Lemma 3.2 and © < 1 from property (3.9). We set ©' = (1+0)/2 < 1 to
have some space in the calculations.

Lemma 3.4. Given Cy > 0 and c; > 0, there exist constants Cy 9, Cyo > 0
(small), and Ng > 0 (large) such that the following holds. FEvery solution
(U, V, X) of (3.14)-(5.20) that satisfies for some T > 0, A > Xg and C,, < Cy

the estimates

X(t) < Co/A U 1) < Cuplo(€) VEER T €0,T],
V(& 1) < e X VE>0,t€0,T),
V(& )] < max {22, (=7 (u,())CUo(§)} ¥V E<0,8€[0,T],

satisfies for all times t € [0,T] and all £ € R additionally
U 1) < (0'Cy + C(A)Uo() (3.21)

with some constant C(X) = C(X; Cy, Cy 0, Cup, Ao, ¢2). This coefficient satis-
fies C(X) = 0 for A — oc.

Proof. We write (3.14) in the form
OU = 92U + XU + fo(&,) + f1(&,1).
Here on & > 0 we set

fﬂ(fat) = f(U, U) - f(U, 0) = 8vf(u(5:t)7 C(f:t)) ) V(f:t)a
fi(§, 1) = f(u.0) = f(us,0) = 0 f(n(&,1),0) - UE, t) = f(&, t) - U, 1),
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for values ¢ = ((&,t) € [0,V] and n = n(&,t) with [n(£,t) —us(&)| < |U(E, ).
On the half line £ < 0 we write similarly
fol&,t) = f(u,v) = f(u,7(u))
- 8vf(ua C) (U — Vs + ’Y(us) - f}/(u))
fl(gat) = f(U,’y(U)) - f(us,vs)
= (auf + ’7’(772 (67 t))avf)(% (67 t)a ’7(772 (67 t))) ' U(Sa t)
= A(E,1) - U(E,1).
Again, n; and 1y satisfy [n;(&,t) — us(€)] < |U(&,t)|. We have now written
the equation for U in the form
QU + LU = fo(&, 1) + (i — U + XU,
with |p — | < CC,oUy. We next have to analyze f;,. We set ¢)y(§) =
Dy (11(€), v4(€)) and recall (&) = 7/ (115(€)) o €) X—(€). We can write
with |Ry (., )| + |Rv (., t)| < C(|V] +|U]) small in L? for C, and C, small,
and A large. Our equation becomes
U + LU + (U = ¢o(§)V (€, 1)
+ Ry(€,1) - U(E 1) + Ry (§:1) - V(&) + (i — m)U + XOcU.

To make the arguments clear, we first consider the equation without the
error terms. With the help of the parabolic comparison principle we can com-
pare U with the stationary solutions u of Lyu = sup,(1yV’). The assertion
V| < —+'C,Usx— implies that |U| remains below the comparison solution
U1 of ~ ~

LUy +¢()Ur = |07 CoUox - | = »C,Us.
By definition of © we have the pointwise bound U; < ©C,Uy.
~ We now consider the error terms. They allow only for the estimate U <
U = U, + U, for every function U, satisfying
LyUy > C(|U] + [V])2
We use L;UO < QU from (3.12) and see that we can choose U, with the
estimate
U] < C Ly [CuplUolUs + Us| + CulUgCu + €M + €, o C,Us |
< CCuoColUy + CCyuo||Us sV
+ C(Clp + Co0)CyUp + O(AH2)e A,
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For small C, o we can absorb the second term in the left hand side. This
shows the claim. O

Ad 2) In order to motivate and to describe the V-estimate, let us assume
for the moment X > 0 were constant in time and u = u* were constant in
time and space. We study the ordinary differential equation for v(z,.) of
(1.1). The equation has the two stationary points v = 0 and v* = y(u*). If
we assume v(z,0) € (0,v*) for all z > 0, then v(z,.) is (possibly) a long time
in the vicinity of 0, then a finite time in an interval (¢,v* — ), then for all
further times close to v*. Translating this into the moving co-ordinate system
with origin in X (#) and using v(X (¢),t) = pv*, we find values v € (g,v* — ¢)
only in a finite neighborhood I = (—4,9) of £ = 0, whereas to the left (the
right) of T the solution v is close to v* (to 0). For small X > 0, the number
0 becomes arbitrarily small.

The subsequent lemma verifies this picture in the perturbed situation of
u not being constant (but, instead, with |U/| small), and with X not constant
(but, instead, with a lower and a small upper bound). By showing (3.23) and
(3.24) for small f, we find an exponential estimate in the vicinity of £ = 0,
while far from £ = 0 the estimate for V' is as good as U permits.

Lemma 3.5. Let ¢y, Cy, B > 0 be given. There is a geometric constant Ax =
x°/2 > 0 and constants C, = Cy(co, 5),p = p(co),c2a = ca(cy, Co, ) > 0
that can be chosen arbitrarily small, and Ay = Xo(co, Co, ) > 0 such that the
following holds.

Given N > Ao and U(.,.), X(.) satisfying for all t € [0, T]

U 1)] < Culn(§),

: C
0< X(t) <=2,
A
and fort + At <T
. ) A+t
X(t+At)=X(t)+ Az implies At < , (3.22)
Co

then the solution V' of (3.15) satisfies for allt € [0,T] on {£ > 0}
0 < V(&) < pute @, (3.23)
and on {£ < 0}

V(& )] < max {—/(us(€)) (1 + B)Culo(§), (1 — p)v'e™ ). (3.24)
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Proof. We denote by z° > 0 the position with us(xz°) = u°. At (approx-

imately) the position £ = z° the solution v = 0 looses its stability in
the v-equation, since u has (approximately) the critical value u°. We set
Ax = 2°/2.

We study an arbitrary point z; € [0,00). In the case X(T') > x; we
choose t; such that x; := X (¢1), in the opposite case we set t; = T. We
derive results for v(xy,t) for all ¢ < ¢,. They are then interpreted as results
for

v(xy,t) =v(X(t) + 2 — X(2),t) = vs(xy — X(t)) + V(g — X(2),1)
=V(z; — X(t),1).

Step 1. Choice of ¢ and ¢,. In order to analyze v(z;,t) we must
understand what happens in the time ¢, when v = 0 looses stability in xzy,
that is, us(z1 — X (to)) = u®, or &y = X(to) + 2°. Our first aim is to choose
x4y >2°, x_ < 2° and C,; small with

1
C, = 5 inf {—0,9(u,0) |u > us(zr;) — Cy1} >0,
O = 25up {Bug(1,0) [u > (2 ) — Cun} > 0,
us(r_) + Cypy < u® < ug(ry) — Cyn,
such that |z, —z_| < 2°/2 and with
Cy < co/2min{Cy,z1}.

This is possible by setting z, = 52°/4, and choosing C,; small compared
to 2° and |z — 2°| = O(Cy,1), since then €} = O(C,,1). The constant C,
depends on ¢5. We impose on C, that 2C,||Ug|/ec < Cy 1.

We want to study time instances ¢t_ and ¢, such that v = 0 is stable
before t_ and v = 0 is unstable after ¢,. If possible, we choose them to
satisfy

Xt )=z1—24, X(ty)=2x1—2_.
Note that ¢_ can not always be defined as above. In the case 1 < 2, = 52°/4
we set 1. = 0 and in the case X(T) < ; — 2, we set t_ = T. In the same
way we set ty =0 forz; <z_ and t; =T for X(T) <z —a_.

Step 2. The time span (0,¢ ). We exploit that for small initial values
the function v(xy,.) is exponentially decreasing in this time span.

We have initially v(z1,0) = pv*e ™ and Ju(zi,t) = g(u,v) <
—Cyv(zy,t) for all t < ¢_ (assuming A > Ay for a large geometric constant
Ao in order to have small values of v). Therefore

v(zy,t) < prre MGt v <t
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and we trivially find at the position £ =z, — X(¢) for t < ¢_
V(& 1) =v(zy,t) < prre M0 < pure .

Step 3. The time span (¢_,t,). In the time span (¢_,¢,) the function
v(x1,.) may be exponentially increasing. To derive bounds, we exploit as-
sumption (3.22), which yields a bound on the duration At =¢, —¢ . Using
ry — 2z < Az, we find At < (A+1t)/co.

We start from v(x;,t ) < pvre  1=Col-
growth rate, and we find

. For large \j, there is a slow
U(iEl, t) < pv*e_/\xl_CQt* 6C;At

< pvrexp (=X (21 — Cy/eo) —t— (Cy — Cy /o))
< pv*exp(—Az,/2).

We conclude the bound for V' by writing again £ = z; — X (1),
V(€ t) =v(xy,t) < pure M2 < pute M2 Ve (toty).

Step 4. The time span (t,,t¢;). The argument for the v-estimate is
now of a different nature. We exploit that v grows exponentially and the fact
that v(xy,t) < pv*, with equality if X (¢;) = 2.

Since U is small, u(zy,t) < ugs(r_) + Cyy1 < u® for all t € (t4,t). For
small p (of the order of C,, ;, and thus depending on ¢;), there is ¢, > 0 (of the
order of C,, 1) such that g(u,v) > ¢, -v for all v < pv* and u < ug(z_) + C,.
This implies for ¢t > ¢

v(zy, 1) > vy, )™l
Recalling that v(zy,%;) < pv* we find
V(xl - X(t): t) = U(xl, t) < pv*efcg(tlft)_

To relate £ = x; — X(¢) and At = ¢; — t we use the upper bound for the
velocity, £/At < Cy/A. This yields

V(€ 1) < prre B < pute @M/ vt € [ty 1]

With ¢y 1= min(¢,/Cp, 1/2) we find the result (3.23).

Step 5. Inequality (3.24). We now consider arbitrary z; < X (7') and
t; = X !(x,) if possible and set ¢, = 0 for z; < 0. We have to analyze
v(xq,t) for t > t;. We exploit that after time ¢; the solution v(zy,.) runs
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towards the solution v = y(u) of g(u,v) = 0. Once v is in the vicinity of the
graph of v, denoted in this proof by I', the stability of I" implies that v can
not escape again.

We start from the equation for V,

OV (&,1) = X(1)0ev(X (1) + &, 1) + g(u(X () + &, 1), v(X (1) + £, 1))
which we write in the form
(0 — X (1)) V (€, 1) = X (1)9evs(€)
+ g(us(€) + U(E, 1), vs(§) + V(§,1)).

(i) We first analyze the case of large |V|. For a concise definition we use
the constant ¢, := —27'(u*) = 2|7'(us(0))|. We consider the case

V(f,t) S _C'yCu,l- (326)

(3.25)

We achieve for small C,; > 0
Cya = inf {g(u,v)|u*/2 <u <u*+ Cyy,
pv* < v < y(u) = ey, Cyn} >0,

and calculate in the case of (3.26) for —¢ not too large,
: C
(0 = X (#)0e)V (&, 1) > Toagvs(f) +C1.

For large A we find that the material derivative above is positive. Together

with V(0,.) = (p—1)v* and the initial values V'(.,0) > (p—1)v*e’, this shows

the uniform decay of |V(&,t)|. By the upper bound for the velocity X, the

slope near £ = 0 is of order Cy ;A/Cy and we find (3.24) with ¢; = ¢2(co, Cp).
(ii) We now consider the next case,

6, Cut < VIED) < 7' (us(©)(1 + HICTo (). (3.27)

where the right hand side is negative. Again, we must exploit (3.25). We use
the R? distance function d and the non-degeneracy assumption (1.5) to find

. u,v * *
Cy2 ::mf{m‘ogugu + Cya, pv §v<7(u)} > 0,

depending on p. With this constant we can now calculate

g(us(g) + U(f, t)a Us(f) + V(f, t)) 2 Cg,Qd((us + U, Vg + V)a F)
Z 009,2 | <(U7 V)a (_'7’7 1)> ‘
= CCQ,? |V(£7 t) - ,)/U(fa t)‘a
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where 7' is evaluated at a point i such that (n,y(n)) is the orthogonal projec-
tion of (u,v) to T'. If we replace in the above expression 1 by u,, we introduce
an error that we denote by R. We can calculate for V

(8 — X(£))V (£, 1) = X (1)Dev,(€) = CCoa(V (€. 1) = 7' (us)U (€. 1)) + R.
We distinguish two cases. If V' < 29/(u4)|U| we estimate the error by |R| <
CCy1|V| and write

. : 1
(00 = X))V (€, 1) 2 X(1)0evs(€) — 5CC2V(E,2) = CCun|V].

Imposing that (), ; is small compared to Cy» we can absorb the error term.
If, instead, V' > 2v/(uy)|U| we estimate the error by |R| < CC? and find

(8 = X))V (€. 1) = X(1)Devs(€) + CCyaly (us) | BC.U(E) — CCU(E).-

We impose that C,, is small compared to SC, 5 such that the third term is
again small compared to the second. In both cases we find a linear decay of
—V with a rate coA with ¢3 = 3(8, Cy, p).

(iii) It remains to consider the upper limit case of (i), V(£ 1) =
— |7 (us(€))]|(1 + B)CLUu(E). We evaluate once more (3.25),

(@~ X)) [V(E.1) + 1/ (0)| (1 + B)CU €)
> 9w, + g + CC, ' () BOLTE) — 0T (E)

For large A, this is positive for all (£, t) since Uy and 0:U, decay not faster
than us and du, for € — —oo. We find that V(£,t) > o/ (us(€))(14+8)CuUs (€)
remains valid for all times. The upper bound follows in the same way. O

Ad 3) Upper estimates for X () are the consequence of lower estimates

for —0,v. The following lemma exploits the non-degeneracy assumption
0,0ug(u, 0) < 0.

Lemma 3.6. For C, small, T > 0 fixed, and )y large compared to geometric
constants, there is Cy > 0 such that for all X > \g the following holds. If the
solution U(.,.) of (3.14) satisfies

for t € [0,T] and every & € R, then the solution (V,X) of (3.15)-(3.17)

satisfies
Co

X(t) < X

(3.28)
for all t € [0,T].
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Proof. Given t; € [0,T] we consider z; := X (¢;). We will find Cy such that,
if (3.28) holds with the constant 2Cy on [0, 1], then (3.28) holds also with
the constant Cy on [0,%;]. By continuity of X and the small initial value, the
Cy-estimate then remains valid for all times.

The interval [0,7_]. We assume that z; > 22°, else we proceed with
step 2. We define t_ < t; to be the time-instance at which the front has
reached the distance 22° from z;, that is, z;y = X (¢_) + 22°. Our first aim is
to compare 0,v(xy,t ) with Av(zy,t ).

The equation for ¢ — y(t) := —0,v(x1,1) is

y(0) = —0,v(x1,0) = Av(z4,0),

O(t) = ~ 5 g(u(wr, 1) o(w1,1)

= — ug(u, v)@IU(:m,t) + avg(uav) 'y(t)
> Oug(u, v) - y(t).

We set pu(t) := 0yg9(u(xy,t),v(xq,t)) and estimate with the variation of con-

stants formula .
y(t) > y(0) exp </ p(7) dT) :
0

In a similar way we calculate the evolution equation for z(¢) = Av(zy,t) as

2(0) = Av(z1,0) = y(0),
Orz(t) = Ag(u, v) = g(u,0)) = Adyg(u, () - v(21, 1)
< O0yg(u,v) - 2(t) + Cu(xy, t)2(t)

for a geometric constant C', and use again the variations of constants formula.
We find for the ratio y(t)/z(t) for t <t_.

0> exp ([ wtr) ar) [ [exo ([ t0te) + oty )|
— exp (- /Otov(xl,f) d7> |

Our aim is to show that y(t)/z(¢) is bounded from below, independent of z;.
We can exploit that the distance to the front is more than 2x°, whence v is
uniformly decaying. We have 0,9(u,v) < —C, < 0 for a geometric constant

C, and find
t t 1
/ v(xy, 1) dr < e“l/ e O dr < e A —,
0 0 Cy
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For large A we find y(t_) > 2(t_)/2.

The interval [t ,t,]. We choose n > 0 small compared to a geometric
constant and denote by ¢, the time instance with z(¢;) = Av(t;) = 7. We
claim that for large A we have zy — X (t,) < z2°/2.

Indeed, for ¢t with X (¢) > z; —x°/2, using the smallness of U, the function
z grows exponentially. z(¢;) = Apv* implies

2(t) < Apv*e= M= for t € [ty 1],

t with X(t) > z; — 2°/2. We have to transform this into an estimate in
terms of spatial distances. We assumed the upper bound for the velocity
X < 2Cy/ A, by which we can compare spatial and temporal distances as
Az < At 2Cy/\. We write for ¢ as above

n=z(ty) < 2(t) < Apure”CA@=XO),

For large A, this yields a small upper bound for zy — X (¢,) > 0.
On (t_,t;) we use the non-degeneracy of g,

aty(t) Z avg(ua U) ' y(t) + Cuv(l‘la t)
01z(t) < Oyg(u,v) - 2(t) + Cv(xy, t)2(t).

Using z(t) < n and imposing smallness of n > 0, we find (y — 2z/2)(t_) > 0
and Oy(y — z/2) > p(t)(y — 2/2). This yields y(t4) > z(¢4)/2 = n/2.

The interval [t,,t;]. By the estimate for x; — X (¢,) and smallness of
U we find in this time span 0,¢9(u,v) > Cy, > 0 for a geometric constant C,.
The function z grows from n to Apv*. Since z grows at most exponentially,
we find |t; — t| = O(log()N)).

In the same time, the function y(¢) grows at least exponentially with
initial value y(¢;) > n/2. We find that y(¢;) > ¢ for a geometric constant
c. This concludes the proof, since

. Ow(xy,t1) _ sup(g)
= — < .
X(h) Opv(m1,t1) = e

O

Ad 4) Lower bounds for X. We perform two calculations which demon-
strate

X(t) ~ —. (3.29)
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The precise statements are in (3.30) and (3.31). In particular, we will verify
assumption (3.22) of lemma 3.5, which can be interpreted as a lower bound
for X.

We set Ax = 2°/2 and consider a pair (t1,x1) with X (¢1) = 21 > Az,
and the time instance T' < t; with zy = X(T) + Az. We assume in this
calculation |U| < C, and smallness of p. We can introduce

Cy = inf{0,g(u,v)|u > u*,v < pv*} <0,
Cy := inf{0,g(u, v)|u < ug(z°/2) + Cy,v < pv*} > 0.

We find for ¢t € (0,7)
O (xy,t) = glu(zy,t),v(x,t) = Oyg(u(xy,t), Ov(zy,t) > Cro(wy,t).
The initial values are v(zq,0) = exp(—Az;) whence
v(xy,T) > exp(—=Azy + C1T).
The same calculation on (7, ;) yields now
pv* = v(xy,t1) > exp(—Ax; + C1T + CoAt)

with At = ¢, — T. This results in

A+ T
Co

At <

for Az = x°/2. (3.30)

In particular, we see that the front travels to infinity, X (¢) — +oc for ¢t — oc.
We have furthermore verified assumption (3.22).

In a similar fashion we can also calculate an upper bound as also indicated
by (3.29). This result improves the upper bound of lemma 3.6, but it gives
only an integrated version of the estimate.

We consider the distance Az = 2z°. Our aim is to calculate how long it
takes the front to travel the distance Ax. We set X (¢t;) = z; and X (T) =
x1 — Ax and want to calculate At =t; — T. Using

Cy :=sup{0,g(u,v)|lu > u* +22° — Cy,v < pv*} <0
we find on (0,7) the inequality dyv(z1,t) < Civ(xq,t), whence

v(z1,T) < exp(=Az; + CiT).
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On the time interval (7,t¢;) we have dw(x1,t) < Cyv(zy,t) with Cy =
sup{d,g(u,v)} > 0. We conclude

pv* = v(xy, t) < exp(—Ax; + C1T + CyAt).
For ) large we find

A+T
Co

At >

for Az = 22°. (3.31)

This shows (3.29) in an integrated sense and shows that the front can prop-
agate only at a logarithmic rate.

Proof of Theorem 3.3. By the continuity of U, V', X, and X, the assumptions
of all lemmas are satisfied on a short time interval (0,7;). Let us consider
the largest time instance T > 0 such that all assumptions are satisfied up
to time 7. Assuming T < oo, by continuity of u and v, one inequality
assumption of the lemmas is indeed an equality at time 7. We will lead this
to a contradiction, thus showing T" = oc.

For small C,, and p, and large A, inequality (3.30) and Lemma 3.6 provide
us with constants ¢y and Cj regarding the velocity of the front. We use © < 1
from (3.9) and ©' = (1 + ©)/2.

Our aim is to combine the U-estimate (3.21),

U, 1) < (0'Cy + C(A)Uo(§)
with the V-estimate (3.24),

IV (€, )] < max { = (us(€)) (1 + B)Culo(€), N1} .

We use the estimates with C,, = (0'C,, + C())) and C, = (1 +253)C,. If we
satisfy

O'C,+C(\)=0'(1+28)Cy +C(N) < Cy, (3.32)
then the U and the V-inequalities hold strictly. We choose $ > 0 such that
©'(1+ 2p) < 1. With this 5 and ¢y, Cy as above we use Lemma 3.5 which
yields Cy, p, co (arbitrarily small) and Ag (large). If necessary, we decrease

C, and (), such that also Lemma 3.4 is applicable. If necessary, we further
increase A\, such that (3.32) is satisfied. O
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