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h 16, 2005Abstra
t: We study systems of rea
tion di�usion type fortwo spe
ies in one spa
e dimension and investigate the dy-nami
s in the 
ase that the se
ond spe
ies does not di�use.We 
onsider 
ompeting spe
ies with two stable equilibria andfront solutions that 
onne
t the two stable states. A free en-ergy fun
tion determines a preferred state. If the di�usivespe
ies is preferred, traveling waves may appear. Instead, ifthe non-di�usive spe
ies is preferred, stationary fronts are theonly monotone traveling waves. We show that these fronts areunstable and that the non-di�usive spe
ies 
an propagate ata logarithmi
 rate.1 Introdu
tionRea
tion di�usion equations are a 
ommon model in the des
ription of non-linear systems su
h as 
hemi
al pro
esses, e
ologi
al systems, or nerve-pulsepropagation. Re
ently, Lu
khaus and Triolo [7℄ studied a dis
rete sto
has-ti
 model for tumor growth and derived a limiting 
ontinuous model for thedensities u and v of malignant and healthy tissue. In one spa
e dimensionthe system 
an be written as�tu = �2xu+ f(u; v);�tv = g(u; v): (1.1)In the dis
rete system the malignant 
ells are mobile whi
h results in a pos-itive di�usivity in the �rst equation, but the healthy 
ells are immobile andthere is no di�usion in the se
ond equation. A feature of the nonlinearities in(1.1) is 
ompetition, whi
h results from the fa
t that in the dis
rete model the1



two spe
ies are 
ompeting for spa
e. In the 
ontinuous model 
ompetition isexpressed by �vf(u; v) � 0; �ug(u; v) � 0: (1.2)Due to 
ompetition, (1.1) de�nes a monotone dynami
al system. The mono-toni
ity has many analyti
al 
onsequen
es su
h as a 
omparison prin
iplefor solutions. In the 
ase of a positive di�usion in the se
ond equation theexisten
e and stability of traveling fronts is well-understood [6, 9℄. We willanalyze traveling waves for (1.1) and see, how the missing di�usivity 
hangesthe qualitative pi
ture.Our setting will be su
h that at position x = �1 only healthy 
ells arepresent, while at x = +1 only tumor 
ells are present. We are thereforeinterested in front solutions that 
onne
t the states S� = (0; 1) (healthytissue) with S+ = (1; 0) (tumor tissue),(u; v)(x)! S� = (0; 1) for x! �1;(u; v)(x)! S+ = (1; 0) for x! +1: (1.3)It is possible to asso
iate to every state (u; v) 2 [0; 1℄2 a free energyH(u; v). We will see that the energy di�eren
e between the states S� andS+ determines the dynami
s of the system. In the 
ase H(S�) > H(S+),the system prefers the tumor (state S+ = (1; 0)) over the healthy state S� =(0; 1). In fa
t, in this 
ase there exist traveling wave solutions with non-vanishing speed, i.e. the tumor 
ells 
an invade at a �nite rate. Furthermore,these waves are unique and stable (
ompare [5℄).In this work we study the opposite inequality,H(S�) < H(S+): (1.4)In this 
ase one may expe
t waves traveling right, 
orresponding to an in-vasion of healthy 
ells. Instead, no traveling waves with �nite speed existand there are only stationary front solutions. The phenomenon has somesimilarity to the blo
king of propagation in an inhomogeneous medium witha highly varying di�usivity, where the existen
e of steady states preventspropagation [4℄. We analyze the stability of the blo
ked waves. It turns outthat the stationary fronts are unstable and that a sublinear penetration mayo

ur. A global analysis shows that, with an arbitrarily small perturbationof the front, an invasion of the v-
omponent at a logarithmi
 rate is possible.For a similar 
ompetitive system we refer to Aronson, Tesei and Wein-berger [1℄ 
on
erning a model for pattern formation. They 
onsidered (1.1)on a bounded domain and with a di�usion 
oeÆ
ient in the �rst equation that2



depends on the se
ond spe
ies. They show the existen
e of many dis
ontinu-ous steady states and verify their stability. In their model, the assumptionson the rea
tion term di�er from ours, in parti
ular, the bistable 
ase is not
onsidered.Assumption 1.1. The nonlinearities f; g 2 C2([0; 1℄2;R) satisfy1. Preserving positivity: f(0; v) = 0 = g(u; 0) for all u; v 2 [0; 1℄.2. Bistability: There are exa
tly two stable equilibria S� = (0; 1) and S+ =(1; 0), and two linearly unstable equilibria (0; 0) and (usaddle; vsaddle).3. Stri
t Competition: �vf(u; v) < 0 and �ug(u; v) < 0 for u; v 2 (0; 1).4. All nontrivial solutions (u; v) of g(u; v) = 0 are given by u = �(v) for amonotoni
ally de
reasing fun
tion �. Setting �(1) = 0 and �(0) = uÆ,� has an inverse 
 2 C1([0; uÆ℄; [0; 1℄), whi
h we extend trivially to afun
tion 
 2 C0([0; 1℄; [0; 1℄).5. Non-degenera
y: For some 
; C > 0, and all u 2 [0; uÆ),
 � ��u
 � C; Dg(u; 
(u)) 6= 0; �u�vg(u; 0) < 0: (1.5)In item 2., linearly stable means that the two eigenvalues of the Ja
o-bian D(u;v)(f; g) have negative real part, linearly unstable that at least oneeigenvalue has positive real part.Our main results are 
olle
ted in the following theorem.Theorem 1.2. Let f; g satisfy Assumption 1.1 and let S� be the preferredstate, i.e. H(S�) < H(S+) with H de�ned in (2.1). Then there existsa unique monotone traveling wave solution (u; v) of (1.1) with asymptoti
s(1.3). This wave is blo
ked, the wave speed is 
 = 0.The stationary solution is unstable. There are initial data, arbitrarily
lose to the stationary front in L2(R), su
h that the 
orresponding time-dependent solutions satisfy, for all x 2 R,(u; v)(x; t)! S� for t!1:Proof. The �rst part of the theorem is a spe
ial 
ase of Theorem 2.1, these
ond part is shown in Theorem 3.3, where, additionally, the rate of 
onver-gen
e is determined. 3
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uFigure 1: Possible zero-sets in the phase diagram2 A Lyapunov fun
tionThe system (1.1) possesses a free energy fun
tion H, as was, to our knowl-edge, �rst noted by S. Lu
khaus. The free energy allows to give a suÆ
ientand ne
essary 
ondition for the existen
e of standing waves. We setH(u; v) = � Z u0 f(�; v) d� � Z 1v Z �(�)0 �vf(�; �) d� d�; (2.1)and re
all g(�(�); �) = 0. We have normalized H su
h that H(S�) =H((0; 1)) = 0. We want to verify that H has indeed the meaning ofan energy. For fun
tions u; v 2 L1(R; [0; 1℄) with �xu 2 L2(R) andH(u; v)�H((1; 0))�+ 2 L1(R) we setE((u; v)) := ZR�12 j�xuj2 +H(u; v)�H((1; 0))�+� dx: (2.2)The term H((1; 0))�+ is inserted to ensure �niteness of the integral for so-lutions sharing the asymptoti
s of the traveling wave. Classi
al solutionssatisfy �tE((u; v)) = ZR(��2xu)�tu+ �uH�tu+ �vH�tv4



= ZR(��2xu� f(u; v))�tu+ ZR � Z u0 �vf(�; v) d� + Z �(v)0 �vf(�; v) d�! �tv= ZR(�j�tuj2 + Z �(v)u �vf(�; v) d� � g(u; v)) :We exploit that �vf is non-positive and thatg(u; v) � 0 for u < �(v); g(u; v) � 0 for u > �(v);to 
on
lude that E is de
reasing.2.1 Monotone traveling wavesOur next aim is to �nd stationary solutions of (1.1). In the stationary 
ase,the se
ond equation redu
es to the algebrai
 relation g(u; v) = 0. For �xedu 2 [0; 1℄, the equation g(u; v) = 0 admits only the solutions v = 0 andv = 
(u) (not ne
essarily di�erent), hen
e all stationary solutions of (1.1)
an be found by solving with  : R ! f0; 1g the s
alar equation�2xu+ f(u; v) = 0;v(x) =  (x)
(u(x)): (2.3)If we furthermore demand that v is monotone and 
onne
ts the states 1 and0, we must 
hose for  the 
hara
teristi
 fun
tion of an interval (�1; x�).After a translation of the solution we may assume x� = 0. By monotoni
ityof 
 it suÆ
es to study monotoni
ally in
reasing fun
tions u that 
onne
t 0with 1 and solve (2.3) with  = ��, the 
hara
teristi
 fun
tion of (�1; 0).Theorem 2.1 (Existen
e and uniqueness). Assume 1.1, 1.-4., andH(S�) � H(S+): (2.4)There exists a monotone fun
tion u 2 L1(R), �xu 2 L2(R), 
onne
ting 0with 1 su
h that, with v(x) = 
(u(x))��(x), the pair (u; v) is a weak sta-tionary solution of (1.1). There exists no monotone traveling wave solutionwith speed 
 6= 0 and, up to translations, only the above standing wave. The
ondition (2.4) is ne
essary for the existen
e of a stationary solution u.5
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Figure 2: A standing wave solutionThe qualitative behavior of the standing wave is depi
ted in Figure 2.Note that the pro�le v is non-smooth; there is a unique point where v or �xvhas a dis
ontinuity.Proof. Step 1. Ne
essity. Let �rstly (u; v) : R ! R2 be a monotone station-ary solution of (1.1). After a shift we may assume that (u; v) solves (2.3)with  = ��. We will 
al
ulate an integral formula for the solution. ForU 2 R we set f0(U) = f(U; 0); f1(U) = f(U; 
(U)); (2.5)and introdu
eF0(U) = � Z 1U f0(�) d�; F1(U) = Z U0 f1(�) d�: (2.6)By standard ellipti
 theory, the solution is smooth away from x = 0, whi
hallows the multipli
ation of �2xu+ f(u; v) = 0 with �xu and to 
on
lude�x �12 j�xu(x)j2 + F0(u(x))� = 0 for x > 0; (2.7)�x �12 j�xu(x)j2 + F1(u(x))� = 0 for x < 0: (2.8)We have de�ned F0 and F1 su
h that F0(1) = 0 and F1(0) = 0. Thus, thesquared bra
kets of (2.7) and (2.7) both vanish on R, and, in parti
ular,6



they 
oin
ide in x = 0. Thus, a ne
essary 
ondition for the existen
e of thesolution u is the existen
e of u� = u(0) 2 R su
h thatA(u�) := Z u�0 f1 + Z 1u� f0 = F1(u�)� F0(u�) = 0: (2.9)It remains to study the fun
tion A. There holds A(0) > 0 by de�nition, A ismonotoni
ally de
reasing on U 2 (0; uÆ) by f1 � f0, and A(U) = A(uÆ) forall U � uÆ. Therefore the solvability of (2.3) implies A(uÆ) � 0.In order to relate this 
ondition to the energy, we 
al
ulate H(S+) =H((1; 0)) asH(S+) = � Z 10 f(u; 0) du� Z 10 Z �(v)0 �vf(u; v) du dv= � Z 10 f(u; 0) du� Z uÆ0 f(u; 
(u)) du+ Z uÆ0 f(u; 0) du= � Z 1uÆ f0(u) du� Z uÆ0 f1(u) du = �A(uÆ):Be
ause of H(S�) = 0, the ne
essary 
ondition A(uÆ) � 0 is equivalent to(2.4).Step 2. Existen
e and uniqueness of standing waves. We 
an de�ne F0,F1, and A as in Step 1. Again, A(0) is positive by de�nition. Assumption(2.4) yields that A(uÆ) is non-positive. We therefore �nd a point u� 2 (0; uÆ℄with A(u�) = 0. Be
ause of�uA(u) = f(u; 
(u))� f(u; 0) < 0for u 2 (0; uÆ), this zero u� is unique. We will 
onstru
t a solution withu(0) = u�. Equation (2.7) suggests to setp := �2 Z 1u� f(s; 0) ds�1=2 > 0;and to de�ne u as the solution of (2.3) on both R+ and R� for the initialvalues u(0) = u� and �xu(0) = p.Let us �rst 
onsider the set x > 0. The same 
al
ulation as before yieldsthat u solves �xu(x) =p2F0(u(x));where F0 is positive on [u�; 1) and F0(1) = 0. Furthermore f(1; 0) = 0 impliesthat p2F0(U) is a Lips
hitz fun
tion in U 2 [u�; 1℄. We 
on
lude that thesolution u(x) is monotone and satis�es u(x)! 1 for x! +1.7



The solution u(x) on the set x < 0 is analyzed in the same way. We
onsider u as the solution of�xu(x) =p2F1(u(x)):We 
laim that F1(U) = 0 has no solution on (0; u�℄. On
e this is shown, theproof is �nished as for x > 0.Sin
e F1(u�) > 0 and F1(0) = 0, it suÆ
es to assume that F1 has a non-positive minimum ~u on (0; u�), and to �nd a 
ontradi
tion. In the minimumwe have F1(~u) � 0; 0 = F 01(~u) = �f(~u; 
(~u));when
e ~u is the unique value for u su
h that in S = (~u; 
(~u)) there holdsf(S) = 0. In this point we have (�u + 
0�v)f(S) > 0 by Assumption 1.1, 2.This yields a 
ontradi
tion, sin
e in a minimum of F1 ne
essarily0 � F 001 (~u) = �(�u + 
0�v)f(S):The uniqueness of the solution u follows from the uniqueness of the valuesu(0) = u� 2 [0; uÆ℄ and �xu(0) = p, and from the Lips
hitz properties of thefun
tions p2Fi. It remains to note that, in the 
ase H(S+) = H(S�), the
hoi
e of any other u� 2 [uÆ; 1℄ yields only a shifted version of the abovesolution, sin
e F0 and F1 
oin
ide on [uÆ; u�℄.Step 3. Other traveling wave solutions. A traveling wave solution isa pair u; v : R ! R together with a wave-speed 
 2 R, su
h that (x; t) 7!(u; v)(x+
t) is a weak solution of the time-dependent problem. For the proofof Theorem 2.1 it remains to ex
lude the existen
e of monotone travelingwave solutions with 
 6= 0. To this end, let (u; v) : R 3 � 7! (u(�); v(�)) bemonotone with the asymptoti
s (1.3), and 
 2 R su
h that
��u = �2�u+ f(u; v);
��v = g(u; v): (2.10)We note that, in the 
ase 
 6= 0, an iteration argument yields that every weaksolution of system (2.10) is ne
essarily C1.a) Ex
lusion of positive 
. To derive a sign 
ondition on 
 6= 0 we 
al
ulate
�� ��12 j��uj2 +H(u; v)� = 
((��2�u+ �uH)��u+ �vH��v)= 
(��2�u� f(u; v))��u+ Z �(v)u �vf(s; v) ds � g(u; v)= �
2j��uj2 � Z u�(v) �vf(s; v) ds � Z u�(v) �ug(s; v) ds:8



This expression is non-positive on R, sin
e, for u(�) > �(v(�)), both integralsof the last line are positive, in the opposite 
ase both integrals are negative.Sin
e the traveling wave 
onne
ts the equilibrium S� = (0; 1) with S+ =(1; 0), an integration over R yields
 � [H(S+)�H(S�)℄ � 0: (2.11)In the 
ase of interest, H(S�) � H(S+), we 
on
lude 
 � 0. This is theinformation that we 
an expe
t from the energy di�eren
e: Sin
e the stateS� is preferred, waves 
an, if they have a non-trivial speed, only travel tothe right.b) Ex
lusion of negative 
. Assume now 
 < 0. We will �nd a 
ontra-di
tion by exploiting the missing di�usivity in the v-equation of (2.10). Themonotoni
ity of v implies g(u(�); v(�)) = 
��v(�) � 0 for all � 2 R, and hen
ev � 
(u) on R. Then u(�) ! 1 for � ! +1 implies u � uÆ on [�0;1) forsome �0 2 R and thus v � 0 on [�0;1). But as a solution of the v-equationof (2.10) with initial values v(�0) = 0, v must vanish identi
ally and 
an notsatisfy the asymptoti
 behavior at � = �1. A 
ontradi
tion.2.2 Non-monotone waves: La
k of asymptoti
 stabilityDue to the absen
e of di�usion in the v-equation we 
an 
hara
terize station-ary solutions of (1.1) by the s
alar equation (2.3). So far, we have restri
tedour analysis to monotone solutions and thus to  = ��. We here want toshow that, leaving the 
lass of monotone solutions, there are many station-ary solutions of (1.1). Theorem 2.1 provided a solution u 
orresponding to = ��, that is, v(x) = ��(x)
(u(x)). With the help of the impli
it fun
-tion theorem, we will show that there are many other solutions nearby. Thisproves that the monotone front is not asymptoti
ally stable in any Lp-normfor p <1.Proposition 2.2 (Many non-monotone stationary solutions). AssumeH(S�) < H(S+). There exists �Æ > 0 su
h that for all 0 < Æ1 < Æ2 < �Æthere is a stationary solution of (1.1) with v(x) = �(x)
(u), where � is the
hara
teristi
 fun
tion of the set (�1; 0) [ (Æ1; Æ2), that is, a fun
tion usolving �2�u+ f(u; �
(u)) = 0: (2.12)Proof. With P = (0; 0; u�; u�; u�) we 
onstru
t a fun
tionG : R5 � B�(P )! R3 ; G(Æ1; Æ2; �u0; �u1; �u2) 2 R3 ;9



with G(P ) = 0 and su
h that zeros of G 
orrespond to solutions of (2.12).We then use the impli
it fun
tion theorem to �nd points (�u0; �u1; �u2) solvingG(Æ1; Æ2; �u0; �u1; �u2) = 0 for small Æ1; Æ2.We 
onsider the two (i = 0; 1) autonomous equations�2�u+ fi(u) = 0; forf0(u) := f(u; 0); f1(u) := f(u; 
(u)):The two equations de�ne two 
ow maps,�ix : R2 3 (u(0); ��u(0)) 7! ((�ix)1; (�ix)2) := (u(x); ��u(x)) 2 R2 :Given (Æ; �u) = (Æ1; Æ2; �u0; �u1; �u2) we setp := ��2 Z �u00 f1(s) ds�1=2 ;whi
h we expe
t to be the derivative of u in x = 0. We furthermore setG1(Æ; �u) := (�0Æ1)1(�u0; p)� �u1;G2(Æ; �u) := (�1Æ2�Æ1)1 Æ �0Æ1(�u0; p)� �u2;G3(Æ; �u) := 12 �(�1Æ2�Æ1)2 Æ�0Æ1(�u0; p)�2 � Z 1(�1Æ2�Æ1 )1Æ�0Æ1 (�u0;p) f0(s) ds:By de�nition, G(P ) = 0. If we �nd a point (Æ; �u) with G(Æ; �u) = 0, we 
an
onstru
t a solution to (2.12) by gluing together the above 
ows. It remainsto 
al
ulate the derivatives of G in the point P .��uG1(P ) � h �w0; �w1; �w2i = �w0 � �w1;��uG2(P ) � h �w0; �w1; �w2i = �w0 � �w2;��uG3(P ) � h �w0; �w1; �w2i = p � ��u0p � �w0 + f0(u�) � �w0= ��u0 12 jpj2 + f0(u�) � �w0= (�f1(u�) + f0(u�)) � �w0:The stri
t inequality H(S�) < H(S+) implies u� < uÆ and thus f1(u�) <f0(u�). It follows that the 3 � 3-matrix ��uG(P ) is invertible. The impli
itfun
tion theorem 
an be applied and provides the solutions.Note that, with the same proof, one 
an 
onstru
t solutions with any�nite (odd) number of interfa
es. 10



3 Orbital stability of a 
reeping frontIn this se
tion we study again the stri
t inequality H(S�) < H(S+). Wehave seen that there exists a monotone stationary solution (us; vs) of (1.1) ofthe spe
ial form vs(x) = 
(us(x))��(x), i.e. us solves�2xus + f(us; 
(us)��) = 0: (3.1)and us(x) ! 0 for x ! �1, us(x) ! 1 for x ! +1. By 
onstru
tingother stationary solutions that are nearby we have seen in Subse
tion 2.2that (us; vs) is not asymptoti
ally stable for equation (1.1). We will seethat the solution is indeed unstable. This is shown by 
onstru
ting smallperturbations of (us; vs) su
h that the 
orresponding solutions (u; v)(t) ofthe initial value problem move arbitrarily far from (us; vs).More pre
isely, we will 
onstru
t (u; v) whi
h keep the shape of (us; vs)for all times, but the fun
tions are shifted by a penetration depth X(t) 2 R,i.e. the deviations u(X(t)+ :; t)�us(:) and v(X(t)+ :; t)�vs(:) remain small.By showing that the position X(t) satis�es X(t)!1 for t!1, we proveTheorem 1.2.3.1 The linearized operatorIn this subse
tion we derive some properties of the linearized system. Theywill be the key for our 
onstru
tion of orbitally stable solutions. We linearize(2.12) in us. The 
orresponding linear operator isL : H1(R) 3 w 7! Lw 2 H�1(R); Lw(x) = ��2xw(x)� �(x)w(x) (3.2)with �(x) = � (�u + 
0�v)f(us(x); vs(x)) for x < 0;�uf(us(x); 0) for x > 0:Note that �(x)! �� < 0 for x! �1 and �(x)! �+ < 0 for x! +1.The 
omparison prin
iples. In order to have 
omparison prin
iples, oneneeds the existen
e of a non-negative fun
tion w with Lw � 0. Su
h afun
tion is given to us by 
onstru
tion, we 
an 
hoose w = �xus. We havethe following two 
omparison prin
iples.1. Ellipti
 equation. Assume that there exists w 2 H1(R), w > 0, withLw � 0. Then every fun
tion z 2 H1(R) solvingLz � 0;11



lim supx!�1 z(x)w(x) � 0;satis�es z � 0.2. Paraboli
 equation. Every fun
tion z : [0;1) ! H1(R) solving �tz +Lz � 0 and z(0) � 0 satis�es z(t) � 0 for all t � 0.We refer to [8℄ for proofs. We will a
tually not use the ellipti
 
omparisonprin
iple in the above form, but a variant whi
h is developed in the next twoparagraphs.Positivity of the bilinear form. We study the bilinear form 
orrespond-ing to L, �(u) := ZR j�xu(x)j2 � �(x)ju(x)j2 dx: (3.3)Lemma 3.1. Assume that there exists a non-negative fun
tion w 2 H1(R)with Lw � 0, Lw 6= 0. Then the bilinear form � is positive,�(u) > 0 8u 2 H1(R); u 6= 0; (3.4)and 
oer
ive, i.e. for a 
onstant 
 > 0 we have�(u) � 
kuk2H1 8u 2 H1(R): (3.5)Proof. The de�nition of � implies that for some 
onstants 
; C > 0�(u) � �Ckuk2L2 + 
kuk2H1 8u 2 H1(R): (3.6)Step 1. In order to show (3.4), let us assume that for some �u 6= 0 wehave �(�u) � 0. We minimize � on the 1-sphere of L2 and �nd a sequen
eof fun
tions un with kunkL2 = 1. Without loss of generality we 
an assume�(un) � 0. Repla
ing un by either its positive part (un)+ or by (�un)+, we
an additionally assume that all un are non-negative.Estimate (3.6) yields 
kunk2H1 � Ckunk2L2 + �(un) � C. We 
hoose asubsequen
e un * u in H1 and un ! u in L2lo
. We 
an assume in thefollowing that �(un) � �Æ < 0, sin
e in the 
ase � � 0 we only need tonormalize a solution u of �(u) = 0 and 
an pro
eed with Step 2.There holds �(u) � lim inf �(un) by the weak lower semi
ontinuity ofnorms and the strong lo
al 
onvergen
e. We 
laim that kukL2 = 1. Indeed,kukL2 � 1 is 
lear by the weak 
onvergen
e un * u in L2. Furthermorekuk > 0 is 
lear by �(u) � �Æ. If 
0 := kukL2 < 1 we 
onsider ~u = u=
0 with12



�(~u) = �(u)=
20 < lim inf �(un), again impossible, sin
e un was a minimizingsequen
e.Step 2. We found a minimizer u of � on the 1-sphere of L2. As su
h, uis an H1-eigenfun
tion of L with non-positive eigenvalue,Lu = �0u; u � 0; �0 � 0:The sign of �0 follows easily by testing the eigenvalue equation with u.We next multiply the eigenvalue equation with w and �nd, using the non-negativity of u and w,0 � �0 hu; wi = hLu;wi = hu; Lwi � 0;whi
h yields �0 = 0. As a solution of Lu = 0 the fun
tion u is C1. It 
annot vanish anywhere, sin
e otherwise also the derivative vanishes by non-negativity, and as a solution of a linear ordinary di�erential equation u hadto vanish identi
ally. We 
an repeat the above 
al
ulation and �nd0 = �0 hu; wi = hu; Lwi > 0;by Lw 6= 0. We found a 
ontradi
tion.Step 3. We now show (3.5). Let us assume the 
ontrary, the existen
eof a sequen
e un with kunkH1 = 1 and with �(un) ! 0. For a subsequen
ewe �nd a limit u su
h that un * u in H1 and un ! u in L2lo
. Estimate(3.6) yields 
 = 
kunk2H1 � Ckunk2L2 +�(un) and therefore a lower bound forkunk2L2 .We 
laim that u is not trivial. For arbitrary " > 0 the 
onvergen
e�(un)! 0 yields for large n"+ ZR(�(:))+junj2 � ZR j�xunj2 + ZR(��(:))+junj2:The fun
tion (�(:))+ is supported on a 
ompa
t subset I � R and we haveL2 
onvergen
e un ! u on I. We �nd n0 su
h that2"+ ZR(�(:))+juj2 � ZR j�xunj2 + ZR(��(:))+junj2 8n � n0:Let us assume u = 0. Then, for appropriate 
hoi
e of Æ > 0 and M > 0,2" � Æ ZRn(�M;M) junj2 = Ækunk2L2 � Æ Z M�M junj2: 8n � n0:The se
ond term on the right tends to zero by u = 0. For " > 0 small we�nd a 
ontradi
tion to the lower bound for kunkL2.The lower semi
ontinuity of � for the above 
onvergen
e yields for thelimit u that �(u) � 0, a 
ontradi
tion to (3.4).13



Positivity of solutions. We have seen that L de�nes a symmetri
 non-negative fun
tional. We next study positivity of solutions, not only for L,but also for positive perturbations of L. We assume that we are given abounded fun
tion  2 C(R; [0;1)) and de�ne the operator L = L+  .The bilinear form 
orresponding to L is again positive, 
oer
ive, andsymmetri
. This implies that L : H1(R) ! H�1(R) is invertible. We nowstudy positivity of solutions. We 
laim that for ' 2 H�1(R)L z = ' � 0 ) z � 0: (3.7)The fun
tion z is the minimizer of the 
oer
ive fun
tional�'(z) := 12 hz; L zi � h'; zi :Let us assume z were negative somewhere. We then write z = z+ + z� withz+(x) := max(0; z(x)) and z� 6= 0 and 
al
ulate�'(z) = 12 hz+; L z+i � h'; z+i+ 12 hz�; L z�i � h'; z�i > �'(z+);using that L is a positive form. We �nd that the 
omparison fun
tion z+yields a lower value of the fun
tional, a 
ontradi
tion.We 
laim that the solution z of (3.7) with 0 6= ' � 0 is everywherepositive, z(x) > 0 for all x 2 R. For a short proof we assume that ' � �' ="Æx0, whi
h will a
tually be the 
ase in our appli
ation. Sin
e L�1 preservesnon-negativity, the solution �z of L �z = �' satis�es 0 � �z � z. Assume thatz(x) = 0 for some x 2 R. Then also �z(x) = 0. In the 
ase x 6= x0 we �nd�x�z(x) = 0 and as a solution of an ordinary di�erential equation, �z(x0) = 0.The jump 
ondition [�x�z℄(x0) = �" yields a 
ontradi
tion to non-negativity.In the 
ase x = x0, the jump 
ondition yields immediately the 
ontradi
tion.We �nally study the asymptoti
 behavior of non-negative solutions u ofLu � ' for '(x) = e��x�fx>M0g:We 
laim that for some Æ = Æ(M0) > 0 the inequality u(x) � Æ'(x) holdsfor all x > M0. We study for �� = inf(�) the operator �L := ��2x � ��. TheGreen's fun
tion of �L is given by G(x; y) = e��jx�yj=2� with � = p���. We
ompare u with the positive solution �u of �L�u = ', given by�u(x) = ZRG(x; �)'(�) d�:14



There holds L(u� �u) = Lu� �L�u+ (�L� L)�u � (���+ �)�u � 0:Therefore u � �u, sin
e L�1 is positivity preserving. The asymptoti
 behaviorof �u follows from the expli
it form of the Green's fun
tion.The 
omparison fun
tion. Let again a bounded fun
tion  2C(R; [0;1)) be given. We write �� and �+ for the 
hara
teristi
 fun
tion ofR� and R+ , respe
tively. We re
all that we set w = �xus.Lemma 3.2. For appropriate " > 0 and � > 0, depending on  , the fun
tionU0(x) := w(x) + "e��jxjand the H1-solution �U of L �U =  U0�� (3.8)satisfy � := sup� �U(x)U0(x) ���� x 2 R� < 1: (3.9)Proof. We �rst note that U0 is positive, that �U exists by the invertibility ofL , and that �U 6= 0 is non-negative, sin
e U0 is.We 
al
ulateLw = (��2x � �)�xus = [f(u�; 0)� f(u�; v�)℄Æ0 =: f0Æ0;where Æ0 is the Dira
 distribution in x = 0 and f0 2 R, f0 > 0. FurthermoreLe��j:j(x) = (��2 � �(x))e��jxj + 2�Æ0:We introdu
e z" = U0 � �U and our aim is to showinfx2R� z"(x)U0(x)� > 0: (3.10)In terms of z" equation (3.8) yieldsL z" = LU0 +  U0 �  U0�� ;and thereforeL z" = (f0 + 2�")Æ0 + "(��2 � �(x))e��jxj +  U0�+: (3.11)15



We �nd that in the 
ase " = 0 the right hand side is non-negative. In thelast paragraph on positivity of solutions we have seen that z0 > 0 for " = 0.Let us 
onsider now a small " > 0. This means that we enlarge z0 by thesolution ẑ = z" � z0 of L ẑ = "f̂ ;with f̂ = 2� Æ0 + (��2 � �(x))e��jxj. For �2 small 
ompared to the limitvalues of ��, we have seen that the solution ẑ behaves like +Æe��jxj outsidea 
ompa
t interval. Therefore, outside this interval, ẑ is positive. Inside theinterval ẑ might be negative, but sin
e z0 > 0 in the interval, we 
an 
hoose" > 0 small to have z" positive.In parti
ular, z" satis�es for some Æ > 0 and M > 0 the asymptoti
estimate z"(x) � "Æe��jxj for all jxj > M . We 
an therefore 
ompare z" toU0. Result (3.10) and the lemma follow.For later 
onvenien
e we note that we also have an upper bound forsolutions u. With some 
onstant C = C( ; U0) there holdsL u = U0 ) u � CU0: (3.12)Outside a large interval this estimate follows from the fa
t that both U0 and uhave the de
ay of e��jxj. Inside the interval the estimate follows immediatelyfrom the positivity of U0 and the boundedness of u.3.2 Orbital stability of a 
reeping frontThe aim in this se
tion is to study solutions (u; v) of the time dependentproblem with initial values that are 
lose to the stationary pro�les (us; vs).We re
all some steps of the 
onstru
tion of the stationary solution. Re
allthat nontrivial solutions (u; v) 2 [0; 1℄2 of g(u; v) = 0 are parametrized by v =
(u) = ��1(u). The solution us was found by setting vs(x) = 
(us(x))��(x)and solving (2.12). us is monotoni
ally in
reasing with us(0) = u�, and vs(x)is monotoni
ally de
reasing with vs(0�) = 
(u�) =: v� and vs � 0 on R+ .We will see that, for appropriate initial values, the instationary solution(u; v) remains in shape near to (us; vs), but shifts its position. In orderto asso
iate a position to (u; v) we 
hoose a small number � 2 (0; 1) (thesmallness will be spe
i�ed later), and de�ne X(t) 2 R to be the position withv(X(t); t) = �v�. We will see that the position X(t) is uniquely determined.In order to verify that (u; v)(X(t) + :; t) is 
lose to (us; vs)(:), we studythe di�eren
es,U(�; t) = u(X(t) + �; t)� us(�); V (�; t) = v(X(t) + �; t)� vs(�): (3.13)16
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Figure 3: A solution (u; v)(:; t) and the stationary solution (us; vs)Our results on shape-stability and on instability of the stationary solutionare summarized in the following theorem.Theorem 3.3 (Creeping front). We assume 1.1 and H(S�) < H(S+) andstudy the unique stationary front solution (us; vs). There exist initial values(u0; v0), arbitrarily 
lose in the L2-norm to (us; vs), su
h that for the 
orre-sponding solution (u; v) of the initial value problem the fun
tions (U; V )(t)remain small in L1�L2 for all t. The front travels to in�nity, X(t)! +1for t!1, with a logarithmi
 rate.The theorem is proved on the basis of the time-dependent system for U ,V , and X,�tU = �2�U + _X � ��u+ f(u; v)� f(us; vs) on R; (3.14)�tV = _X � ��v + g(u; v) on R n f0g; (3.15)V (0�) = (�� 1)v�; (3.16)V (0+) = �v�: (3.17)In the equations appear u and v; in this 
ontext u(�) and v(�) are shortnotations for the expressions us(�) + U(�; t) and vs(�) + V (�; t).We 
an interpret this system in the spirit of free boundary problems:There appear two 
onditions for V (t; 0). This overdetermination of V deter-mines the position X(t).We make the following 
hoi
e of initial values.U(�; 0) = 0 8� 2 R; (3.18)V (�; 0) = �v�e��� 8� 2 (0;1); (3.19)V (�; 0) = �(1� �)v�e�� 8� 2 (�1; 0): (3.20)17



We will 
hoose � > 0 small, and, more importantly, � > 0 large. More generalinitial values 
an be treated. Essential are the properties v(:; 0) smooth andmonotoni
ally de
reasing, smallness of V (:; 0) in L2 and of U(:; 0) in L1,monotoni
ity of u(:; 0).The proof of Theorem 3.3 is based on the fa
t that a weighted L1(R) �L2(R)-smallness 
ondition for (U; V ) remains satis�ed for all times. Inparti
ular, this implies that the front has always a positive speed (
om-pare Lemma 3.6 for estimates). Indeed, in the point � = 0 we have(u; v)(�; t) = (us(0) +U(0; t); vs(0+) + V (0+; t)) = (u� +U(0; t); �v�). Small-ness of jU(0; t)j implies that (u; v)(� = 0; t) is 
lose to (u�; �v�), hen
eg((u; v)(� = 0; t)) is always positive. We evaluate (3.15) in � = 0+, where theleft hand side vanishes. By monotoni
ity of the system, the solution (u; v)remains monotone in x. In parti
ular, we have ��v(0; t) � 0 for all times.This shows _X(t) > 0.
�v�

(�� 1)v�
V U

Figure 4: The solutions (U; V )(:; t).The proof of the theorem is based on the subsequent lemmas 3.4 to 3.6.The lemmas make the following heuristi
al observations pre
ise.1) For L2-small V and small _X, (3.14) provides a small uniform boundfor U .2) For � large, _X bounded from below, and jU j small, (3.15) implies thatV (:; t) is small in L2 for all times.3) The bounds for U imply a smallness of _X(t) 2 R.4) As a tool in the above results: The speed _X is bounded from below.18



The key for the proof of the theorem is the following: the smallness of Ufound in 1) improves the smallness assumption on U in 2). Vi
e versa,the smallness of V found in 2) improves the smallness assumption on Vin 1). These improvements are based on the fa
t that the fa
tor � from(3.9) satis�es � < 1. We 
an then 
on
lude as follows: As long as U and Vsatisfy their smallness 
onditions, they satisfy even sharper 
onditions. By
ontinuity, the estimates remain valid for all times.Some of the 
onstants below depend only on the fun
tions f and g andon the position of the jump, u�. We will 
all su
h 
onstants geometri
 in thefollowing.Ad 1) Results on the stabilty of U = 0 exploit the properties of theoperator L = ��2� � �(:) and its perturbations. We 
onsider the positiveperturbation of L given by  (�) = 
0(us)�vf(us; vs) ��. We use U0 fromLemma 3.2 and � < 1 from property (3.9). We set �0 = (1 + �)=2 < 1 tohave some spa
e in the 
al
ulations.Lemma 3.4. Given C0 > 0 and 
2 > 0, there exist 
onstants Cu;0; Cv;0 > 0(small), and �0 > 0 (large) su
h that the following holds. Every solution(U; V;X) of (3.14)-(3.20) that satis�es for some T > 0, � > �0 and Cv < Cv;0the estimates_X(t) � C0=�; jU(�; t)j � Cu;0U0(�) 8 � 2 R; t 2 [0; T ℄;jV (�; t)j � e�
2�� 8 � > 0; t 2 [0; T ℄;jV (�; t)j � max�e
2��; (�
0(us(�)))CvU0(�)	 8 � < 0; t 2 [0; T ℄;satis�es for all times t 2 [0; T ℄ and all � 2 R additionallyjU(�; t)j � (�0Cv + C(�))U0(�) (3.21)with some 
onstant C(�) = C(�;C0; Cv;0; Cu;0; �0; 
2). This 
oeÆ
ient satis-�es C(�)! 0 for �!1.Proof. We write (3.14) in the form�tU = �2�U + _X��U + f0(�; t) + f1(�; t):Here on � > 0 we setf0(�; t) = f(u; v)� f(u; 0) = �vf(u(�; t); �(�; t)) � V (�; t);f1(�; t) = f(u; 0)� f(us; 0) = �uf(�(�; t); 0) � U(�; t) =: ~�(�; t) � U(�; t);19



for values � = �(�; t) 2 [0; V ℄ and � = �(�; t) with j�(�; t)�us(�)j � jU(�; t)j.On the half line � < 0 we write similarlyf0(�; t) = f(u; v)� f(u; 
(u))= �vf(u; �)(v � vs + 
(us)� 
(u))= �vf(u(�; t); �(�; t)) � [V (�; t)� 
0(�1(�; t))U(�; t)℄;f1(�; t) = f(u; 
(u))� f(us; vs)= (�uf + 
0(�2(�; t))�vf)(�2(�; t); 
(�2(�; t))) � U(�; t)=: ~�(�; t) � U(�; t):Again, �1 and �2 satisfy j�i(�; t) � us(�)j � jU(�; t)j. We have now writtenthe equation for U in the form�tU + LU = f0(�; t) + (~�� �)U + _X��U;with j� � ~�j � CCu;0U0. We next have to analyze f0. We set  0(�) =�vf(us(�); vs(�)) and re
all  (�) = 
0(us(�)) 0(�) ��(�). We 
an writef0(�; t) =  0(�)V (�; t)�  (�)U(�; t) +RU (�; t) � U(�; t) +RV (�; t) � V (�; t);with jRU(:; t)j+ jRV (:; t)j � C(jV j+ jU j) small in L2 for Cu;0 and Cv small,and � large. Our equation be
omes�tU + LU +  (�)U =  0(�)V (�; t)+RU(�; t) � U(�; t) +RV (�; t) � V (�; t) + (~�� �)U + _X��U:To make the arguments 
lear, we �rst 
onsider the equation without theerror terms. With the help of the paraboli
 
omparison prin
iple we 
an 
om-pare U with the stationary solutions u of L u = supt( 0V ). The assertionjV j � �
0CvU0�� implies that jU j remains below the 
omparison solution�U1 of L �U1 +  (:) �U1 = j 0
0CvU0��j =  CvU0:By de�nition of � we have the pointwise bound �U1 � �CvU0.We now 
onsider the error terms. They allow only for the estimate U ��U = �U1 + �U2 for every fun
tion �U2 satisfyingL �U2 � C(jU j+ jV j)2:We use L�1 U0 � CU0 from (3.12) and see that we 
an 
hoose �U2 with theestimatej �U2j � C ~L�1 �Cu;0U0j �U1 + �U2j+ CvU0Cu;0 + e�
2�j:j + Cv;0CvU0�� CCu;0CvU0 + CCu;0k �U2k1U0+ C(Cu;0 + Cv;0)CvU0 +O(��1=2)e�
2�j:j:20



For small Cu;0 we 
an absorb the se
ond term in the left hand side. Thisshows the 
laim.Ad 2) In order to motivate and to des
ribe the V -estimate, let us assumefor the moment _X > 0 were 
onstant in time and u � u� were 
onstant intime and spa
e. We study the ordinary di�erential equation for v(x; :) of(1.1). The equation has the two stationary points v = 0 and v� = 
(u�). Ifwe assume v(x; 0) 2 (0; v�) for all x > 0, then v(x; :) is (possibly) a long timein the vi
inity of 0, then a �nite time in an interval ("; v� � "), then for allfurther times 
lose to v�. Translating this into the moving 
o-ordinate systemwith origin in X(t) and using v(X(t); t) = �v�, we �nd values v 2 ("; v�� ")only in a �nite neighborhood I = (�Æ; Æ) of � = 0, whereas to the left (theright) of I the solution v is 
lose to v� (to 0). For small _X > 0, the numberÆ be
omes arbitrarily small.The subsequent lemma veri�es this pi
ture in the perturbed situation ofu not being 
onstant (but, instead, with jU j small), and with _X not 
onstant(but, instead, with a lower and a small upper bound). By showing (3.23) and(3.24) for small �, we �nd an exponential estimate in the vi
inity of � = 0,while far from � = 0 the estimate for V is as good as U permits.Lemma 3.5. Let 
0; C0; � > 0 be given. There is a geometri
 
onstant �x =xÆ=2 > 0 and 
onstants Cu = Cu(
0; �); � = �(
0); 
2 = 
2(
0; C0; �) > 0that 
an be 
hosen arbitrarily small, and �0 = �0(
0; C0; �) > 0 su
h that thefollowing holds.Given � � �0 and U(:; :), X(:) satisfying for all t 2 [0; T ℄jU(�; t)j � CuU0(�);0 < _X(t) � C0� ;and for t+�t � TX(t+�t) = X(t) + �x implies �t � �+ t
0 ; (3.22)then the solution V of (3.15) satis�es for all t 2 [0; T ℄ on f� > 0g0 � V (�; t) � �v�e�
2��; (3.23)and on f� < 0gjV (�; t)j � max��
0(us(�))(1 + �)CuU0(�); (1� �)v�e
2��	 : (3.24)21



Proof. We denote by xÆ > 0 the position with us(xÆ) = uÆ. At (approx-imately) the position � = xÆ the solution v = 0 looses its stability inthe v-equation, sin
e u has (approximately) the 
riti
al value uÆ. We set�x = xÆ=2.We study an arbitrary point x1 2 [0;1). In the 
ase X(T ) � x1 we
hoose t1 su
h that x1 := X(t1), in the opposite 
ase we set t1 = T . Wederive results for v(x1; t) for all t � t1. They are then interpreted as resultsfor v(x1; t) = v(X(t) + x1 �X(t); t) = vs(x1 �X(t)) + V (x1 �X(t); t)= V (x1 �X(t); t):Step 1. Choi
e of t� and t+. In order to analyze v(x1; t) we mustunderstand what happens in the time t0 when v = 0 looses stability in x1,that is, us(x1 �X(t0)) = uÆ, or x1 = X(t0) + xÆ. Our �rst aim is to 
hoosex+ > xÆ, x� < xÆ, and Cu;1 small withCg := 12 inf f��vg(u; 0) ju � us(x+)� Cu;1g > 0;C 0g := 2 sup f�vg(u; 0) ju � us(x�)� Cu;1g > 0;us(x�) + Cu;1 < uÆ < us(x+)� Cu;1;su
h that jx+ � x�j < xÆ=2 and withC 0g � 
0=2minfCg; x1g:This is possible by setting x+ = 5xÆ=4, and 
hoosing Cu;1 small 
omparedto xÆ and jx� � xÆj = O(Cu;1), sin
e then C 0g = O(Cu;1). The 
onstant Cu;1depends on 
0. We impose on Cu that 2CukU0k1 � Cu;1.We want to study time instan
es t� and t+ su
h that v = 0 is stablebefore t� and v = 0 is unstable after t+. If possible, we 
hoose them tosatisfy X(t�) = x1 � x+; X(t+) = x1 � x�:Note that t� 
an not always be de�ned as above. In the 
ase x1 < x+ = 5xÆ=4we set t� = 0 and in the 
ase X(T ) < x1 � x+ we set t� = T . In the sameway we set t+ = 0 for x1 < x� and t+ = T for X(T ) < x1 � x�.Step 2. The time span (0; t�). We exploit that for small initial valuesthe fun
tion v(x1; :) is exponentially de
reasing in this time span.We have initially v(x1; 0) = �v�e��x1 and �tv(x1; t) = g(u; v) ��Cgv(x1; t) for all t � t� (assuming � � �0 for a large geometri
 
onstant�0 in order to have small values of v). Thereforev(x1; t) � �v�e��x1�Cgt 8t � t�;22



and we trivially �nd at the position � = x1 �X(t) for t � t�V (�; t) = v(x1; t) � �v�e��x1�Cgt � �v�e���:Step 3. The time span (t�; t+). In the time span (t�; t+) the fun
tionv(x1; :) may be exponentially in
reasing. To derive bounds, we exploit as-sumption (3.22), whi
h yields a bound on the duration �t = t+ � t�. Usingx+ � x� < �x, we �nd �t � (�+ t�)=
0.We start from v(x1; t�) � �v�e��x1�Cgt� . For large �0, there is a slowgrowth rate, and we �ndv(x1; t) � �v�e��x1�Cgt�eC0g�t� �v� exp ��� �x1 � C 0g=
0�� t� �Cg � C 0g=
0��� �v� exp(��x1=2):We 
on
lude the bound for V by writing again � = x1 �X(t),V (�; t) = v(x1; t) � �v�e��x1=2 � �v�e���=2 8t 2 (t�; t+):Step 4. The time span (t+; t1). The argument for the v-estimate isnow of a di�erent nature. We exploit that v grows exponentially and the fa
tthat v(x1; t1) � �v�, with equality if X(t1) = x1.Sin
e U is small, u(x1; t) � us(x�) + Cu;1 < uÆ for all t 2 (t+; t1). Forsmall � (of the order of Cu;1, and thus depending on 
0), there is 
g > 0 (of theorder of Cu;1) su
h that g(u; v) � 
g � v for all v � �v� and u � us(x�) +Cu.This implies for t � t+ v(x1; t1) � v(x1; t)e
g(t1�t):Re
alling that v(x1; t1) � �v� we �ndV (x1 �X(t); t) = v(x1; t) � �v�e�
g(t1�t):To relate � = x1 � X(t) and �t = t1 � t we use the upper bound for thevelo
ity, �=�t � C0=�. This yieldsV (�; t) � �v�e�
g�t � �v�e�
g��=C0 8t 2 [t+; t1℄:With 
2 := min(
g=C0; 1=2) we �nd the result (3.23).Step 5. Inequality (3.24). We now 
onsider arbitrary x1 � X(T ) andt1 = X�1(x1) if possible and set t1 = 0 for x1 < 0. We have to analyzev(x1; t) for t > t1. We exploit that after time t1 the solution v(x1; :) runs23



towards the solution v = 
(u) of g(u; v) = 0. On
e v is in the vi
inity of thegraph of 
, denoted in this proof by �, the stability of � implies that v 
annot es
ape again.We start from the equation for V ,�tV (�; t) = _X(t)��v(X(t) + �; t) + g(u(X(t) + �; t); v(X(t) + �; t))whi
h we write in the form(�t � _X(t)��)V (�; t) = _X(t)��vs(�)+ g(us(�) + U(�; t); vs(�) + V (�; t)): (3.25)(i) We �rst analyze the 
ase of large jV j. For a 
on
ise de�nition we usethe 
onstant 

 := �2
0(u�) = 2j
0(us(0))j. We 
onsider the 
aseV (�; t) � �

Cu;1: (3.26)We a
hieve for small Cu;1 > 0Cg;1 := inf fg(u; v)ju�=2 � u � u� + Cu;1;�v� � v � 
(u)� 

Cu;1g > 0;and 
al
ulate in the 
ase of (3.26) for �� not too large,(�t � _X(t)��)V (�; t) � C0� ��vs(�) + Cg;1:For large � we �nd that the material derivative above is positive. Togetherwith V (0; :) � (��1)v� and the initial values V (:; 0) � (��1)v�e��, this showsthe uniform de
ay of jV (�; t)j. By the upper bound for the velo
ity _X, theslope near � = 0 is of order Cg;1�=C0 and we �nd (3.24) with 
2 = 
2(
0; C0).(ii) We now 
onsider the next 
ase,�

Cu;1 � V (�; t) � 
0(us(�))(1 + �)CuU0(�); (3.27)where the right hand side is negative. Again, we must exploit (3.25). We usethe R2 distan
e fun
tion d and the non-degenera
y assumption (1.5) to �ndCg;2 := inf� g(u; v)d((u; v);�)���� 0 � u � u� + Cu;1; �v� � v < 
(u)� > 0;depending on �. With this 
onstant we 
an now 
al
ulateg(us(�) + U(�; t); vs(�) + V (�; t)) � Cg;2d((us + U; vs + V );�)� CCg;2 j h(U; V ); (�
0; 1)i j= CCg;2 jV (�; t)� 
0U(�; t)j;24



where 
0 is evaluated at a point � su
h that (�; 
(�)) is the orthogonal proje
-tion of (u; v) to �. If we repla
e in the above expression � by us, we introdu
ean error that we denote by R. We 
an 
al
ulate for V(�t � _X(t)��)V (�; t) � _X(t)��vs(�)� CCg;2(V (�; t)� 
0(us)U(�; t)) +R:We distinguish two 
ases. If V < 2
0(us)jU j we estimate the error by jRj �CCu;1jV j and write(�t � _X(t)��)V (�; t) � _X(t)��vs(�)� 12CCg;2V (�; t)� CCu;1jV j:Imposing that Cu;1 is small 
ompared to Cg;2 we 
an absorb the error term.If, instead, V � 2
0(us)jU j we estimate the error by jRj � CC2u and �nd(�t � _X(t)��)V (�; t) � _X(t)��vs(�) + CCg;2j
0(us)j�CuU0(�)� CC2uU0(�):We impose that Cu is small 
ompared to �Cg;2 su
h that the third term isagain small 
ompared to the se
ond. In both 
ases we �nd a linear de
ay of�V with a rate 
2� with 
2 = 
2(�; Cu; �).(iii) It remains to 
onsider the upper limit 
ase of (ii), V (�; t) =�j
0(us(�))j(1 + �)CuU0(�). We evaluate on
e more (3.25),(�t � _X(t)��) [V (�; t) + j
0(us)j(1 + �)CuU0(�)℄� �C0� C[j��vsj+ j��usj℄ + CCg;2j
0(us)j�CuU0(�)� CC0� ��U0(�):For large �, this is positive for all (�; t) sin
e U0 and ��U0 de
ay not fasterthan us and ��us for � ! �1. We �nd that V (�; t) � 
0(us(�))(1+�)CuU0(�)remains valid for all times. The upper bound follows in the same way.Ad 3) Upper estimates for _X(t) are the 
onsequen
e of lower estimatesfor ��xv. The following lemma exploits the non-degenera
y assumption�v�ug(u; 0) < 0.Lemma 3.6. For Cu small, T > 0 �xed, and �0 large 
ompared to geometri

onstants, there is C0 > 0 su
h that for all � � �0 the following holds. If thesolution U(:; :) of (3.14) satis�esjU(�; t)j � CuU0(�)for t 2 [0; T ℄ and every � 2 R, then the solution (V;X) of (3.15)-(3.17)satis�es _X(t) < C0� (3.28)for all t 2 [0; T ℄. 25



Proof. Given t1 2 [0; T ℄ we 
onsider x1 := X(t1). We will �nd C0 su
h that,if (3.28) holds with the 
onstant 2C0 on [0; t1℄, then (3.28) holds also withthe 
onstant C0 on [0; t1℄. By 
ontinuity of _X and the small initial value, theC0-estimate then remains valid for all times.The interval [0; t�℄. We assume that x1 > 2xÆ, else we pro
eed withstep 2. We de�ne t� < t1 to be the time-instan
e at whi
h the front hasrea
hed the distan
e 2xÆ from x1, that is, x1 = X(t�)+ 2xÆ. Our �rst aim isto 
ompare �xv(x1; t�) with �v(x1; t�).The equation for t 7! y(t) := ��xv(x1; t) isy(0) = ��xv(x1; 0) = �v(x1; 0);�ty(t) = � ddxg(u(x1; t); v(x1; t))= ��ug(u; v)�xu(x1; t) + �vg(u; v) � y(t)� �vg(u; v) � y(t):We set �(t) := �vg(u(x1; t); v(x1; t)) and estimate with the variation of 
on-stants formula y(t) � y(0) exp�Z t0 �(�) d�� :In a similar way we 
al
ulate the evolution equation for z(t) = �v(x1; t) asz(0) = �v(x1; 0) = y(0);�tz(t) = �(g(u; v)� g(u; 0)) = ��vg(u; �) � v(x1; t)� �vg(u; v) � z(t) + Cv(x1; t)z(t)for a geometri
 
onstant C, and use again the variations of 
onstants formula.We �nd for the ratio y(t)=z(t) for t < t�.y(t)z(t) � exp�Z t0 �(�) d����exp�Z t0 (�(�) + Cv(x1; �)) d���= exp�� Z t0 Cv(x1; �) d�� :Our aim is to show that y(t)=z(t) is bounded from below, independent of x1.We 
an exploit that the distan
e to the front is more than 2xÆ, when
e v isuniformly de
aying. We have �vg(u; v) � �Cg < 0 for a geometri
 
onstantCg and �nd Z t0 v(x1; �) d� � e��x1 Z t0 e�Cg� d� � e��x1 1Cg :26



For large � we �nd y(t�) � z(t�)=2.The interval [t�; t+℄. We 
hoose � > 0 small 
ompared to a geometri

onstant and denote by t+ the time instan
e with z(t+) = �v(t+) = �. We
laim that for large � we have x1 �X(t+) < xÆ=2.Indeed, for t withX(t) � x1�xÆ=2, using the smallness of U , the fun
tionz grows exponentially. z(t1) = ��v� impliesz(t) � ��v�e�C(t1�t) for t 2 [t+; t1℄;t with X(t) � x1 � xÆ=2. We have to transform this into an estimate interms of spatial distan
es. We assumed the upper bound for the velo
ity_X � 2C0=�, by whi
h we 
an 
ompare spatial and temporal distan
es as�x � �t 2C0=�. We write for t as above� = z(t+) � z(t) � ��v�e�C0�(x1�X(t)):For large �, this yields a small upper bound for x1 �X(t+) > 0.On (t�; t+) we use the non-degenera
y of g,�ty(t) � �vg(u; v) � y(t) + 
uv(x1; t)�tz(t) � �vg(u; v) � z(t) + Cv(x1; t)z(t):Using z(t) � � and imposing smallness of � > 0, we �nd (y � z=2)(t�) � 0and �t(y � z=2) � �(t)(y � z=2). This yields y(t+) � z(t+)=2 = �=2.The interval [t+; t1℄. By the estimate for x1 � X(t+) and smallness ofU we �nd in this time span �vg(u; v) � Cg > 0 for a geometri
 
onstant Cg.The fun
tion z grows from � to ��v�. Sin
e z grows at most exponentially,we �nd jt1 � t+j = O(log(�)).In the same time, the fun
tion y(t) grows at least exponentially withinitial value y(t+) � �=2. We �nd that y(t1) � 
� for a geometri
 
onstant
. This 
on
ludes the proof, sin
e_X(t1) = � �tv(x1; t1)�xv(x1; t1) � sup(g)
� :Ad 4) Lower bounds for _X. We perform two 
al
ulations whi
h demon-strate _X(t) � 1�+ t : (3.29)27



The pre
ise statements are in (3.30) and (3.31). In parti
ular, we will verifyassumption (3.22) of lemma 3.5, whi
h 
an be interpreted as a lower boundfor _X.We set �x = xÆ=2 and 
onsider a pair (t1; x1) with X(t1) = x1 > �x,and the time instan
e T < t1 with x1 = X(T ) + �x. We assume in this
al
ulation jU j � Cu and smallness of �. We 
an introdu
eC1 := inff�vg(u; v)ju � u�; v � �v�g < 0;C2 := inff�vg(u; v)ju � us(xÆ=2) + Cu; v � �v�g > 0:We �nd for t 2 (0; T )�tv(x1; t) = g(u(x1; t); v(x1; t)) = �vg(u(x1; t); �)v(x1; t) � C1v(x1; t):The initial values are v(x1; 0) = exp(��x1) when
ev(x1; T ) � exp(��x1 + C1T ):The same 
al
ulation on (T; t1) yields now�v� = v(x1; t1) � exp(��x1 + C1T + C2�t)with �t = t1 � T . This results in�t � �+ T
0 for �x = xÆ=2: (3.30)In parti
ular, we see that the front travels to in�nity, X(t)! +1 for t!1.We have furthermore veri�ed assumption (3.22).In a similar fashion we 
an also 
al
ulate an upper bound as also indi
atedby (3.29). This result improves the upper bound of lemma 3.6, but it givesonly an integrated version of the estimate.We 
onsider the distan
e �x = 2xÆ. Our aim is to 
al
ulate how long ittakes the front to travel the distan
e �x. We set X(t1) = x1 and X(T ) =x1 ��x and want to 
al
ulate �t = t1 � T . UsingC1 := supf�vg(u; v)ju � u� + 2xÆ � Cu; v � �v�g < 0we �nd on (0; T ) the inequality �tv(x1; t) � C1v(x1; t), when
ev(x1; T ) � exp(��x1 + C1T ):28



On the time interval (T; t1) we have �tv(x1; t) � C2v(x1; t) with C2 :=supf�vg(u; v)g > 0. We 
on
lude�v� = v(x1; t1) � exp(��x1 + C1T + C2�t):For � large we �nd �t > �+ T
0 for �x = 2xÆ: (3.31)This shows (3.29) in an integrated sense and shows that the front 
an prop-agate only at a logarithmi
 rate.Proof of Theorem 3.3. By the 
ontinuity of U , V ,X, and _X, the assumptionsof all lemmas are satis�ed on a short time interval (0; T0). Let us 
onsiderthe largest time instan
e T > 0 su
h that all assumptions are satis�ed upto time T . Assuming T < 1, by 
ontinuity of u and v, one inequalityassumption of the lemmas is indeed an equality at time T . We will lead thisto a 
ontradi
tion, thus showing T =1.For small Cu and �, and large �, inequality (3.30) and Lemma 3.6 provideus with 
onstants 
0 and C0 regarding the velo
ity of the front. We use � < 1from (3.9) and �0 = (1 + �)=2.Our aim is to 
ombine the U -estimate (3.21),jU(�; t)j � (�0Cv + C(�))U0(�)with the V -estimate (3.24),jV (�; t)j � max��
0(us(�))(1 + �)CuU0(�); e
2�j�j	 :We use the estimates with Cu = (�0Cv + C(�)) and Cv = (1 + 2�)Cu. If wesatisfy �0Cv + C(�) = �0(1 + 2�)Cu + C(�) < Cu; (3.32)then the U and the V -inequalities hold stri
tly. We 
hoose � > 0 su
h that�0(1 + 2�) < 1. With this � and 
0; C0 as above we use Lemma 3.5 whi
hyields Cu; �; 
2 (arbitrarily small) and �0 (large). If ne
essary, we de
reaseCu and Cv, su
h that also Lemma 3.4 is appli
able. If ne
essary, we furtherin
rease �, su
h that (3.32) is satis�ed.
29
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