
Relaxation analysis in a data

driven problem with a single outlier
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Abstract: We study a scalar elliptic problem in the data driven
context. Our interest is to study the relaxation of a data set that
consists of the union of a linear relation and single outlier. The
data driven relaxation is given by the union of the linear relation
and a truncated cone that connects the outlier with the linear
subspace.
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1 Introduction

The data driven perspective is new in the field of material science and partial
differential equations, we mention [16] and [6] as the two fundamental contribu-
tions of this young field. In the data driven perspective certain laws of physics
are accepted as invariable, e.g. balance of forces or compatibility. On the other
hand, material laws (such as Hooke’s law) can be questionable. In the classical
approach, measurements are used to estimate constants of material laws. The
new paradigm is to use a set of data points, obtained from measurements; the
data points are not interpreted as realizations of some law, but calculations and
analysis are based directly on the cloud of data points.

On a more formal level, one introduces a set E of functions that satisfy the in-
variable physical laws. A second set D denotes those functions that are consistent
with the data. In this setting, the aim is to find functions in E that minimize the
distance to the data set D.

The emphasis in [16] was to derive computing algorithms for this new ap-
proach. The mathematical analysis in [6] establishes well-posedness properties
and introduces, among other tools, data convergence and relaxation in the data
driven context. It is shown that data driven relaxation differs markedly from
traditional relaxation, see the discussion below.
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In the work at hand, we investigate a scalar setting, which can be used e.g. in
the modelling of porous media. We seek for two functions, G (a gradient) and
J (a negative flux). Given a domain Q ⊂ Rn and a source f : Q → R, the
invariable physical laws are the compatibility G = ∇U for some U and the mass
conservation ∇·J = f (in other contexts, the second law is the balance of forces).
We introduce

E :=
{

(G, J) ∈ L2(Q;Rn)× L2(Q;Rn) |G = ∇U , U ∈ H1
0 (Q,R), ∇ · J = f

}
.

(1.1)
In the classical approach, one might be interested in the linear material law

given by J = AG for A ∈ Rn×n. We note that a pair (G, J) ∈ E with J = AG
can be found be solving the scalar elliptic equation ∇ · (A∇U) = f .

In the data driven perspective, the material law is replaced by a data set D. In
a simple setting, we are given a local data set Dloc := {(gi, ji) | i ∈ I} ⊂ Rn × Rn

for some index set I. This data set might be obtained by measurements, in this
case the index set I is finite and Dloc is a cloud of points in Rn × Rn. The set of
functions that respect the data is

D :=
{

(g, j) ∈ L2(Q;Rn)× L2(Q;Rn) | (g(x), j(x)) ∈ Dloc for a.e. x ∈ Q
}
.

(1.2)
In the data driven perspective, the task is: Find a pair (G, J) ∈ E that minimizes
the distance to the set D.

We remark that we recover the classical problem if we introduce

DAloc := {(g, j) ∈ Rn × Rn | j = Ag} (1.3)

and the corresponding set of functions DA as in (1.2). For typical choices of Q, A,
and f , the linear problem can be solved; in this case, there exists (G, J) ∈ E ∩DA
and the minimization task has a solution that realizes the distance 0.

The advantage of the data driven perspective is the generality of the data set.
In the minimization task above, an arbitrary data set D can be considered. Three
different types of questions can be asked:

1. Minimality conditions: When E ∩ D is empty, what are conditions for min-
imizers of the distance?

2. Families of data sets: Given a family of data sets Dh and solutions (Gh, Jh)
of the minimization problems, what can we say about limits?

3. Relaxation: Given D and sequences of pairs (Gh, Jh) ∈ E and (gh, jh) ∈ D.
Which limits are attainable in the sense of data convergence?

The present paper is devoted to the third question. We investigate a special
data set: Dloc is the union of DAloc and DBloc, where DAloc is as in (1.3) and DBloc is
a one-point set of a single outlier. In this setting, the minimization problem is
solvable with distance 0 since D is larger than DA. Our interest is to study the
relaxation problem.
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The motivation to study the data set Dloc = DAloc ∪ DBloc is to understand the
effect of a single outlier in a cloud of measurement points. When an increasing
number of data points approximates the plane of Hooke’s law DAloc, then the
data driven solutions to these data sets approximate the classical solution with
Hooke’s law; this is one of the results in [6]. Our interest is an outlier: When the
measurements contain a single point that is not in DAloc, the data driven solutions
can always use this data point in the further process. How far off can the data
driven solutions be because of the single outlier? Our result characterizes the
relaxed data set and shows that it is only changed locally in the vicinity of the
outlier. In this sense, the outlier has only a limited effect on the data driven
solutions.

In more mathematical terms, the analysis of this article is concerned with
sequences of pairs (Gh, Jh) ∈ E and (gh, jh) ∈ D that converge in the sense of data
convergence. We are interested in possible limit functions (g, j). Possible values of
constant limit functions are denoted as Drelax

∗ . The set Drelax
∗ contains Dloc, it is the

“data driven convexification” of Dloc. Our main result is the characterization of
Drelax
∗ . We find that the set is strictly larger than Dloc, but smaller than the convex

hull of Dloc. We will characterize Drelax
∗ as the union of DAloc with a truncated cone

that connects the additional point DBloc with the hyperplane DAloc. Denoting the
truncated cone by C, our main result states Drelax

∗ = C ∪ DAloc, see Theorem 1.2.

The proof consists of two parts. The inclusion Drelax
∗ ⊃ C ∪ DAloc requires a

construction of a sequence of functions that use a fine mixture of materials. We
will construct simple and iterated laminates. In order to realize a point on the
lateral boundary of the cone C, it is sufficient to construct a simple laminate with
phases A and B. For a point in the interior of C, an iterated laminate must be
constructed. Such iterated laminates are quite standard, we mention [11] and [20].

The other part of the proof regards the inclusion Drelax
∗ ⊂ C ∪ DAloc. We show

this inclusion with an application of the div-curl lemma. In our context, the
notion of data convergence of [6] provides exactly the prerequisites in order to use
the div-curl lemma for data convergent sequences.

Literature. Relaxation is a classical problem in the calculus of variations. For a
functional I : X → R̄ on a Banach space X, one introduces the relaxed functional
Irelax : X → R̄ as Irelax(u) := inf

{
lim infk I(uk) |uk ⇀ u

}
. A related notion is

that of quasiconvexity; loosely speaking, quasiconvex functionals coincide with
their relaxation. For fundamental results on these important concepts we refer
to [2, 7, 10]. For a functional I which is not quasiconvex, one can construct
laminates or more complex patterns in order to find the relaxed functional and/or
the quasiconvex envelope of the integrand, see e.g. [3] and [5]. For an introduction
we refer to [20].

The data driven perspective introduces a new concept of a relaxation. For a
data set D, the task is to study the relaxed data set, which consists of points that
are attainable as limits in the sense of data convergence. A relaxed data set in
this sense has been calculated in [6] for a problem in the vectorial case: For a data
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set that describes a non-monotone material law (corresponding to a non-convex
energy), the authors determine the relaxed data set, compare (3.26) and Theorem
3.6 in [6]. The relaxed data set is larger than the original data set, but it is smaller
than the convex hull of the original data set. A similar phenomenon appears in
our main result.

We want to emphasize the close relation to homogenization. In the primal
problem of homogenization, one prescribes different material laws in different
points x of the macroscopic domain, and asks for the effective law for fine mixtures.
Building upon such results, one then asks: With any material laws in different
points x (material laws of some admissible set), which effective material laws can
be obtained by homogenization? This leads to bounds for effective material laws
as in [12, 13, 17] and to optimization of the distribution of the single material
laws, see [1, 4]. For early results in this direction which also highlight the relation
to relaxation see [18, 19].

Our main result may be interpreted in the perspective of homogenization. We
use the two material laws DA and DB in different regions of the macroscopic
domain, possibly in a fine mixture. We ask what effective laws can be obtained in
the limit. The warning about this description is thatDB is not a linear relation and
hence does not describe a material law in the classical setting of homogenization.

We will make use of the div-curl Lemma in the second part of the proof. This
lemma is also used in the compensated compactness method of homogenization,
see [14, 21]. Related concepts are those of Γ-convergence [8], Young-measures [10],
and H-convergence [11].

For recent developments of the data driven approach we refer to [9] and [15],
which are both concerned with numerical aspects.

1.1 The main result

Let n ≥ 2 be the dimension, Q ⊂ Rn be a bounded Lipschitz domain, f ∈
H−1(Q;R) a given source, and A ∈ Rn×n a positive definite symmetric matrix.
We consider the local material data sets

DAloc := {(g, j) ∈ Rn × Rn | j = Ag} , (1.4)

DBloc := {(g, j) ∈ Rn × Rn | g = 0, j = e1} = {(0, e1)} , (1.5)

and

Dloc := DAloc ∪ DBloc . (1.6)

We therefore enrich the data set DAloc of the classical approach with the one point
set DBloc. We choose here (0, e1) 6∈ DAloc as the position of the outlier; by elementary
transformations, an arbitrary outlier can be analyzed. Functions with values in
the data set are defined by

D :=
{

(g, j) ∈ L2(Q;Rn)× L2(Q;Rn) | (g(x), j(x)) ∈ Dloc for a.e. x
}
. (1.7)
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We recall that the fundamental task in the data driven approach is to find
(G, J) ∈ E from (1.1) that minimizes the distance to D. In the above setting, a
vanishing distance can be realized, since D is larger than DA.

Our interest is to study the relaxed data set. We focus here on constant states
that can be approximated in the sense of data convergence with sequences in
E × D. We use the notion of data convergence of Definition 3.1 in [6].

Definition 1.1 (Relaxed data set). We use E from (1.1) and D from (1.7). A pair
(g, j) ∈ L2(Q;Rn)×L2(Q;Rn) is in the relaxed data set and we write (g, j) ∈ Drelax

if the following holds:

There exist sequences (gh, jh) and (Gh, Jh) and a limit (G, J) ∈ E such that,
for every h,

(Gh, Jh) ∈ E and (gh, jh) ∈ D . (1.8)

Furthermore, we demand that the pair ((gh, jh), (Gh, Jh)) converges in the sense
of data convergence to ((g, j), (G, J)) as h→ 0, which means that

gh ⇀ g , jh ⇀ j , Gh ⇀ G, Jh ⇀ J in L2(Q;Rn),

gh −Gh → g −G , jh − Jh → j − J in L2(Q;Rn) .

We introduce the subset of attainable values,

Drelax
∗ :=

{
(g, j) ∈ Rn × Rn

∣∣(g, j) ∈ Drelax (as constant functions)
}
. (1.9)

We remark that the relaxed data set Drelax can also be characterized as a
Kuratowski limit. The precise statement is provided in Lemma 1.4 below.

In our main result, we characterize the relaxed data set Drelax
∗ . We prove that

it is the union of two sets: the hyperplane DAloc and a truncated cone C with vertex
in the outlier DBloc. The cone is truncated by the hyperplane DAloc.

We define the cone in the following steps. For b ∈ [0, 1], we set

Cb :=
{

(g, j) ∈ Rn × Rn
∣∣ g · Ag ≤ (1− b)g1 , j = be1 + Ag

}
. (1.10)

For fixed b, the set Cb is an n-dimensional closed ellipsoid in Rn×n. For b = 1,
the ellipsoid degenerates to a point, C1 = {(0, e1)} = DBloc. On the other hand,
for b = 0, every vector in C0 satisfies j = Ag, hence C0 ⊂ DAloc. We define the
truncated cone C as

C :=
⋃

b∈[0,1]

Cb . (1.11)

Our main result is the characterization of the relaxed data set.

Theorem 1.2. With the truncated cone C of (1.11), the set Drelax
∗ of Definition

1.1 is given by

Drelax
∗ = C ∪ DAloc . (1.12)
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Theorem 1.2 characterizes the relaxation of the data set in the context of data
driven analysis. The convexification of a set consisting of an hyperplane and an
outlier yields the union of the plane with a truncated cone that connects the outlier
with the plane, compare Figure 2. In particular, the data driven relaxation does
not yield the (classical) convexification of the original set, which is an infinite strip
(the infinite strip can be regarded as the truncated cone with opening angle π; in
this sense, the data driven relaxation yields a cone with smaller opening angle).

1.2 Comments on the main result

In this work, we concentrate on the study of constant functions g and j that
can be approximated in the sense of data convergence. We therefore include the
following open problem regarding the relaxed data set Drelax.

Open Problem 1.3. It is not clear whether or not Drelax is given by some local
space Drelax

loc as in (1.2). Furthermore, even if this is the case, it is not clear
whether or not Drelax

loc coincides with Drelax
∗ .

Our definition of Drelax was given in terms of sequences. As noted above, the
set Drelax can also be described in terms of a Kuratowski limit as in [6].

Lemma 1.4 (Kuratowski limit). Let data convergence be denoted as 4 − lim.
We use Kuratowski convergence of sets, which coincides with Γ-convergence of
the indicator functions. With these topological tools, the data relaxation can be
written as a limit:

Drelax × E = K(4)- lim D × E . (1.13)

Proof. Similar to [6] the sequential characterization of the Kuratowski limit follows
from an (equi-)transversality condition.

Step 1: Transversality. We claim that there exist constants C1, C2 > 0 such
that every pair z = (g, j) ∈ D and Z = (G, J) ∈ E satisfies

‖z‖L2(Q;Rn)2 + ‖Z‖L2(Q;Rn)2 ≤ C1‖z − Z‖L2(Q;Rn)2 + C2 . (1.14)

The inequality is concluded with the help of the positivity of A ∈ Rn×n,
ξ · Aξ ≥ c0|ξ|2 for some c0 > 0. From this estimate and the fact that z ∈ D
implies g = 0 on {j 6= Ag} we deduce

c0

∫
Q

|G|2 ≤
∫
Q

G · AG =

∫
Q

G · Ag +G · A(G− g)

≤
∫
{j=Ag}

G · j + |A|‖G‖L2(Q;Rn)‖g −G‖L2(Q;Rn) . (1.15)
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Since Z ∈ E implies G = ∇U and ∇ · J = f , we further obtain∫
{j=Ag}

G · j ≤
∫
{j=Ag}

G · J + ‖G‖L2(Q;Rn)‖j − J‖L2(Q;Rn)

=

∫
Q

∇U · J −
∫
{j 6=Ag}

G · j + ‖G‖L2(Q;Rn)‖j − J‖L2(Q;Rn)

= −
∫
Q

Uf −
∫
{j 6=Ag}

(G− g) · j + ‖G‖L2(Q;Rn)‖j − J‖L2(Q;Rn)

≤ C‖G‖L2(Q;Rn)‖f‖H−1(Q) + ‖j‖L2(Q;Rn)‖g −G‖L2(Q;Rn)

+ ‖G‖L2(Q;Rn)‖j − J‖L2(Q;Rn) , (1.16)

where we have used Poincaré’s inequality and G = ∇U in the last step; here and
below, C denotes a constant that depends only on A,Q, n and that may change
from line to line. Together with (1.15) we deduce that

‖G‖2L2(Q;Rn) ≤C
(
‖g −G‖2L2(Q;Rn) + ‖j − J‖2L2(Q;Rn)

)
+ C‖f‖2H−1(Q) + C‖j‖L2(Q;Rn)‖g −G‖L2(Q;Rn) . (1.17)

The triangle inequality yields an analogous inequality for g,

‖g‖2L2(Q;Rn) ≤C
(
‖g −G‖2L2(Q;Rn) + ‖j − J‖2L2(Q;Rn)

)
+ C(‖f‖2H−1(Q) + C‖j‖L2(Q;Rn)‖g −G‖L2(Q;Rn) . (1.18)

Since j = e1 holds in {j 6= Ag} we next observe that∫
Q

|j|2 ≤
∫
{j=Ag}

|Ag|2 + |{j 6= Ag}| ≤ C‖g‖2L2(Q;Rn) + |Q| .

Using (1.18) and Young’s inequality, this provides

‖j‖L2(Q;Rn) ≤C
(
‖g −G‖L2(Q;Rn) + ‖j − J‖L2(Q;Rn)

)
+ C(1 + ‖f‖H−1(Q)) . (1.19)

This estimate can be inserted in (1.17) and we obtain the corresponding estimate
for G. By the triangle inequality, we control all functions g,G, j, J in L2(Q;Rn)
by the right-hand side of (1.19). This proves the transversality (1.14).

Step 2: Sequential characterization of Kuratowski convergence. The Kura-
towski limit K(4)- lim D × E is given by the domain of the Γ-limit of the
(constant sequence of the) indicator function of D × E . To characterize this
set consider any point (z0, Z0) ∈ L2(Q;Rn)2. Since Γ-convergence is a local
property, when computing the Γ-limit in this point we may restrict ourselves
to any neighborhood of (z0, Z0) with respect to the 4-topology. In particular,
we may choose a neighborhood in which all pairs (z, Z) ∈ L2(Q;Rn)2 satisfy
‖(z − z0) − (Z − Z0)‖L2(Q;Rn) < 1 (note that strong convergence of differences is
part of the definition of 4-convergence). Then the transversality property implies
that we can restrict the computation of the Gamma limit to a bounded set in
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g1

j1

P

j1 = g1

j1 = 1

g1 = 1

Figure 1: A sketch for A = id, showing only the plane (g1, j1) ∈ R2. The diagonal
line corresponds to the set DAloc of points with j = g. The exceptional point P
is (g1, j1) = (0, 1), corresponding to the one-point set of additional data points,
DBloc = {(0, e1)}.

L2(Q;Rn)2. On bounded sets the data convergence topology is metrizable. Hence
the topological and the sequential characterization of Γ convergence coincide [8,
Proposition 8.1].

The sequential characterization of the lim inf and lim sup inequalities that
characterize Γ-convergence of the indicator function of D × E to Drelax × E are
described by the properties:

(i) For any sequence (zh, Zh) in D × E that 4-converges to a limit (z, Z) ∈
L2(Q;Rn)2, there holds (z, Z) ∈ Drelax × E .

(ii) For any (z, Z) ∈ Drelax × E there exists a sequence (zh, Zh) in D × E that
4-converges to (z, Z).

This is equivalent to the characterization of Drelax given in Definition 1.1.

1.3 Equivalent descriptions for the truncated cone C

A special case. In the case n = 2 and A = id ∈ R2×2, the cone C is

C =
{

((g1, g2), (g1 + 1− 2r, g2)) | r ∈ [0, 1/2], (g1 − r)2 + g22 ≤ r2
}
. (1.20)

The last condition expresses that g = (g1, g2) is contained in the disc Br((r, 0))
with radius r and center (r, 0). Because of j1 = g1 + 1 − 2r, the disc is mapped
into an inclined plane.

In order to see the equivalence, it suffices to use the new variable r = (1−b)/2.
The condition g · Ag ≤ (1− b)g1 becomes g21 + g22 ≤ 2rg1.
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Figure 2: Three dimensional illustration of the cone C and part of the plane DAloc
in the g1, g2, j1 space for A = id.

The lateral boundary of C. For b ∈ [0, 1] fixed, the lateral boundary of Cb is

∂latCb :=
{

(g, j) ∈ C
∣∣ g · Ag = (1− b)g1, j = be1 + Ag

}
.

The lateral boundary of C can be expressed as ∂latC :=
⋃
b∈[0,1] ∂latCb. With this

notation, the boundary of C is given by

∂C = ∂latC ∪
(
DAloc ∩

{
g · Ag ≤ g1

})
. (1.21)

We can generalize (1.20) as follows. Let y ∈ Rn be a vector that satisfies
Ay = e1. We introduce the scalar product 〈v1, v2〉A := v1 ·Av2 and the associated
norm | · |A. The corresponding sphere with center 1

2
y that contains 0 is

SAy :=
{
x ∈ Rn

∣∣ ∣∣x− 1
2
y
∣∣
A

= 1
2

∣∣y∣∣
A

}
.

Then (g, j) ∈ ∂latCb if and only if g ∈ (1 − b)SAy and j = be1 + Ag. In fact, for
b = 1, there holds ∂latCb = {(0, e1)} and the equivalence is valid. For b ∈ [0, 1),
we find

g · Ag = (1− b)g1 ⇐⇒ 〈g, g − (1− b)y〉A = 0

⇐⇒
∣∣g − 1−b

2
y
∣∣2
A

= (1−b)2
4

∣∣y∣∣2
A

⇐⇒
∣∣∣∣ 1

1− b
g − 1

2
y

∣∣∣∣2
A

=
1

4
|y|2A .

For later use we include the following alternative characterization of ∂latCb.
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Lemma 1.5. The lateral boundary can also be written as

∂latCb =
{

(g, j) ∈ Rn × Rn
∣∣∣ ∃ν ∈ Rn \ {0} : g = (1− b) ν1

ν · Aν
ν, j = be1 + Ag

}
.

(1.22)

Proof. We fix b ∈ [0, 1] and denote by Kb the right-hand side of (1.22). Consider
any (g, j) with j = be1 + Ag and g 6= 0. Then

(g, j) ∈ ∂latCb ⇐⇒ g · Ag = (1− b)g1
⇐⇒ |g|2Ag = (1− b)g1g

⇐⇒ g = (1− b) g1
|g|A

g

|g|A
=⇒ (g, j) ∈ Kb ,

where the choice ν = g provides the last implication.
Vice versa, let (g, j) with g 6= 0 be in Kb. By definition, there exists ν 6= 0

with g = (1−b) ν1
ν·Aνν. We can calculate g ·Ag = (1−b)2ν21/(ν ·Aν) and (1−b)g1 =

(1− b)2ν21/(ν · Aν), which shows g · Ag = (1− b)g1.

2 Construction of approximating sequences

The goal of this section is to prove the inclusion

Drelax
∗ ⊃ C ∪ DAloc , (2.1)

which is one part of the claim of Theorem 1.2. Since trivial sequences can be
chosen to verify DAloc ⊂ Drelax

∗ , we only have to show C ⊂ Drelax
∗ . For an arbitrary

point on the lateral boundary of the cone C, we will use laminates to construct
data convergent sequences (gh, jh) and (Gh, Jh).

In order to motivate the subsequent constructions, let us present what we can
achieve in the case A = id with simple laminates of horizontal or vertical layers.
With respect to Figure 1 we can say: The simple laminates show that all points
in the vertical line of the cone and all points in the horizontal line of the cone can
be constructed.

Remark 2.1 (Horizontal layers). We consider A = id and fix b ∈ (0, 1). We
decompose Q into thin horizontal layers such that e1 is a tangential vector of the
interfaces. The layers have the width (1 − b)h and b h in an alternating fashion.
The layers with width (1− b)h are called A-layers, the other layers are B-layers.
In the A-layers, we set Jh := jh := Gh := gh := 0, in the B-layers we set
Gh := gh := 0 and Jh := jh := e1.

By construction, (gh, jh) ∈ D. Since layers are horizontal, Jh has a vanish-
ing divergence. As a trivial function, Gh is a gradient. We find (Gh, Jh) ∈ E.
The functions converge weakly in L2(Q) and the differences gh −Gh and jh − Jh
converge strongly. We therefore obtain that the vertical line {(g, j) | g = 0, j =
(j1, 0, ..., 0), j1 ∈ [0, 1]} is contained in Drelax

∗ .
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Remark 2.2 (Vertical layers). We consider again A = id. We proceed as in
Remark 2.1, but we now decompose Q into thin layers with normal vector e1. In
the interior of Q, in the A-layers, we set Jh := jh := Gg := gh := e1, in the
B-layers we set Gh := gh := 0 and Jh := jh := e1.

Up to truncations near the boundary, one can verify (Gh, Jh) ∈ E, (gh, jh) ∈ D,
and the convergence properties. We therefore obtain that the the horizontal line
{(g, j) | g = (g1, 0, ..., 0), g1 ∈ [0, 1], j = 0} is contained in Drelax

∗ .

After these motivating examples, we move on to the construction in the general
case.

Lemma 2.3 (Simple laminates). The set DAloc and the boundary of the cone C of
(1.11) are contained in Drelax

∗ ,

DAloc ∪ ∂C ⊂ Drelax
∗ . (2.2)

Proof. The inclusion DAloc ⊂ Drelax
∗ holds trivially. Indeed, given g ∈ Rn and

j = Ag ∈ Rn, it suffices to use the constant functions jh = j, Jh = 0, gh = g,
and Gh = 0. Analogously, the single point DBloc, which is the vertex of the cone,
is contained in Drelax

∗ .
It therefore suffices to show that, for b ∈ (0, 1), the set ∂latCb belongs to Drelax

∗ .
We consider a point (g, j) ∈ ∂latCb. By Lemma 1.5, we can express this point in
the form

g = (1− b) ν1
ν · Aν

ν , j = be1 + Ag

for some ν ∈ Rn \ {0}.

Step 1: Construction of approximating sequences. For h > 0, we consider the
following layered subdivision of Q, using the direction ν,

Bh := {x ∈ Q |x · ν ∈ [0, bh) + hZ} ,
Ah := {x ∈ Q |x · ν ∈ [bh, h) + hZ} .

For the volume fractions we note that |Bh| → b|Q| and |Ah| → (1 − b)|Q| as
h↘ 0. The field (gh, jh) is chosen as

gh = 0 and jh = e1 in Bh , (2.3)

gh =
ν1

ν · Aν
ν and jh = Agh in Ah . (2.4)

By definition of the fields, (gh, jh) ∈ D is satisfied.
We note that the construction assures jh · ν = e1 · ν in Bh and

jh · ν = Agh · ν = A
( ν · e1
ν · Aν

ν
)
· ν = (Aν · ν)

ν · e1
ν · Aν

= e1 · ν in Ah .

This shows ∇ · jh = 0 in Q.
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We want to find a function uh : Q→ R that satisfies

gh = ∇uh in Q .

The function uh can be constructed explicitly. We use the continuous (and piece-
wise affine) function vh : R → R with vh(0) = 0 and with the derivatives
∂ξv

h(ξ) = 0 for ξ ∈ (0, bh) + hZ and ∂ξv
h(ξ) = ν1/(ν · Aν) for ξ ∈ (bh, h) + hZ.

Using vh, we set

uh(x) := vh(x · ν) with ∇uh(x) = ∂ξv
h(x · ν) ν = gh(x) .

We may introduce

u(x) := (1− b) ν1
ν · Aν

x · ν for x ∈ Q .

Then uh ⇀ u and ‖uh − u‖L∞ ≤ Ch hold for a constant C that does not depend
on h.

In order to define a corresponding pair (Gh, Jh), we choose a cut-off function
ϕh ∈ C1

c (Q) with values in [0, 1], satisfying ϕh = 1 in {x ∈ Q | dist(x, ∂Q) ≥ 2h}
and ϕh = 0 in {x ∈ Q | dist(x, ∂Q) ≤ h} and |∇ϕh| ≤ 2

h
. Furthermore, we fix a

function Jf with ∇ · Jf = f . With these preparations we define

Uh := (uh − u)ϕh , Gh = ∇Uh , Jh := jh + Jf . (2.5)

Step 2: Verification of the properties. By definition, Gh is a gradient of a
function in H1

0 (Q). The field Jh has the divergence ∇ · Jh = ∇ · jh +∇ · Jf = f .
This shows (Gh, Jh) ∈ E .

We now verify the data convergence property. We clearly have

gh ⇀ g := (1− b) ν1
ν · Aν

ν , (2.6)

jh ⇀ j := be1 + (1− b) ν1
ν · Aν

Aν , (2.7)

Uh ⇀ 0, Jh ⇀ j + Jf (2.8)

in L2(Q;Rn). Finally we have jh − Jh = Jf and

gh −Gh = ∇uh −∇Uh = ∇uh − ϕh∇(uh − u)− (uh − u)∇ϕh
= (1− ϕh)∇uh + ϕh∇u− (uh − u)∇ϕh → g .

Here, the convergence follows from the following facts: (1 − ϕh) → 0 strongly
in L2(Q) implies convergence to 0 for the first term. The pointwise convergence
ϕh∇u → ∇u with the uniform bound |ϕh∇u| ≤ |∇u| implies strong convergence
of the second term to g = ∇u. The last term (uh − u)∇ϕh is uniformly bounded
and converges to zero almost everywhere, hence strongly to 0.

Altogether, we obtain that
(
(gh, jh), (Gh, Jh)

)
→
(
(g, j), (G, J)

)
in the sense

of data convergence and conclude that (g, j) ∈ Drelax
∗ .
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We next show that also the interior of the cone C will be reached by suitable
iterated laminate constructions.

Lemma 2.4 (Iterated laminates). The cone C of (1.11) is contained in Drelax
∗ ,

C ⊂ Drelax
∗ . (2.9)

Proof. In view of Lemma 2.3, it remains to show that the interior of the cone is
contained in Drelax

∗ . Let therefore pC = (gC , jC) ∈ C \ ∂C be arbitrary; our aim
is to show pC ∈ Drelax

∗ . This is done by constructing sequences (gh, jh) ∈ D and
(Gh, Jh) ∈ E as before. In this proof, however, we have to use iterated laminates.

Step 1: Preparations. Let pC = (gC , jC) ∈ C̊ be a point in the interior of
the cone. We show in Lemma A.1 of the appendix that we can write pC as a
convex combination as follows: There exist two points pA = (gA, jA) ∈ DAloc and
pL = (gL, jL) ∈ ∂latC and a parameter λ ∈ (0, 1) such that

pC = λpL + (1− λ)pA (2.10)

and such that, additionally,

(jA − jL) · (gA − gL) = 0 . (2.11)

As in the proof of Lemma 2.3 we exploit Lemma 1.5: We can express the point
pL ∈ ∂latC as a convex combination with some vector ν ∈ Rn \ {0}:

(gL, jL) = pL = b pb + (1− b) pa = b (gb, jb) + (1− b) (ga, ja)

with
ga =

ν1
ν · Aν

ν , ja = Aga , gb = 0 , jb = e1 .

The iterated laminate is constructed as a coarse laminate with layers of width√
h and a fine laminate with layers of order h. Every second layer of the coarse

mesh uses pA = (gA, jA). The fine laminate uses (ga, ja) and (gb, jb). The two
functions in the fine layer produce, in average, pL = (gL, jL). The mixture of the
coarse layers with values pA and pL provide the desired values pC . For a sketch
see Figure 3.

Step 2: Construction of the approximating sequence. From now on, the points
pC , pA, pL, pa, pb, and the volume fractions λ and b are fixed. In addition to ν, we
introduce the normal vector

θ := (gA − gL)/‖gA − gL‖ . (2.12)

For every k ∈ Z, the coarse layers Lhk and Mh
k are defined as

Lhk :=
{
x ∈ Q

∣∣∣x · θ ∈ k√h+
[
0, λ
√
h
)}

,

Mh
k :=

{
x ∈ Q

∣∣∣x · θ ∈ k√h+
[
λ
√
h,
√
h
)}

.
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Mh
Lh

ga gb

Lh

ga

gb

ga

gb

ga

∼
√
h

gA

∼ h

x1

x2
ΣM

ΣL

ΣL,A

−(1− b) 0

ΣL,B

b

θ

ν

Figure 3: Left: A sketch of the iterated laminate. Right: The local geometry.

The unions are denoted as Lh :=
⋃
k∈Z L

h
k and Mh :=

⋃
k∈ZM

h
k .

The iterated laminate is based on a subdivision of every layer Lhk. We set

Lhk,b :=
{
x ∈ Lhk

∣∣x · ν ∈ [0, bh) + hZ
}
,

Lhk,a :=
{
x ∈ Lhk

∣∣x · ν ∈ [bh, h) + hZ
}
.

The unions are denoted as Lhb :=
⋃
k∈Z L

h
k,b and Lha :=

⋃
k∈Z L

h
k,a.

We define the fields gh and jh as

gh(x) :=


gA for x ∈Mh ,

ga for x ∈ Lha ,
gb for x ∈ Lhb ,

jh(x) :=


jA for x ∈Mh ,

ja for x ∈ Lha ,
jb for x ∈ Lhb .

(2.13)

We next define a function uh : Rn → R that is piecewise affine and which
has piecewise the gradient gh. In order to construct uh we introduce the points
xk := k

√
h θ ∈ Rn for k ∈ Z. The point xk is chosen such that, if xk happens

to be in Q, it is a point in ∂Lhk ∩ ∂Mh
k−1. By construction, the weak limit of gh

is gC . We therefore set uh(xk) := gC · xk. Accordingly, in the layer Mh
k−1, we

set uh(x) := gC · xk + gA · (x − xk). In the layer Lhk, we define uh as the unique
continuous function with uh(xk) = gC · xk, with the gradient ga in Lhk,a and the

gradient gb in Lhk,b. A continuous function uh exists in Lhk since (ga − gb) ‖ ν.

As in the proof of Lemma 2.3, we can use a cutoff function ϕkh in the layer Lhk
to construct Uh

k : Lhk → R with bounded gradient such that

Uh
k (x) = gC · xk + gL · (x− xk) for x ∈ ∂Lhk ,

Uh
k (x) = uh(x) for x ∈ Lhk with dist(x, ∂Lhk) > h .



M.Röger, B. Schweizer 15

The function Uh can be defined on all of Q by setting

Uh(x) :=

{
Uh
k (x) for x ∈ Lhk ,

uh(x) for x ∈Mh
k .

By construction, the function Uh is continuous. This property follows by inserting
the vector λ

√
h θ, the normal vector of layer Lhk, where Uh has the averaged

gradient gL, and the vector (1 − λ)
√
h θ in normal direction of layer Mh

k , where
Uh has the gradient gA:

gL · λ
√
h θ + gA · (1− λ)

√
h θ = (λgL + (1− λ)gA) ·

√
h θ = gC ·

√
h θ .

This is consistent with the choice of Uh(xk+1).

Furthermore, the function Uh has a bounded gradient. This can be seen as
in the proof of Lemma 2.3: In the layer Lhk, the difference between uh(x) and
gC ·xk + gL · (x−xk) is of order h (uniformly in x) since gL is the average slope of
uh and uh oscillates at order h. The gradient of the cutoff function ϕkh is of order
h−1.

The gradient of Uh coincides with gh except for a set with a volume bounded
by C

√
h: the strips of width h in the layers Lhk, and there are O(1/

√
h) such

layers. With the choice Gh := ∇Uh, this guarantees the strong convergence
‖gh −Gh‖L2(Q) → 0.

We do not perform here the modification of Uh at the boundary ∂Q. We
restrict ourselves to the observation that the weak limit of the sequence Uh is the
function U : Rn → R, U(x) = gC · x. Moreover, there holds ‖Uh − U‖L∞ ≤ C

√
h

for some constant C > 0, which is independent of h. This fact allows to use the
cutoff argument of Lemma 2.3 at ∂Q.

The construction is complete up to the choice of the sequence Jh, which we
postpone to Step 3. At this point, we have found the following functions: (gh, jh)
are functions that are compatible with the data set, Gh is a gradient (after the
modification at ∂Q, it is the gradient of an H1

0 (Q)-function), and gh−Gh converges
strongly in L2(Q). All functions converge weakly in L2(Q) with

gh ⇀ λgL + (1− λ)gA = gC ,

jh ⇀ λjL + (1− λ)jA = jC .

If an appropriate sequence Jh can be constructed (with the right divergence and
such that the difference to jh is strongly convergent), this shows that pC = (gC , jC)
is in the relaxed data set Drelax

∗ .

Step 3: The divergence of the approximation. Let us calculate the divergence
of jh. In Mh, the flux is constant and hence ∇· jh = ∇· jA = 0 in Mh. In Lh, the
construction uses the fluxes ja and jb which satisfy (ja− jb) · ν = (Aga− e1) · ν =(

ν1
ν·AνAν − e1

)
· ν = 0. This shows that jh satisfies ∇ · jh = 0 in Lh.
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Along ∂Lh, the function jh has the jumps

[jh] · θ = (jA − e1) · θ on ∂Mh ∩ ∂Lhb , (2.14)

[jh] · θ =
(
jA −

ν1
ν · Aν

Aν
)
· θ on ∂Mh ∩ ∂Lha . (2.15)

Important for the following construction is that the total flux through two subse-
quent pieces of ∂Mh vanishes:

b (jA − e1) · θ + (1− b)
(
jA −

ν1
ν · Aν

Aν
)
· θ

= jA · θ −
(
be1 + (1− b) ν1

ν · Aν
Aν
)
· θ

= (jA − jL) · θ = 0 (2.16)

by (2.7) and (2.11).
After a rescaling by h and a shift into the origin, the local geometry is as

follows:

ΣM := {x ∈ Rn |x · θ < 0} , ΣL := {x ∈ Rn |x · θ > 0} ,
ΣL,B := {x ∈ ΣL | 0 < x · ν < b} , ΣL,A := {x ∈ ΣL | b− 1 < x · ν < 0} ,

compare the right part of Figure 3. We emphasize that only three regions of unit
dimensions are considered.

We claim that there exists a bounded vector field p : ΣL → Rn with support
in {x ∈ ΣL |x · θ < 1} and with the properties

∇ · p = 0 in ΣL , (2.17)

p · θ = jA − e1 on ∂ΣL,B ∩ ∂ΣL , (2.18)

p · θ = jA −
ν1

ν · Aν
Aν on ∂ΣL,A ∩ ∂ΣL , (2.19)

p · ν = 0 on ∂
(
ΣL,A ∪ ΣL,B

)
\ ∂ΣL . (2.20)

The divergence in the first line is understood in the sense of distributions. The
function can be constructed in R2 as follows: We use an ansatz with a rotated
gradient, p := ∇⊥Φ = (−∂2Φ, ∂1Φ) with a smooth function Φ that is piecewise
affine on the boundary ∂

(
ΣL,A ∪ ΣL,B

)
. The fact that the total flux vanishes by

(2.16) implies that Φ can be chosen such that it vanishes on ∂
(
ΣL,A ∪ ΣL,B

)
\∂ΣL.

This allows, in particular, to choose a compactly supported function Φ. The
rotated gradient p has all the desired properties. In higher dimension, the two-
dimensional function can be extended as a constant function in the remaining
directions.

Rescaling p as ph(x) := p(x/h) and extending the function ph first periodically
with period h in all directions perpendicular to θ, then extending the result peri-
odically with period

√
h in direction θ, we obtain a function ph that has the same

distributional divergence as jh, see (2.14) and (2.15).
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We construct Jh(x) := jh − ph. This choice assures ∇ · Jh = 0. Furthermore,
the strong convergence jh − Jh = ph → 0 in L2(Q) is a consequence of the
boundedness of p together with the fact that ph 6= 0 holds only on a set with
volume fraction of order h/

√
h =
√
h.

This concludes the proof for f = 0. If a function Jh with ∇ · Jh = f 6= 0 has
to be constructed, it suffices to add an h-independent function Jf as in the proof
of Lemma 2.3.

3 Necessary conditions for relaxed data points

The goal of this section is to prove the inclusion

Drelax
∗ ⊂ C ∪ DAloc , (3.1)

which is the inclusion in the claim of Theorem 1.2 that is not yet shown. In order
to show (3.1), it suffices to fix an arbitrary pair of vectors (g, j) ∈ Drelax

∗ ⊂ Rn×Rn

and to show (g, j) ∈ C ∪ DAloc.
By Definition 1.1, the condition (g, j) ∈ Drelax

∗ means that there exist sequences
(gh, jh) and (Gh, Jh) and a limit (G, J) ∈ E such that

gh ⇀ g , jh ⇀ j , Gh ⇀ G, Jh ⇀ J in L2(Q;Rn),

gh −Gh → g −G , jh − Jh → j − J in L2(Q;Rn) ,

as h → 0. The pairs (Gh, Jh) are in E , i.e.: Gh = ∇Uh is the gradient of some
Uh ∈ H1

0 (Q) and ∇ · Jh = f . The pairs (gh, jh) are in the data set D of (1.7).

3.1 Calculations for A = id and n = 2

In this subsection, we obtain (3.1) in a simple case, namely A = id and n = 2.
The general case is treated in the next subsection and does not use any of the
intermediate results of this section, which is included only in order to illustrate
the approach in a simple setting.

For a sequence (gh, jh) we denote by Bh ⊂ Q those points x ∈ Q for which
(gh(x), jh(x)) is in DBloc of (1.5),

Bh :=
{
x ∈ Q | (gh(x), jh(x)) ∈ DBloc

}
=
{
x ∈ Q | gh(x) = 0, jh(x) = e1

}
. (3.2)

The complement is denoted as Ah := Q \ Bh. Because of the bounds 0 ≤ |Bh| ≤
|Q|, we can select a subsequence h → 0 (not relabelled) and a limit b ∈ [0, |Q|]
such that

b = lim
h→0

|Bh|
|Q|

. (3.3)
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Averages. We can calculate, using the weak convergence of gh, the property
gh(x) = 0 for x ∈ Bh, then gh(x) = jh(x) for x ∈ Ah, then gh(x) = e1 for x ∈ Bh,
and finally the weak convergence of jh:

g |Q| ←
∫
Q

gh =

∫
Ah

gh =

∫
Ah

jh =

∫
Q

jh −
∫
Bh

e1 → (j − be1) |Q| . (3.4)

We conclude j = g+be1. With reference to Figure 1, we see that the point (g1, j1)
is above the diagonal.

Div-curl lemma. The convergence properties allow to calculate integrals over
the product gh · jh. In the subsequent calculation, we use the standard div-curl
lemma in L2(Q) for the product Gh ·Jh, and the strong convergence of differences
in the other terms. In the limit h→ 0, we obtain∫

Q

gh · jh =

∫
Q

(Gh + (gh −Gh)) · (Jh + (jh − Jh))

→
∫
Q

G · J +

∫
Q

G · (j − J) +

∫
Q

(g −G) · j =

∫
Q

g · j .

Calculation 1 with the div-curl lemma. We calculate with the div-curl
lemma, exploiting gh(x) = 0 for x ∈ Bh and gh(x) = jh(x) for x ∈ Ah:∫

Q

g · j ←
∫
Q

gh · jh =

∫
Ah

gh · jh =

∫
Ah

|gh|2 =

∫
Q

|gh|2 . (3.5)

Forming the limes inferior (and recalling that g and j are constant functions), we
obtain |g|2 ≤ g · j. Hence, because of j2 = g2, the relation g21 ≤ g1 j1 = g21 + bg1.
This implies, in particular,

b > 0 ⇒ g1 ≥ 0 . (3.6)

Referring to Figure 1, we see that (g1, j1) is to the right of the vertical axis.

Calculation 2 with the div-curl lemma. We now exploit the div-curl lemma
slightly differently:∫

Q

g · j ←
∫
Q

gh · jh =

∫
Ah

gh · jh =

∫
Ah

|jh|2 =

∫
Q

|jh|2 −
∫
Bh

1 . (3.7)

Forming the limes inferior, we obtain |j|2 ≤ b + g · j. Inserting j2 = g2 and
j1 = g1 + b we obtain j21 ≤ b+ (j1 − b) j1, which provides b(1− j1) ≥ 0. We have
found

b > 0 ⇒ j1 ≤ 1 . (3.8)

In Figure 1, the point (g1, j1) is below the horizontal line j1 = 1.
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The cone conditions. The above considerations do not imply any conditions
for the second components, g2 and j2. With the next calculation, we do not only
find conditions for g2, but we additionally reproduce most of the above findings.

Assuming b 6= 1, we use the shorthand notation β := (1− b)−1 and calculate

0 ≤
∫
Ah

|gh − βg|2

=

∫
Ah

{
gh · gh − 2βgh · g + β2|g|2

}
=

∫
Q

{
gh · jh − 2βgh · g + β2|g|2

}
− β2|g|2|Bh|

→ |Q|
(
g · j − 2βg · g + β2|g|2 − bβ2|g|2

)
.

Dividing by |Q|, this yields

0 ≤ g · j − 2βg · g + β2|g|2 − bβ2|g|2

= g · (g + be1) + |g|2(−2β + β2 − bβ2)

= bg1 + |g|2
(
1− 2β + β2 − bβ2

)
= bg1 + |g|2((1− β)2 − bβ2) .

Using (1− β)2 = (1− 1
1−b)

2 = b2β2 and (b− 1)β = 1 we find

0 ≤ bg1 + |g|2(b2β2 − bβ2) = bg1 − bβ|g|2 . (3.9)

Inequality (3.9) yields the desired restrictions on the pair (g, j). We distinguish
three cases.

In the case b = 0 the relation j = g + be1 = g implies (g, j) ∈ DAloc.
In the case b = 1 there holds g ↼ gh = gh1Ah ⇀ 0 by strong convergence

1Ah → 0. Hence, in this case, g = 0 and j = g+be1 = e1. This yields (g, j) ∈ DBloc.
In the case b ∈ (0, 1) we conclude with (3.9): |g|2 ≤ (1 − b)g1 can be written

as (
g1 −

1− b
2

)2

+ g22 ≤
(

1− b
2

)2

.

This is the defining relation of the cone C, compare (1.20). Claim (3.1) is shown
for A = id and n = 2.

3.2 The general case

In this subsection, we treat the case of a general matrix A. Moreover, we show
a result on Drelax, and not only a result on Drelax

∗ . The proof of Theorem 1.2
is complete with relation (3.10) of the subsequent proposition. The proposition
provides additionally relation (3.12), which is slightly stronger.
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Proposition 3.1. There holds

Drelax
∗ ⊂ C ∪ DAloc . (3.10)

Moreover, with Drelax of Definition 1.1 and with

DC∪D
A
loc

fct :=
{

(g, j) ∈ L2(Q;Rn)2 | (g, j)(x) ∈ C ∪ DAloc for a.e. x ∈ Q
}
, (3.11)

there holds
Drelax ⊂ DC∪D

A
loc

fct . (3.12)

Proof. We note that (3.12) implies (3.10). Indeed, let (g, j) ∈ Drelax
∗ be a pair of

vectors in Rn×Rn. Once more we identify the vectors with constant functions on
Q. The constant functions are in Drelax by definition of Drelax

∗ , see (1.9). Relation

(3.12) implies (g, j) ∈ DC∪D
A
loc

fct . Since the functions are constant, there holds
(g, j) ∈ C ∪ DAloc. This shows (3.10).

Step 1: Preparation. In order to prove (3.12), we fix a pair (g, j) ∈ L2(Q;Rn)2

in the relaxed data set Drelax, which means that there exist sequences (gh, jh) in
D and (Gh, Jh) in E with data convergence such that (gh, jh) weakly converges to
(g, j). Our aim is to show (g(x), j(x)) ∈ C ∪ DAloc for almost every x ∈ Q.

The approximating sequences (gh, jh) inD and (Gh, Jh) in E with limit (G, J) ∈
E satisfy, as h→ 0,

gh ⇀ g , jh ⇀ j , Gh ⇀ G, Jh ⇀ J in L2(Q;Rn),

gh −Gh → g −G , jh − Jh → j − J in L2(Q;Rn) .

We denote by Bh ⊂ Q those points x ∈ Q for which (gh(x), jh(x)) is in DBloc,

Bh :=
{
x ∈ Q | (gh(x), jh(x)) ∈ DBloc

}
=
{
x ∈ Q | gh(x) = 0, jh(x) = e1

}
.

(3.13)
The complement is denoted as Ah := Q\Bh. Because of the bound 0 ≤ |Bh| ≤ |Q|,
we can select a subsequence (not relabeled) and a limit b ∈ L∞(Q) such that

1Bh → b weakly-* in L∞(Q) as h→ 0, 0 ≤ b(x) ≤ 1 for a.e. x ∈ Q .
(3.14)

As a consequence, 1Ah → (1− b) weakly-* in L∞(Q).

Step 2: Localization. For any ϕ ∈ L2(Q;Rn) we can calculate, using the weak
convergence of gh, the property gh(x) = 0 for x ∈ Bh, then Agh(x) = jh(x) for
x ∈ Ah, then gh(x) = e1 for x ∈ Bh, and finally the weak convergence of jh:∫

Q

ϕ · Ag ←
∫
Q

ϕ · Agh =

∫
Ah

ϕ · Agh =

∫
Ah

ϕ · jh

=

∫
Q

ϕ · jh −
∫
Bh

ϕ · e1 →
∫
Q

ϕ · (j − be1) . (3.15)

This shows
Ag = j − be1 in Q . (3.16)
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In particular, we find (g, j)(x) ∈ DAloc for almost all x ∈ {x ∈ Q | b(x) = 0}.
Step 3: Div-curl lemma. The data convergence properties allow to calculate

the distributional limit of the product gh · jh. In the subsequent calculation, we
use the standard div-curl lemma in L2(Q) for the product Gh · Jh, and the strong
convergence of differences in the other terms. In the limit h → 0, we obtain for
any ϕ ∈ C∞c (Q)∫

Q

ϕ gh · jh =

∫
Q

ϕ (Gh + (gh −Gh)) · (Jh + (jh − Jh))

→
∫
Q

ϕG · J +

∫
Q

ϕG · (j − J) +

∫
Q

ϕ (g −G) · j =

∫
Q

ϕ g · j .

Step 4: The cone condition. We choose ε > 0 and set βε := (1− b+ ε)−1. For
arbitrary ϕ ∈ C∞c (Q) with ϕ ≥ 0 we can calculate, exploiting the positivity and
symmetry of A,

0 ≤
∫
Ah

ϕ (gh − βεg) · A(gh − βεg)

=

∫
Ah

ϕ
[
gh · Agh − 2βεg

h · Ag + β2
εg · Ag

]
=

∫
Q

ϕ
[
gh · jh − 2βεg

h · Ag
]

+

∫
Q

ϕ1Ahβ2
εg · Ag . (3.17)

Using the div-curl lemma, the strong convergence of differences and the weak-*
convergence of 1Ah we deduce

0 ≤
∫
Q

ϕ [g · j − 2βεg · Ag] +

∫
Q

ϕ (1− b)β2
εg · Ag

=

∫
Q

ϕ
[
bg1 + g · Ag

(
1− 2βε + (1− b)β2

ε

)]
, (3.18)

where we have used that j = be1 +Ag. Since ϕ was arbitrary, almost everywhere
in Q holds

0 ≤ bg1 + g · Ag
(
1− 2βε + (1− b)β2

ε

)
. (3.19)

Evaluating this inequality in {b = 1} = {βε = ε−1}, we find g ·Ag ≤ ε
2−εg1 in this

set. Since ε > 0 was arbitrary, we find g = 0 and j = e1 almost everywhere in
{b = 1}. In particular, (g, j)(x) ∈ DBloc ⊂ C for almost all x ∈ {b = 1}.

We next consider the set {0 < b < 1}. In this set, for ε → 0, there holds
βε → 1

1−b . Relation (3.19) implies

0 ≤ g1 −
1

1− b
g · Ag

almost everywhere in {0 < b < 1}. This is one of the defining relations of the
cone C, compare (1.10). Combined with (3.16), we obtain that (g, j) ∈ C almost
everywhere in {0 < b < 1}.

Finally, in {b = 0}, relation (3.16) yields (g, j) ∈ DAloc. This provides (3.12)
and concludes the proof of the proposition.
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A Appendix

We show here a property of the cone C of (1.10) and (1.11): Every inner point of
the cone can be written as a convex combination of two points on the boundary;
the results is nontrivial, since the additional requirement (2.11) has to be satisfied.
The result was used in the construction of iterated laminates in Lemma 2.4.

Lemma A.1. Let pC = (gC , jC) ∈ C̊ be given. Then there exist two points
pA ∈ DAloc and pL ∈ ∂latC and a parameter λ ∈ (0, 1) such that (2.10) and (2.11)
hold.

Proof. Since pC ∈ C̊ is an inner point of the cone, there exists b ∈ (0, 1) such that
jC = be1 + AgC and

gC · AgC < (1− b)gC · e1 . (A.1)

We set ν := αgC with α := (gC · AgC)−1/2. The choice of α implies ν · Aν = 1.
Given ν, we set

gA := gC + bν1ν =
( 1

α
+ bν1

)
ν , jA := AgA .

This choice guarantees (gA, jA) ∈ DAloc. Next, for some bL ∈ [0, 1] to be determined
below, we define

gL :=
bL
b

(gC − gA) + gA =
(

(b− bL)ν1 +
1

α

)
ν , (A.2)

jL := bLe1 + AgL . (A.3)

The condition (gL, jL) ∈ ∂latC is equivalent to the condition

0
!

= gL · AgL − (1− bL)gL · e1

= (b− bL)2ν21 +
2

α
(b− bL)ν1 +

1

α2
− (1− bL)

(
(b− bL)ν1 +

1

α

)
ν1

= (b− bL)
[
(b− bL)ν21 +

2

α
ν1

]
+

1

α2
− (b− bL)

(
(b− bL)ν1 +

1

α

)
ν1

− (1− b)(b− bL)ν21 − (1− b) 1

α
ν1

= (b− bL)
[
− (1− b)ν21 +

1

α
ν1

]
+

1

α2
− (1− b) 1

α
ν1

= (b− bL)
[
− (1− b)α2(gC · e1)2 + (gC · e1)

]
+

1

α2
− (1− b)gC · e1

= (b− bL)α2(gC · e1)
[
− (1− b)gC · e1 +

1

α2

]
+

1

α2
− (1− b)gC · e1

=
(

(b− bL)α2(gC · e1) + 1
)[ 1

α2
− (1− b)gC · e1

]
.

We note that the expression on the right hand side is negative for bL = b by (A.1).
On the other hand, for bL = 1, the expression on the right hand side is a product



M.Röger, B. Schweizer 23

of two identical terms and hence nonnegative. This implies that there exists a
value bL ∈ (b, 1] such that the expression vanishes. For this parameter bL, the
above condition is satisfied and hence (gL, jL) ∈ ∂latC.

We set λ := b
bL
∈ (0, 1). With this choice, by definition of gL in (A.2), we

obtain gL = 1
λ
(gC − gA) + gA and therefore

gC = λgL + (1− λ)gA . (A.4)

Regarding the component j, we find

λjL + (1− λ)jA = λ(bLe1 + AgL) + (1− λ)AgA

= λbLe1 + A(λgL + (1− λ)gA) = be1 + AgC = jC .

Together with (A.4), this shows (2.10).
Finally, the definitions of gA, gL, jA, and jL imply gA−gL = bL

b
(gA−gC) = bLν1ν

and hence

(gA − gL) · (jA − jL) = (gA − gL) · (AgA − bLe1 − AgL)

= (gA − gL) · A(gA − gL)− bLe1 · (gA − gL)

= b2Lν
2
1ν · Aν − bLe1 · (bLν1ν) = 0 .

This shows (2.11) and completes the proof of the lemma.
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