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Abstract: We study a pore scale model for the catalyst layer on the cath-
ode side of a fuel cell, where hydrogen and oxygen combine at catalyst
sites. Our model distinguishes microscopically the phases of rigid struc-
ture, electrolyte, pore-space, and catalyst. The oxygen concentration and
the protonic potential are described by diffusion equations with reaction
terms on the catalyst’s surface. For the limit of a vanishing pore size we
derive homogenized equations of reaction-diffusion type and provide for-
mulae for the effective coefficients. A dimensional reduction shows that a
thin catalyst layer can be replaced by a boundary condition. We further-
more analyze the effect of a doubling of the Tafel slope for high protonic
potentials and determine effective constants.

1 Introduction

A fuel cell is an electrochemical device that converts chemical energy into electrical
energy, having water and heat as by-products. The proton exchange membrane
(PEM) fuel cell is among the most favorable candidates for replacing the internal
combustion engine in automobiles and batteries in portables. The reactant gases
are hydrogen and oxygen, where the latter is provided by ambient air. A typical
fuel cell consists of an anode flow channel, anode diffusion layer, anode catalyst
layer, membrane, cathode catalyst layer, cathode diffusion layer and cathode flow
channel (see Figure 1). The principal mechanism is that a hydrogen molecule splits
into two electrons and two hydrogen ions on the anode side, the ions travel through
the PEM while the electrons are conducted through the external circuit, providing
the electrical energy. In the cathode catalyst layer, hydrogen ions, electrons and
oxygen combine to water molecules.

One of the main sources of energy loss in a PEM fuel cell is the slow kinetic
of the oxygen reduction reaction (ORR) at the catalyst particles in the cathode
catalyst layer. The description of the fuel cell cathode, especially the modeling of
the mass and charge transfer limitations within the active cathode layer, is therefore
of particular importance. In literature, different models are suggested to describe
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Figure 1: Sketch of a proton exchange membrane (PEM) fuel cell.

the cathode. A compact overview of these models is given e.g. in [15]. In the next
subsection we give a description of the three principal models.

1.1 Three simplified models for the cathode active layer

The catalyst layer as a homogeneous region

In the simplest model (described e.g. in [1], [3], [4], [10]), the microscopic structure
of the catalyst layer is neglected and the layer is replaced by a homogeneous material
(see Figure 2(a)). This meta-material is permeable for gas as if there was pore space,
conducting protons like the electrolyte, conducting electrons like the carbon based
structure, and oxygen reduction is everywhere possible as if catalyst particles were
homogeneously distributed. The kinetics are often described in one-dimensional
models, z being the coordinate across the layer, and the ohmic drop for electrons
is neglected. For an isothermal system under steady state conditions, local mass
and charge balances then lead to the equations

D
∂2C

∂z2
− γ

L

1

qF
i0
C

C0
exp

(

2.3η

b

)

= 0,

κ
∂2η

∂z2
− γ

L
i0
C

C0
exp

(

2.3η

b

)

= 0,

where C is the oxygen concentration and η is the protonic potential, for the
meaning and for typical values of the physical constants see appendix B. The
neighboring layers of the catalyst layer are not modeled but rather replaced
by boundary conditions, C = C0 and ∂zη = 0 at z = 0 (the gas diffusion
layer interface), and η = η0 and ∂zC = 0 at z = L (the PEM interface). The
exponential expression in η reflects the Tafel law which models the multistep
reaction mechanism of oxygen reduction.
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Figure 2: (a) The catalyst layer as a homogeneous meta-material. (b) Catalyst
particles included in the electrolyte.

Catalyst particles immersed in electrolyte

Bultel et al. [3] propose a modified model in which spherical catalyst particles are
distributed in a regular hexagonal three-dimensional fashion within the electrolyte
(Figure 2(b)). The equations to describe the oxygen concentration and the protonic
potential are ∇· (D∇C) = 0 and ∇· (κ∇η) = 0 away from the spherical inclusions,
with the electrochemical Tafel law as the boundary condition for i = κ∂nη along
the electrolyte-particle interface,

i = i0

[

C

C0
exp

(

2.3η

b

)]

. (1.1)

The main feature of the modified model is its sensitivity to diffusion resistance –
at high reaction rates, it is possible that the oxygen concentration is significantly
different far from the catalyst particles and at the particle boundaries, where it
is consumed. The numerical comparison between the two models reveals good
agreement at moderate reaction rates. Instead, when the reaction is concentrated
in a region of few particles, the models provide different profiles in that region (see
Figure 10 in [3]).

In this work we show with mathematical rigour that, in the limit of a vanishing
particle size, the homogeneous model describes well the behavior of the solution of
the particle model. The only modification regards the coefficients in the homoge-
neous model, which must be adapted in a way that involves the local geometry. We
mention already here that our model is three dimensional, that it is general enough
to include additionally the pore-space and the carbon-based structure, and that it
is not limited to spherical catalyst particles.

Catalyst-electrolyte agglomerates distributed in pore space

The drawback of the previous model is the absence of gas pores, which is not real-
istic, see [8]. In the agglomerate model, the catalyst and the electrolyte are in fine
mixture to form an agglomerate, much as the meta-material in the homogeneous
model (see Figure 3). Agglomerate particles of cylindrical [4] or spherical [5], [7]
shape are then distributed to leave the pore space for fast transport of gas.
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Figure 3: Agglomerates distributed in pore space.

The agglomerate model introduces a new effect for high protonic potentials.
The oxygen reaching the single agglomerate reacts, due to the fast kinetics, in
the vicinity of the boundary, and the interior catalyst particles can not contribute
to the reaction. A dimensional analysis shows that the active layer has a size of
order 1/

√
e2.3η/2b for high potentials η. This leads to a production rate which is

proportional to e2.3η/2b or, in other words, to a doubling of the Tafel slope b. The
effect is studied e.g. in [7], where also a doubling of the Tafel slope due to the
limitation of proton migration across the active layer is discussed. In [5], a similar
agglomerate model is studied in the time-dependent case. Our analysis does not
show the doubling of the Tafel slope due to pore scale transport limitations. On
the other hand, we find a doubling of the Tafel slope as a consequence of transport
limitations through the catalyst layer. The result is made precise in Section 3.2,
where also the effective constant is determined.

1.2 The general pore-scale model and effective equations

In the present paper, we derive effective equations for the catalyst layer. Starting
from a three-scale microscopic model with a periodic geometry and using equations
for the oxygen concentration and the overpotential with boundary conditions at the
catalyst particle − electrolyte interface, we deduce the effective equations for the
averaged concentration and the averaged overpotential as ε tends to zero, ε being
the small parameter describing the typical pore size.

We base our model on the modified equations proposed in [3] and the other
models described before. Our model concentrates strictly on the cathode catalyst
layer, it is single-phased and isothermal. The starting point is a surface reaction
law which reads, in physical units,

D∂nC =
i0
qF

C

C0
e2.3η/b molar flux, unit

mol

sm2

κ∂nη = i0
C

C0
e2.3η/b protonic flux, unit

A

m2

In order to non-dimensionalize the equations, we introduce Cε = C
C0

, ηε = 2.3η
b ,

and permeabilities µη = 2.3i0
κ·b ·m, µC = i0

D·qF ·C0

·m, where m stands for the unit of
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one meter. We prove that the non-dimensional effective equations are (2.6)–(2.9).
Transforming them back into physical units they read

D∇ · (MC∇C) = |∂K|i0
1

qF

C

C0
e2.3η/b (1.2)

κ∇ · (Mη∇η) = |∂K|i0
C

C0
e2.3η/b (1.3)

where |∂K| stands, in dimensionalized units, for the total surface of catalyst par-
ticles per unit volume, a number which must be compared with γ/L from [3].
The effective diffusion matrix Mη = (mij)ij ∈ R

n×n can be calculated from the
cell-problem

mij :=

∫

E

(∇w∗
i + ei)j =

∫

E

(∂jw
∗
i + δij) , (1.4)

where w∗
i are solutions of the diffusion problem (2.22) in the single cell. A similar

expression with the solutions w∗
i of cell problem (2.27) determines MC . In par-

ticular, all constants of the effective equation are determined. Hence the result of
our analysis is an effective equation which is similar to the simplified model with
a homogeneous layer, with coefficients adjusted according to the geometry of the
single cell.

We wish to verify the underlying assumption of the particles being small com-
pared to typical dimensions. We note that in [3] a particle size of order 10−8 is
assumed, while the thickness of the layer is of order 10−6. The comparison yields
the desired result. It is important to note that the order of the non-dimensional
coefficients is µC ∼ 10−2 and µη ∼ 100. A relevant question concerns the size of
the quantity |∂K| which is, comparing with the effective equation in [3], of order
106. In our analysis, this quantity is assumed to be fixed, while the small quantity
ε ∼ 10−8 is sent to zero. We emphasize that some constants must be kept fixed
and large, since we are deriving an equation which contains a large coefficient — a
fact that is exploited in the next step to perform a dimensional reduction.

1.3 Dimensional reduction

We consider two regimes. The first regards the case of catalyst layers of small
width L = δ, where we assume that the relative production rates can be written
as |∂K|µC = 1

δµ
∗
C and |∂K|µη = 1

δµ
∗
η. This assumption is met, since both 1/δ and

|∂K| are of the order of 106 1
m . Starting from time dependent equations, we show

that, in the limit δ → 0, the oxygen concentration satisfies the effective equations

τ
∂C

∂t
−D∆C = 0 in Ω0 (1.5)

D∂nC = δ|∂K|i0
1

qF

C

C0
e2.3η0/b on Σ0 (1.6)

where Ω0 stands for the gas diffusion layer (GDL) and Σ0 for the GDL-PEM inter-
face, τ > 0 is a constant. The equations are derived in their dimensionless form in
(3.9)-(3.10).

If, instead, the potential is large in comparison with the layer thickness, then
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the effective equation for the oxygen concentration in the gas diffusion layer is

τ
∂C

∂t
−D∆C = 0 in Ω0 (1.7)

D∂nC =
κ b

2.3qF
β∗

1

√

C

C0
e2.3η0/(2b) on Σ0 (1.8)

We refer to Proposition 1 from Section 3.2 for the definition of β∗
1 ≈ 1.413. The

effective equation is derived in the one-dimensional setting with a constant oxygen
concentration in the layer in (3.21). Interpreted in physical terms, β∗

1 expresses a
slope and has the unit 1/m.

Which of the two above models, (1.6) or (1.8), is adequate for the description
of the catalyst layer depends on the two quantities e−2.3η0/2b and δ, the latter
measured in meter. In the example of [3], the two quantities are comparable,
the first with a range of 10−5 − 10−3 (depending on the Tafel slope), the second
10−6. For a more precise estimate one has to take into account the large coefficient
|∂K| ∼ 106, which makes the penetration depth smaller by a factor of 103. With
this factor, 10−3e−2.3η0/2b can indeed be considerably smaller than δ, hence the
doubling of the Tafel slope becomes visible.

A simple possibility to take into account both limiting behaviors over a range
of η0-values would be to couple the equation for the oxygen concentration with the
minimum of the two expressions of (1.6) and (1.8).

2 Homogenization of the pore scale model

2.1 Pore scale geometry

Our analysis concerns boundary value problems in macroscopic domains Ω =
(0, L1) × (0, L2) × (0, L3) ⊂ R

3. We restrict here to the physically interesting
case of three space dimensions. In lower dimensional cases the connectedness of
the two components can not be realized; higher dimensions could be treated with
our methods.

The microscopic structure of the medium is assumed to be periodic with peri-
odicity cell Y = (0, 1)3. For a sequence of small parameters ε > 0 we assume that
the macroscopic domain is decomposed as

Ω =
⋃

k∈Iε

Y ε
k +N, Iε ⊂ {k ∈ Z

3 : εk ∈ Ω̄}, Y ε
k = ε(k + Y ),

where N denotes a subset of boundaries, N ⊂ ⋃k ∂Y
ε
k . We note that the order of

the index set is |Iε| ∼ ε−3.
The microscopic structure in a single cell Y ε

k is sketched in Figure 4. Three
major components are present in each cell, the carbon-based structure S, the elec-
trolyte E , and the pore space P . In our model we assume that S, E ,P ⊂ Y are open
and pairwise disjoint subsets such that Ȳ = S̄ ∪ Ē ∪ P̄ . We denote the structure
phase in the single cell by Sε

k := ε(S + k) ⊂ Y ε
k , and the total contribution of the

structure to the macroscopic domain by Sε ⊂ Ω, the interior of the union
⋃

k S̄ε
k.

In the same way we define Eε
k, Eε, and Pε

k, Pε. We assume that the boundaries
∂Sε \ ∂Ω and ∂(Ēε ∪ P̄ε) \ ∂Ω are of class C2 and that Eε is connected.
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P
S

E

K

Y

Figure 4: Sketch of a possible unit cell in the detailed pore scale model. P denotes
the pore space, E the electrolyte, S the carbon based structure, K are catalyst
incluions.

Responsible for the electrochemical reactions in each cell is the catalyst. It
appears in form of small inclusions of platinum surrounded by electrolyte. Since
the relative diameter of the catalyst inside each cell depends on ε, we do not treat
the catalyst as an independent phase but rather assume that there is a point yc ∈ E
which describes the position of the center of the catalyst inclusion. The relative
diameter of the catalyst particles is denoted by rε > 0. We model the situation
that the total surface of the catalyst remains of order 1 when ε→ 0. Since, in three
dimensions, the total surface is of order |Iε| · (εrε)2, we set rε =

√
ε. The shape

of catalyst is given by an open and bounded set K ⊂ B1(0) ⊂ R
3 with Lipschitz

boundary. We set

Kε
k = ε(k + yc + rεK), Kε =

⋃

k∈Iε

Kε
k.

We will always consider ε small enough to have Kε ⊂ Eε.

Other notations are as follows. H2 denotes the two-dimensional Hausdorff mea-
sure and L3 the three-dimensional Lebesgue measure, in integrals we also write dx
or dy instead of dL3. For sets Q, the symbol 1Q denotes the characteristic function
which equals 1 on Q and vanishes elsewhere. The average of a function f over a
set Q is denoted by −

∫

Q
f := |Q|−1

∫

Q
f . The letter c denotes constants that are

independent of ε, its value may change from one line to the next.

2.2 Pore scale equations

We introduce the domain Ωε
C as the subset of Ω with presence of oxygen. This is the

interior of the set P̄ε ∪ Ēε\Kε. The variable describing the oxygen concentration is
denoted by Cε : Ωε

C → R. Similarly, we denote the set with the presence of protons
by Ωε

η, defined as the interior of the set Ēε\Kε. The exterior normal vector to Ωε
η

is denoted by n, n points into Kε on ∂Kε. The variable describing the protonic
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potential is denoted by ηε : Ωε
η → R, it satisfies

∆ηε = 0 in Ωε
η

∂nη
ε = −µηC

εeηε

on ∂Kε

∂nη
ε = 0 on ∂Eε\∂Ω

(2.1)

The equations for the oxygen concentrationCε are coupled to the protonic potential
as follows:

∇ · (Dε(x)∇Cε) = 0 in Ωε
C

Dε(x) =

{

D1 if x ∈ Pε

D2 if x ∈ Eε

(Dε∇Cε) · n = −µCC
εeηε

on ∂Kε

(Dε∇Cε) · n = 0 on ∂Sε \ ∂Ω

(2.2)

Here, µη and µC are the coefficients that relate the flux with the concentration.

To complete the system of equations we have to impose exterior boundary
conditions on ∂Ω. We decompose this macroscopic boundary as ∂Ω := ΓM ∪
ΓGDL∪Γper with ΓM := (0, L1)× (0, L2)×{L3} the membrane interface, ΓGDL :=
(0, L1)×(0, L2)×{0} the gas diffusion layer interface, and Γper := ∂Ω\(ΓM∪ΓGDL)
the lateral boundaries. We impose as macroscopic boundary conditions

on ΓM : ηε = η0 given, (Dε∇Cε) · n = 0

on ΓGDL : Cε = C0 given, ∂nη
ε = 0

on Γper : Cε, ηε periodic

(2.3)

The periodicity assumption is made for simplicity, no-flux conditions can be treated
with the same results. We assume here that η0 and C0 are real numbers and, since
Cε models a concentration, additionally C0 ≥ 0. Our results remain valid for
C0, η0 ∈ H1/2 ∩ L∞ with C0 ≥ 0.

2.3 Effective equations

We derive effective equations for our three-scale model for the catalyst layer using
the method of oscillating test-functions. In order to have the unknown variables
defined on all of Ω we identify the functions ηε and Cε with their trivial extensions.

We define the volume fractions Vη := |E|
|Y | and VC := |P∪E|

|Y | , and the effective reaction

constants µ̄η := µη|∂K| and µ̄C := µC |∂K|.

Theorem 1. For a subsequence holds:

1

Vη
ηε ⇀ η0 and

1

VC
Cε ⇀ C0 weakly in L2(Ω) (2.4)

iε := −1Ωε
η
∇ηε ⇀ i0 and jε := −1Ωε

C
Dε(x)∇Cε ⇀ j0 weakly in L2(Ω). (2.5)

The averaged protonic potential η0 : Ω → R with flux i0 and the averaged oxygen
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concentration C0 : Ω→ R with flux j0 satisfy, in the distributional sense in Ω,

∇ · i0 + µ̄ηC
0eη0

= 0 (2.6)

i0 = −Mη∇η0 (2.7)

∇ · j0 + µ̄CC
0eη0

= 0 (2.8)

j0 = −MC∇C0, (2.9)

where the effective coefficients Mη and MC are determined with (2.24) and (2.28)
below. The boundary conditions on ∂Ω remain unchanged, in the weak sense holds

η0 = η0, j
0 · n = 0 on ΓM (2.10)

C0 = C0, i
0 · n = 0 on ΓGDL (2.11)

C0, η0 periodic on Γper. (2.12)

2.4 Proof of Theorem 1

This section is devoted to the proof of the homogenization result. We use the
method of oscillating test-functions, since this method is more flexible than two-
scale convergence: it is applicable, e.g., in stochastic problems [9] or in differential
inclusion problems [11]. In the present setting we need the flexibility to treat the
catalyst inclusions of size ε3/2. There are two technical ingredients that are not
standard: One is a result comparing averages on the catalyst surfaces with averages
in the cell, exploiting the property of a finite flux (Lemma 2). The second is a
modification of the lemma on compensated compactness in the setting of measure
convergence (Lemma 3).

A-priori estimates

We start by collecting a priori estimates for the sequence (Cε, ηε) of solutions.
1. Maximum principles. We first note that the oxygen concentration is non-

negative everywhere, Cε ≥ 0. Indeed, the function Cε is harmonic in the pore-space
Pε and in the electrolyte Eε \ K̄ε. We can apply the maximum principle and find
that a negative minimum must be attained on the boundary. It can not lie on
∂Pε ∩ ∂Eε by the continuity of the normal flux and the Hopf lemma, and not on
other boundaries by the boundary conditions. The same argument implies also the
upper bound,

0 ≤ Cε ≤ C0.

The function ηε is harmonic in its domain of definition Ωε
η = Eε \ K̄ε. The

maximum principle implies that the maximum of ηε must be attained on ∂Ω∪∂Kε.
Equation (2.1)b) implies that ∂nη

ε is negative on ∂Kε, hence the maximum of ηε

can not be on this boundary, the Hopf lemma excludes a maximum on ∂Eε \ ∂Ω.
We conclude

sup
Ωε

η

ηε = max
Ω̄ε

η

ηε = η0.

We emphasize that, at this point, we have only an upper bound for ηε, but this is
sufficient for the uniform bound of the exponential term, sup eηε ≤ eη0 .
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2. Energy estimates. We multiply equation (2.2)a) for Cε with Cε−C0 and in-
tegrate over the domain Ωε

C . The boundary integrals at the macroscopic boundaries
vanish and we find

∫

Ωε
C

Dε∇Cε · ∇Cε +

∫

∂Kε

µCC
εeηε

(Cε − C0)dH2 = 0.

Since the diffusion coefficient is strictly positive, we find

∫

Ωε
C

D|∇Cε|2 +

∫

∂Kε

µC |Cε|2eηε ≤ c
∫

∂Kε

µCC
εeηε

C0,

and conclude the boundedness of the left hand side. We exploited here the uniform
boundedness of the two-dimensional volume of ∂Kε,

|∂Kε| =
∑

k∈Iε

(εrε)
n−1|∂K| = L1L2L3

ε3
ε2r2ε |∂K| ≤ c.

Similarly, by a multiplication of equation (2.1)a) with ηε − η0, we find

∫

Ωε
η

|∇ηε|2 +

∫

∂Kε

µηC
εηεeηε ≤

∫

∂Kε

µηC
εeηε

η0,

therefore the boundedness of the left hand side and, in particular, the boundedness
of ∇ηε in L2(Ωε

η), since the function ξeξ is bounded from below for ξ ∈ R. For the
L2-estimate of ηε we exploit the boundary condition ηε = η0 on ΓM and Poincaré’s
inequality for the connected set Ωε

η.
We can now choose subsequences and limit functions such that (Cε, ηε) together

with their gradients converge weakly. For a physical normalization we use the

volume fractions Vη := |E|
|Y | and VC := |P∪E|

|Y | and choose limit functions η0, C0, i0,

and j0 in order to have the weak convergences of (2.4)–(2.5).

Conservation laws (2.6) and (2.8)

Our aim is to derive the conservation law (2.6),

∇ · i0 + µ̄ηC
0eη0

= 0. (2.13)

Let ϕ ∈ C1
0 (Ω) be an arbitrary test-function. Exploiting that ηε is harmonic in Ωε

η,
we find

0 =

∫

Ωε
η

∆ηεϕ = −
∫

Ωε
η

∇ηε · ∇ϕ+

∫

∂Ωε
η

∂nη
εϕ

=

∫

Ω

iε · ∇ϕ− µη

∫

∂Kε

Cεeηε

ϕ.

The convergence iε ⇀ i0 weakly in L2(Ω) provides the limit of the first term. We

set uε := Cεeηε

and u0 := C0eη0

and note that (2.13) follows once we verify

1

|∂K|

∫

∂Kε

uεϕ→
∫

Ω

u0ϕ (2.14)
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for ε → 0 and test-functions ϕ ∈ C0(Ω̄). Both functions Cε and eηε

have an L2-
bounded gradient in their domain of definition. In Lemma 5, (A.2) and (A.3) from
appendix A we show that this fact implies the weak convergence of the product,

1

Vη
uε1Ωε

η
⇀ u0 = C0eη0

in L2(Ω).

Also the function uε has a L2-bounded gradient in Ωε
η,

∇uε = ∇Cεeηε

+ Cεeηε∇ηε bounded in L2(Ωε
η),

since Cε and eηε

are uniformly bounded in L∞. This fact allows to compare
averages over cells with averages over small spheres inside the cells. More precisely,
Lemma 1 below yields the weak convergences as measures

ε3

|∂Bεδ|
∑

k∈Iε

uε H2⌊∂Bεδ(ε(k + yc))−
1

Vη
uε L3⌊Ωε

η ⇀ 0,

ε3

|∂Bεrε
|
∑

k∈Iε

uε H2⌊∂Bεrε
(ε(k + yc))−

1

|∂K|
∑

k∈Iε

uε H2⌊∂Kε
k ⇀ 0,

for ε→ 0 and all δ that are sufficiently small to satisfy Bδ(yc) ⊂ E . Finally, Lemma
2 below implies that the difference of the leftmost terms above vanishes in the limit,
and hence results (2.14). We remark that Lemmas 1 and 5 are very general and
apply to all H1-bounded sequences in homogenization problems, while Lemma 2 is
specific to the problem and exploits the pointwise gradient bound on the interior
boundaries.

Lemma 1. Let uε satisfy a uniform bound

∫

Ωε
η

|∇uε|2 ≤ c0. Then, with the expo-

nents q1 = 2 and q2 = 3/2, the averages

ūε
k := −

∫

Eε
k
\Kε

k

uε, ũε
k := −

∫

∂Kε
k

uε

satisfy for some constant c = c(c0)

∑

k∈Iε

∫

Eε
k
\Kε

k

|uε − ūε
k|2 ≤ cεq1 , (2.15)

∑

k∈Iε

∫

∂Kε
k

|uε − ũε
k|2 ≤ cεq2 . (2.16)

The same result holds for the averages

ūε
k := −

∫

∂Bεδ(ε(k+yc))

uε, ũε
k := −

∫

∂Bεrε (ε(k+yc))

uε.

The estimates are standard, for the convenience of the reader we include the
proof in appendix A. Much more interesting is the following comparison, which
fails for general H1-bounded sequences uε due to a vanishing capacity of Kε.
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Lemma 2. Let uε be harmonic in the ball Bεδ(ε(k+yc)) for every k. Furthermore,

let uε satisfy the uniform bound

∫

Ωε
η

|∇uε|2 ≤ c and let the normal flux be uniformly

bounded, |∂nu
ε|∂Kε | ≤ c. Then averages over boundaries can be compared with each

other:

Mε :=
ε3

|∂Bεδ|
∑

k∈Iε

uε H2⌊∂Bεδ(ε(k + yc))−
ε3

|∂Bεrε
|
∑

k∈Iε

uε H2⌊∂Bεrε
(ε(k + yc))

(2.17)

satisfies Mε ⇀ 0 in the weak sense of measures.

Proof. We first consider a rescaled solution u(x) = uε(εx) and a single rescaled
cell. We investigate balls Bρ(yc) with center in the catalyst position, and radii
ρ ∈ [rε, δ], such that rεK ⊂ Bρ(yc) ⊂ E . We study the averages

U(ρ) := −
∫

∂Bρ(yc)

u = −
∫

∂B1(0)

u(yc + ρx) dH2(x). (2.18)

For harmonic functions in E , the mean value theorem implies that this quantity
does not depend on ρ. Instead, since the function u is harmonic only outside K,
we must do a calculation for the derivative of U(ρ),

∂U(ρ)

∂ρ
=

1

|∂Bρ(0)|

∫

∂Bρ(yc)

∂u

∂ν
dH2. (2.19)

Since u is harmonic in E \ K, the total flux is independent of ρ,
∫

∂Bρ(yc)

∂u

∂ν
dH2 −

∫

yc+rε∂K

∂nu dH2 =

∫

Bρ(yc)\(yc+rεK)

∆u = 0 (2.20)

by the Gauß theorem. We now scale by ε and make use of the boundedness of the
flux along ∂Kε,

F ε :=

∫

ε(yc+rε∂K)

∂nu
ε dH2, |F ε| ≤ c |∂K| |εrε|2 ≤ cε3. (2.21)

We now integrate the rescaled version of (2.19) between εrε and εδ to obtain

|U(εδ)− U(εrε)| =
∣

∣

∣

∣

∣

∫ εδ

εrε

(

1

ρn−1|∂B1|

∫

∂Bρ(εyc)

∂uε

∂ν
dH2

)

dρ

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∫ εδ

εrε

F ε

ρn−1|∂B1|
dρ

∣

∣

∣

∣

∣

≤ cε3/2.

With this estimate we can apply Mε to a continuous function ϕ,

Mε(ϕ) =
∑

k∈Iε

ε3

|∂Bεδ|

∫

∂Bεδ(ε(k+yc))

uε ϕ−
∑

k∈Iε

ε3

|∂Bεrε
|

∫

∂Bεrε (ε(k+yc))

uε ϕ

=
∑

k∈Iε

ε3ϕ(εk)

[

1

|∂Bεδ|

∫

∂Bεδ(ε(k+yc))

uε − 1

|∂Bεrε
|

∫

∂Bεrε (ε(k+yc))

uε

]

+ o(1),
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to conclude

|Mε(ϕ)| ≤ cε3/2 + o(1),

and thus the result Mε ⇀ 0.

Proceeding in the same way as described above, we obtain the conservation law
(2.8),

∇ · j0 + µ̄CC
0eη0

= 0.

The flux relations (2.7) and (2.9)

Our aim now is to derive from the flux definition in the ε-problem iε = −1Ωε
η
∇ηε

the upscaled law i0 = −Mη∇η0 for some geometry dependent matrix Mη. The
method will be that of oscillating test-functions and compensated compactness.
Some additional considerations are necessary due to a vanishing capacity of the
inclusions Kε, as we will see below.

We start with the construction of oscillating test-functions. On the periodicity
cell Y we define functions w∗

j : Y → R in two steps. We first solve on E the problem

∇ · (∇w∗
j + ej) = 0 in E

n · (∇w∗
j + ej) = 0 on ∂E\∂Y

w∗
j is Y -periodic.

(2.22)

Here ej is the j’th unit vector in R
n = R

3. We note that, due to a constant
diffusivity, there is no change of the equation if ej is omitted in the first line. We
emphasize that the second line refers to the traces on the boundary taken from the
domain E . We now continue w∗

j to all of Y by solving the problem

∆w∗
j = 0 in Y \Ē

w∗
j continuous on ∂E\∂Y

w∗
j is Y -periodic.

(2.23)

We note that w∗
j is bounded due to the C2 property of the periodic extension of

∂E . We define the effective diffusion matrix Mη = (mij)ij ∈ R
3×3 as

mji :=

∫

E

(∇w∗
j + ej)i =

∫

E

(∂iw
∗
j + δij) . (2.24)

The functions w∗
j allow to define, for an arbitrary function ψ0 = (ψj)j=1,2,3 ∈

C2
0(Ω,R3), the family of oscillating test-functions

ψε(x) =

3
∑

j=1

ψj(x)[∇yw
∗
j (x/ε) + ej ] .

The idea now is to consider the integral

Jε :=

∫

Ω

iε · ψε = −
∫

Ωε
η

∇ηε · ψε =

∫

Ωε
η

ηε∇ · ψε −
∫

∂Ωε
η

ηεn · ψε.
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We claim the two convergences

Jε =

∫

Ω

iε · ψε →
∫

Ω

i0 · ψ0, (2.25)

Jε =

∫

Ωε
η

ηε∇ · ψε −
∫

∂Ωε
η

ηεn · ψε →
∫

Ω

η0 Mη : ∇ψ0, (2.26)

where Mη : ∇ψ0 =
∑

ij mji∂iψ
j
0. Once this is shown, we have derived the flux-

gradient relation i0 = −Mη · ∇η0.
We start with the verification of (2.26). For the boundary integral we calculate,

using the summation convention,

−
∫

∂Ωε
η

ηεn · ψε = −
∫

∂Eε

0−
∫

∂Kε

ηε(x)ψj(x)n(x) · (∇w∗
j (x/ε) + ej) dH2(x)

=
∑

k∈Iε

∫

∂Kε
k

[

ηε(x)ψj(x)−−
∫

∂Kε
k

ηεψj

]

n(x) · (∇w∗
j (x/ε) + ej) dH2(x)→ 0

for ε→ 0. Here, the average can be inserted since the boundary integral vanishes as
a consequence of the Gauß theorem and ∇· (∇w∗

j +ej) = 0 in Kε
k. The convergence

follows from the lemma on averages, inequality (2.16) in Lemma 1.
For the volume integral in (2.26) we calculate with the summation convention

∫

Ωε
η

ηε∇ · ψε =

∫

Ωε
η

ηε(x)∂iψ
j(x)[δij + ∂yi

w∗
j (x/ε)] dx

=
∑

k∈Iε

∫

Eε
k
\Kε

k

[ηε(x) − η̄ε
k]∂iψ

j(x)[δij + ∂yi
w∗

j (x/ε)] dx

+
∑

k∈Iε

η̄ε
k

∫

Eε
k
\Kε

k

∂iψ
j(x)[δij + ∂yi

w∗
j (x/ε)] dx

→
∫

Ω

η0(x)∂iψ
j(x)

∫

E

[δij + ∂yi
w∗

j ] dx =

∫

Ω

η0(x)mji∂iψ
j(x) dx,

again by Lemma 1. We have thus shown the limit (2.26).
Concerning (2.25), we observe that we do have the L2(Ω) weak convergences

iε ⇀ i0 and ψε ⇀ ψ0, where the latter follows from −
∫

Y ∇yw
∗
i (y) dy = 0. The key

idea is now to use the method of compensated compactness in order to conclude
the correct limit for the product iε · ψε.

Let us try to use compensated compactness in its standard form, as e.g. in [9],
Lemma 4.3. Then we have to show that not only the curl of the second factor, but
also the divergence of the first factor converges strongly in H−1(Ω). But we have

div iε = −µηC
εeηεH2⌊∂Kε,

and this expression does not converge strongly in H−1(Ω), since the capacity of the
holes Kε vanishes. We can therefore not conclude with the standard argument.

Nevertheless, ∇·iε does converge in the weak sense of measures. More precisely,
it converges weakly to −µηC

0eη0 |∂K| by Lemma 1 and Lemma 2. In order to
introduce the product of iε with a gradient, we use the sequence of functions Xε

j :
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Ω→ R, Xε
j (x) := xj +εw∗

j (x/ε), with Xε
j → Xj uniformly in Ω, where Xj : x 7→ xj

is the j’th coordinate function. Using W ε :=
∑3

j=1 ψ
jXε

j we may write

∫

Ω

iε · ψε =

∫

Ω

iε ·



∇W ε −
3
∑

j=1

Xε
j∇ψj



 .

The uniform convergence W ε → W 0 =
∑3

j=1 ψ
jXj allows to use the version of

compensated compactness from Lemma 3 below. Since ψ0 is compactly supported,
we conclude

∫

Ω

iε · ψε →
3
∑

j=1

∫

Ω

i0 ·
[

∇(ψjXj)−Xj∇ψj
]

=

∫

Ω

i0 · ψ0.

This shows (2.25) and thus i0 = −Mη∇η0.
The flux relation (2.9), j0 = −MC∇C0, follows with the same calculations.

With D0 := D11P +D21E , one uses the cell solutions

∇ · (D0(∇w∗
j + ej)) = 0 in E ∪ P ∪ (∂E ∩ ∂P)

n · (D0(∇w∗
j + ej)) = 0 on ∂E\∂Y \ ∂P

w∗
j is Y -periodic,

(2.27)

and defines the effective diffusion matrix MC = (mij)ij ∈ R
3×3 by

mji :=

∫

E∪P

(D0(∇w∗
j + ej))i =

∫

E∪P

D0(∂iw
∗
j + δij) . (2.28)

Regarding the last equality, we recall that in our application D is scalar-valued
with two different values in P and E , respectively.

With this result, the proof of Theorem 1 is complete. The verification of the
macroscopic boundary conditions for the weak limits is a standard calculation; for
the flux boundary conditions one uses a test-function ϕ which does not vanish on
all boundaries in the derivation of the conservation law.

Lemma 3. [A version of compensated compactness] Let iε ⇀ i0 weakly in L2(Ω)
such that div iε is a bounded sequence of measures. Let furthermore ∇W ε ⇀ ∇W 0

weakly in L2(Ω) with

W ε →W 0 uniformly in Ω.

Then iε · ∇W ε ⇀ i0 · ∇W 0 in the sense of distributions.

Proof. We first observe that it suffices to consider W 0 = 0, since for ψ ∈ C∞
0 (Ω)

∫

Ω

iε · ∇W ε ψ =

∫

Ω

iε · ∇(W ε −W 0)ψ +

∫

Ω

iε · ∇W 0 ψ,

and the second integral converges to the desired limit. We now calculate, for
W 0 = 0 and ψ ∈ C∞

0 (Ω),
∫

Ω

iε · ∇W ε ψ = −
∫

Ω

div iε W ε ψ −
∫

Ω

W ε iε · ∇ψ → 0

by the C0(Ω)-convergence W ε → 0 and the boundedness of div iε in the dual space
C0(Ω)′.
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3 Effective equations for catalyst layers

In numerical calculations it is very time consuming to resolve the catalyst layer.
Since the catalyst layer is much thinner than the gas diffusion layer and the mem-
brane, in numerics it is very often treated as an infinitely thin interface between
the gas diffusion layer and the membrane [1], [12].

In this section we derive two reduced models, one for moderate production
rates and thin catalyst layers, the other for high potentials, in which the problem
on the compound object diffusion layer plus catalyst layer is replaced by an effective
equation in the gas diffusion layer which includes the effect of the catalytic reactions
in its boundary condition.

3.1 Thin catalyst layers at moderate production rates

The assumption in this subsection is that the catalyst layer has a thickness δ, and
that the production rates µη, µC are large, more precisely, that they are of order
1/δ. We have seen in the introduction of the present paper that this assumption is
met in fuel cells and we write µη = µ∗

η/δ and µC = µ∗
C/δ. We analyze here the limit

δ → 0 and derive an effective law for the oxygen concentration. A cross section
of the geometry is shown in Figure 5. The domain of interest is composed of the
homogenized catalyst layer Ωδ = (0, L1)×(0, L2)×(0, δ) of thickness δ, and the gas
diffusion layer Ω0 = (0, L1)× (0, L2)× (−L3, 0). The reactions are confined to the
layer Ωδ, in the limit δ → 0 we expect an effective equation posed on the domain
Ω0 with a non-homogeneous boundary condition on Σ0 = (0, L1) × (0, L2) × {0}.
As additional notations we use Ω0δ = (0, L1) × (0, L2) × (−L3, δ) for the entire
domain, Σδ = (0, L1) × (0, L2) × {δ} for the boundary at the reactive side and
Σ1 = (0, L1) × (0, L2) × {−L3} for the non-reactive boundary. We always impose
periodicity conditions on the lateral boundaries.

0Ω

0Σ

Σ1

Ωδ
0Σ

0Ω

Σδ

δ

Σ1

Figure 5: Geometry of the δ-problem and the effective domain.

We study the macroscopic equations that were obtained in the previous sec-
tion for the overpotential η and the oxygen concentration C. To emphasize the
dependence on δ we write ηδ : Ωδ → R for the overpotential and Cδ : Ω0δ → R

for the oxygen concentration. We study the time dependent equations for C since
transport limitations become important in the gas diffusion layer, which is much
thicker than the catalyst layer. We therefore analyze the following equations for
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the overpotential

−∇ · (Mη∇ηδ) = −1

δ
µ∗

ηC
δeηδ

in Ωδ (3.1)

ηδ = η0 on Σδ (3.2)

n · (Mη∇ηδ) = 0 on Σ0 (3.3)

and, for the oxygen concentration,

∂Cδ

∂t
−∇ · (MC∇Cδ) = −1

δ
µ∗

CC
δeηδ

1Ωδ
in Ω0δ (3.4)

n · (MC∇Cδ) = 0 on Σδ (3.5)

Cδ = C0 on Σ1 (3.6)

In order to derive effective equations rigorously, we introduce an averaged overpo-
tential as

η̄δ = −
∫ δ

0

ηδ(x1, x2, y) dy, η̄δ : Σ0 → R.

We will identify every function ϕ : Σδ → R with ϕ : Σ0 → R.

Theorem 2. [Effective equations in thin catalyst layers] Let ηδ, Cδ be a weak so-
lution of (3.1)–(3.6) on a time interval (0, T ) with smooth initial values, and let
the boundary conditions be given by η0 ∈ L2(0, T ;H1(Σ0)) ∩ L∞((0, T ) × Σ0) and
C0 ∈ L2(0, T ;H1(Ω0)) ∩ L∞((0, T ) × Ω0). Then, for every sequence δ → 0 there
holds

η̄δ → η0 strongly in L2(0, T ;L2(Σ0)) (3.7)

Cδ

∣

∣

∣

∣

Ω0

⇀ C0 weakly in L2(0, T ;H1(Ω0)) (3.8)

where C0 satisfies weakly the effective equations

∂C0

∂t
−∇ · (MC∇C0) = 0 in (0, T )× Ω0 (3.9)

n · (MC∇C0) = −µ∗
CC

0eη0

on (0, T )× Σ0 (3.10)

with the other boundary conditions remaining unchanged.

Proof. We start with the a priori estimates for the sequence (Cδ, ηδ) of solutions.
The maximum principle implies the boundedness of Cδ in L∞ and an upper bound
for ηδ.

We identify the boundary values η0 with a function η0(x1, x2, y) = η0(x1, x2)
and multiply (3.1) with ηδ−η0. An integration over Ωδ yields, at any time instance,
∫

Ωδ

Mη∇ηδ · ∇ηδ +
1

δ

∫

Ωδ

µ∗
ηC

δeηδ

ηδ ≤
∫

Ωδ

Mη∇ηδ · ∇η0 +
1

δ

∫

Ωδ

µ∗
ηC

δeηδ

η0.

The maximum principle provides the boundedness of the second integrals of both
sides and we conclude that the L2(0, T ;H1(Ωδ))-norm of ηδ is bounded. In partic-
ular, by Poincaré’s inequality and the trace theorem, we have, at any time instance,

‖η̄δ − η0‖L2(Σ0) ≤ cδ‖ηδ‖H1(Ωδ),
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and therefore the strong convergence of η̄δ, i.e. (3.7).
We now multiply (3.4) with Cδ − C0 and integrate over Ω0δ. Using a cut-off

function we may assume that C0 vanishes on Ω̄δ and we obtain
∫

Ω0δ

∂Cδ

∂t
(Cδ − C0) +

∫

Ω0δ

MC∇Cδ · ∇Cδ

+

∫

Ωδ

1

δ
µ∗

CC
δeηδ

Cδ =

∫

Ω0

MC∇Cδ · ∇C0.

This yields the L2(0, T ;H1(Ω0)) boundedness of Cδ|Ω0
. In particular, we can select

a weakly convergent subsequence with a limit as in (3.8).
The equations for C0. Multiplication of (3.4) with ϕ ∈ D((0, T ) × (0, L1) ×

(0, L2)× (−L3, 1) and an integration over (0, T )× Ω0δ yields

−
∫ T

0

∫

Ω0δ

Cδ∂tϕ+

∫ T

0

∫

Ω0δ

MC∇Cδ · ∇ϕ+

∫ T

0

∫

Ωδ

1

δ
µ∗

CC
δeηδ

ϕ = 0. (3.11)

For the first two integrals, the limits exist and coincide with the formal limits; this
is an immediate consequence of the boundedness and the weak convergence of Cδ.
Lemma 4 below provides the nontrivial limit

∫ T

0

∫

Ωδ

1

δ
µ∗

CC
δeηδ

ϕ→
∫ T

0

∫

Σ0

µ∗
CC

0eη0

ϕ

for δ → 0. Thus, the limit equation of (3.11) is

−
∫ T

0

∫

Ω0

C0∂tϕ+

∫ T

0

∫

Ω0

MC∇C0 · ∇ϕ+

∫ T

0

∫

Σ0

µ∗
CC

0eη0

ϕ = 0,

which is the weak form of (3.9)-(3.10).

In the above proof we used a convergence result which is the consequence of the
fact that ηδ has small variations in the thin layer Ωδ.

Lemma 4. Let ηδ, Cδ be the solutions of (3.1)–(3.6) as in Theorem 2 with limits
η0 and C0, and let ϕ ∈ C0

0 ((0, T )× (0, L1)× (0, L2)× (−L3, 1)). Then

∫ T

0

−
∫

Ωδ

Cδeηδ

ϕ→
∫ T

0

∫

Σ0

C0eη0ϕ for δ → 0.

Proof. First step. We claim that the averages of Cδ converge weakly,

−
∫ δ

0

Cδ(., y) dy ⇀ C0

∣

∣

∣

∣

Σ0

weakly in L2((0, T )× Σ0) for δ → 0. (3.12)

Indeed, the trace theorem provides the boundedness of every restriction of Cδ to a
two-dimensional subset Σy := {(x, y) : x ∈ Σ0} with the bound

‖traceΣy
Cδ‖L2 ≤ c‖Cδ‖H1(Ω0δ).

Jensen’s inequality implies that also the average of traces is bounded in L2,
∥

∥

∥

∥

∥

−
∫ δ

0

Cδ(., y) dy

∥

∥

∥

∥

∥

L2(Σ0)

=

∥

∥

∥

∥

1

δ

∫ δ

0

traceΣy
Cδ

∥

∥

∥

∥

L2(Σ0)

≤ 1

δ

∫ δ

0

∥

∥traceΣy
Cδ
∥

∥

L2(Σ0)
≤ c.
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The boundedness of −
∫ δ

0 C
δ in L2((0, T )× Σ0) allows to choose a subsequence and

a function g ∈ L2((0, T )× Σ0) with

−
∫ δ

0

Cδ ⇀ g weakly in L2((0, T )× Σ0) for δ → 0.

It remains to identify g = traceΣ0
C0. To this end we let ψ ∈ C1

0 ((0, T )× (0, L1)×
(0, L2)× (−L3, 1)) be an arbitrary function and calculate

∫ T

0

∫

Σ0

(

−
∫ δ

0

Cδ

)

ψ =

∫ T

0

1

δ

∫ δ

0

∫

Σy

Cδψ +O(δ)

=

∫ T

0

1

δ

∫ δ

0

∫

(0,L1)×(0,L2)×(−L3,y)

∂

∂y
(Cδψ) +O(δ)

→
∫ T

0

∫

Ω0

∂

∂y
(C0ψ) =

∫ T

0

∫

Σ0

C0

∣

∣

∣

∣

Σ0

ψ.

The left hand side converges to
∫ T

0

∫

Σ0

gψ(., 0), we have therefore identified g and

(3.12) is shown.
Second step. For the auxiliary function

uδ(t, x1, x2, y) = eηδ(t,x1,x2,y) − eη̄δ(t,x1,x2)

we claim that
∫ T

0

1

δ

∫

Ωδ

|uδ|2 ≤ c
∫ T

0

δ

∫

Ωδ

|∇uδ|2 −→ 0. (3.13)

It suffices to show the estimate from (3.13) for continuous functions ηδ which satisfy
by Rolle’s theorem

|uδ(x1, x2, y)| ≤
∫ δ

0

|∇uδ(x1, x2, y
′)| dy′.

We can therefore calculate

1

δ

∫

Ωδ

|uδ|2 ≤
1

δ

∫

Ωδ

(
∫ δ

0

|∇uδ|
)2

≤ 1

δ

∫

Ωδ

δ

∫ δ

0

|∇uδ|2 = δ

∫

Ωδ

|∇uδ|2

which, together with the a priori estimate for ηδ ∈ L2(0, T ;H1(Ωδ)) and the upper
bound for ηδ, provides (3.13).

Third step. We can now conclude the calculation for the product.

(

−
∫ δ

0

Cδeηδ

)

(x1, x2) = −
∫ δ

0

Cδeη̄δ

+ −
∫ δ

0

Cδ[eηδ − eη̄δ

] = eη̄δ −
∫ δ

0

Cδ +−
∫ δ

0

Cδuδ,

and therefore, by (3.13),

∫ T

0

∫

Σ0

(

−
∫ δ

0

Cδeηδ

)

ϕ =

∫ T

0

∫

Σ0

{(

−
∫ δ

0

Cδ

)

(x1, x2)e
η̄δ(x1,x2)ϕ(x1, x2)

}

+ o(1).

The weak L2((0, T ) × Σ0)-convergence of the Cδ-average of (3.12) together with
the strong convergence of η̄δ provides the result.
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3.2 Thin catalyst layers at high potentials

In order to verify the effect of a doubling of the Tafel slope in the limit of high
potentials, we analyze the following one-dimensional system in which we assume
a constant oxygen concentration C ≡ C0 in the whole catalyst layer (0, δ). The
equation for η then reads (see Figure 6):

∂2
xη = Ceη in (0, δ) (3.14)

η(0) = η0 (3.15)

∂xη(δ) = 0. (3.16)

We are interested in an expression for the production rate

Fη0
:= −∂xη(0) =

∫ δ

0

Ceη (3.17)

in the limit η0 → ∞. The expression is given by (3.21) from Proposition 1 below.
Note that we find the effect of a double Tafel slope, since the production rate Fη0

is proportional to eη0/2 rather than eη0 .

η0

1+δ0 δ

η

x

Figure 6: Sketch of solutions of system (3.14)-(3.16)

Proposition 1. Consider the ODE

∂2
yθ −

1

θ
(∂yθ)

2 = Cθ2 (3.18)

θ(0) = 1 (3.19)

∂yθ(0) = −β, (3.20)

for θ = θ(y) and y ∈ R+, with β,C ∈ R+ given. There exists β∗ ∈ (0,∞) depending
on C, β∗ = β∗(C), with the property:

1. For β > β∗, the solution θ = θβ of (3.18)-(3.20) is monotonically decreasing.

2. For β < β∗, the solution θ = θβ of (3.18)-(3.20) is positive and unbounded.

The dependence on C is given as β∗(C) = β∗
1

√
C with β∗

1 := β∗(1) ≈ 1.413. The
production rate Fη0

defined in (3.17) satisfies

Fη0

eη0/2
−→ β∗

1

√
C for η0 →∞. (3.21)

Proof. Part 1 : Existence of β∗ ∈ (0,∞). We define

β∗ := sup{β ≥ 0 | solution θβ is unbounded}
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The set is nonempty, since the solution for β = 0, i.e. ∂yθβ(0) = 0 is monotonically
increasing and unbounded. We verify β∗ <∞ with the following result.

Claim: There exists a number β̄ > 0 depending on C such that the solutions
θβ with β > β̄ satisfy:

θβ(y) ≤ e−
β
2

y, ∀y ∈ R+ (i)
∣

∣

∣

∣

∂yθβ

θβ

∣

∣

∣

∣

>
β

2
, ∀y ∈ R+. (ii)

Proof of the claim. Assume that (i) is satisfied on (0, y0). We claim that this
implies that also (ii) is satisfied until y0. Indeed,

∂y

(

∂yθβ

θβ

)

=
∂2

yθβ

θβ
− (∂yθβ)2

(θβ)2
= Cθβ ≤ Ce−

β
2

y

together with
∂yθβ

θβ
(0) = −β yields (ii) for β large enough.

On the other hand, let (ii) be satisfied until y0. Then

∂yθβ < −
β

2
θβ

implies that (i) is strictly satisfied until y0 and is, by continuity, also satisfied on
a larger interval. We conclude that (i) and (ii) are satisfied on R+ and have thus
verified the claim.

The dependence β∗(C) = β∗(1)
√
C follows immediately by a scaling argument

with the substitution z =
√
Cy.

Part 2 : We have to clarify the relation between the θ - equation and the pro-
duction rate Fη0

of the η - equation. We introduce the large number m := δeη0/2

and denote by η = ηm the solution of (3.14) - (3.16). Setting

θ = θm :=
eη

eη0

, y := xeη0/2

we can calculate

∂2
x[η] = ∂2

x[log(θeη0)] = ∂x

[

∂xθ

θ

]

= eη0∂y

[

∂yθ

θ

]

= eη0

[

∂2
yθ

θ
− (∂yθ)

2

θ2

]

!
= Ceη = Cθeη0 .

We see that the η - equation is equivalent to (3.18). Therefore θ = θm solves (3.18)-
(3.20) with an unknown value of β = βm, determined by the boundary condition
∂yθm(m) = 0. We note that θm ≥ 0 holds by definition of θ and that θm is
monotonically decreasing, since ∂yθ(y0) = 0 for some y0 < m implies ∂yθ > 0 on
(y0,m].

Then ∂yθm(m) = 0 implies βm ≤ β∗, since the continuation of θm beyond m is
necessarily unbounded. For a subsequence m → ∞ and a limiting value β∞ ≤ β∗

we find βm → β∞, and θm → θ∞ uniformly on compact subsets for some limiting
function θ∞, which is bounded by 1, since all θm are. This implies β∞ ≥ β∗ and
we have thus verified βm −→ β∞.
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Figure 7: Numerical solutions of system (3.18)-(3.20)

The production rate is

Fη0
= −∂xη(0) = −eη0/2∂y[log(θmeη0)]

∣

∣

∣

∣

y=0

= −eη0/2 ∂yθm(0)

θm(0)
,

hence
Fη0

eη0/2
= −∂yθm(0) = βm −→

m→∞
β∗.

This was the claim.

Numerically, we determined the value β∗
1 = 1.413± 0.002. We refer to Figure 7

for the shape of solutions for various values of β.

A Proof of the homogenization Lemmas

Proof of Lemma 1. Proof of (2.15).
We study a domain of integration Er := E \ (yc + rK) for real numbers r > 0

with r ≤ r0, where yc + r0K ⊂ E . For any u ∈ H1(Er) with average ū the Poincaré-
Wirtinger inequality states that

∫

Er

|u− ū|2 dy ≤ c
∫

Er

|∇u|2 dy.

In this inequality, c can be chosen independent of r ≤ r0, as can be seen by a simple
contradiction argument exploiting compactness. By a change of variables x = εy,
we find for any function u ∈ H1(Eε

k\Kε
k)

∫

Eε
k
\Kε

k

|u− ūk|2
dx

ε3
≤ c

∫

Eε
k
\Kε

k

ε2|∇u|2 dx
ε3
.

Summing over all k ∈ Iε we obtain

∑

k∈Iε

∫

Eε
k
\Kε

k

|u− ūk|2 dx ≤ cε2
∫

Ωε
η

|∇u|2 dx,



Reduced models for the cathode catalyst layer in PEM fuel cells 23

which was the claim in (2.15).
Proof of (2.16). For any u ∈ H1(2K), the trace theorem yields for the average

ũ := −
∫

∂K
u the estimate

∫

∂K

|u− ũ|2 dH2 ≤ c
∫

2K\K

|∇u|2 dy.

By a change of variables x = ε(k + yc + rεy) with dx = (ε3/2)3dy, we find
∫

∂Kε
k

|u− ũk|2
dH2

ε3
≤ c

∫

Eε
k
\Kε

k

(ε3/2)2|∇u|2 dx

ε9/2
.

Summing over all k ∈ Iε we obtain:

∑

k∈Iε

∫

∂Kε
k

|u− ũk|2dH2 ≤
∑

k∈Iε

cε3/2

∫

Eε
k
\Kε

k

|∇u|2 dx,

which was the claim in (2.16). The result for the other averages is shown with the
same calculations.

Lemma 5. Let vε be a sequence in L2(Ω) which vanishes outside the set Ωε
η,

a periodically perforated domain with a limiting relative volume Vη = |E|/|Y | =
limε→0 |Ωε

η|/|Ω|. We assume a uniform H1-bound and a weak convergence
∫

Ωε
η

|∇vε|2 ≤ c, 1

Vη
vε ⇀ v0 weakly in L2(Ω).

Given the sequence vε we may construct a piecewise constant interpolation v̄ε ∈
L2(Ω) by setting, for k ∈ Iε ⊂ Z

3 and with Y ε
k = ε(k + Y ),

v̄ε
k := −

∫

Y ε
k
∩Ωε

η

vε ∈ R, v̄ε :=
∑

k∈Iε

v̄ε
k1Y ε

k
.

An approximating sequence v̂ε ∈ H1(Ω) can be constructed as a continuous and
piecewise linear interpolation. We choose a regular grid of tetrahedra with vertices
{εk : k ∈ Iε}, set v̂ε(εk) = v̄ε

k for all k ∈ Iε and define v̂ε as the piecewise linear
interpolation of these values.

Then there holds

v̄ε → v0 and v̂ε → v0 strongly in L2(Ω). (A.1)

The above construction allows to conclude limits of nonlinear expressions. For
a sequence vε as above, which is additionally bounded from above, there holds

1

Vη
1Ωε

η
evε

⇀ ev0

(A.2)

in the sense of measures. Furthermore, let wε : Ω → R be a sequence of functions
that vanish outside Ωε

C , with ∇wε bounded in L2(Ωε
C) and with weak limit wε ⇀

VCw
0 in L2(Ω). For Ωε

η ⊂ Ωε
C we find

1

Vη
vεwε ⇀ v0w0 (A.3)

in the sense of measures.
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Proof. Jensen’s inequality implies that the L2-norm of v̄ε is bounded. For a sub-
sequence we may therefore assume the weak convergence to a limit g ∈ L2(Ω). In
order to identify the limit we calculate for a continuous function ϕ : Ω̄→ R

∫

Ω

gϕ←
∫

Ω

v̄εϕ =
∑

k∈Iε

∫

Y ε
k

v̄εϕ =
∑

k∈Iε

ϕ(εk)ε3 −
∫

Y ε
k
∩Ωε

η

vε + o(1)

=
1

Vη

∫

Ωε
η

vεϕ+ o(1)→
∫

Ω

v0ϕ,

and we therefore have v̄ε ⇀ v0 in L2(Ω). In the proof of Lemma 1 we have seen an
estimate for the difference vε − v̄ε,

∫

Ωε
η

|vε − v̄ε|2 ≤ cε2.

In the proof of this inequality we can also integrate over 3× 3× 3 neighboring cells
Y ε

k and find, for e ∈ {0, 1}e1 + {0, 1}e2 + {0, 1}e3, the estimate

∑

k∈Iε

∫

Y ε
k

∣

∣

∣

∣

v̄ε
k+e − v̄ε

k

ε

∣

∣

∣

∣

2

≤ c. (A.4)

In particular, ‖v̂ε− v̄ε‖2L2 ≤ cε2 and thus also v̂ε ⇀ v0 in L2(Ω). Since the gradient
of v̂ε can be estimated by the difference quotients between nearest neighbors of the
grid, we conclude the uniform bound

∫

Ω
|∇v̂ε|2 ≤ c. This uniform H1(Ω)-estimate

implies the strong convergence v̂ε → v0 in L2(Ω). Since they are close to each other
in norm, this also implies the strong convergence v̄ε → v0 in L2(Ω) and thus (A.1).

We can now calculate nonlinear terms as follows. For a continuous function ϕ
holds

∫

Ωε
η

evε

ϕ =
∑

k∈Iε

∫

Y ε
k
∩Ωε

η

evε

ϕ(εk) + o(1)

=
∑

k∈Iε

∫

Y ε
k
∩Ωε

η

{

(evε − ev̄ε
k)ϕ(εk)

}

+
∑

k∈Iε

∫

Y ε
k
∩Ωε

η

ev̄ε
kϕ(εk) + o(1)

→ Vη

∫

Ω

ev0

ϕ,

since |evε − ev̄ε
k | ≤ c|vε − v̄ε| by the boundedness of vε, and since the strong

convergence of v̄ε → v0 implies the strong convergence ev̄ε → ev0

. We have thus
verified (A.2).

In order to show the convergence (A.3) of products, we calculate, for a contin-
uous function ϕ,
∫

Ωε
η

vεwεϕ =
∑

k∈Iε

∫

Y ε
k
∩Ωε

η

vεwεϕ(εk) + o(1)

=
∑

k∈Iε

∫

Y ε
k
∩Ωε

η

{(vε − v̄ε
k)(wε − w̄ε

k)ϕ(εk)} +
∑

k∈Iε

∫

Y ε
k
∩Ωε

η

v̄ε
kw̄

ε
kϕ(εk) + o(1)

= O(ε2) + Vη

∫

Ω

v̄εw̄εϕ+ o(1)→ Vη

∫

Ω

v0w0ϕ.

This was the claim.



Reduced models for the cathode catalyst layer in PEM fuel cells 25

B List of symbols and typical values

Symbol Meaning Unit Values

C molar concentration of gas specie (O2) mol/m3

η local overpotential V
i transfer current density at cathode A/m3

q total number of electrons consumed in
the ORR per oxygen molecule

4

F Faraday’s constant As/mol 96487
C0 reference molar concentration of O2 mol/m3 3.39 [4],

6.2 [2]
D diffusion coefficient m2/s ∼ 10−6 [2],

5.2197× 10−6 [13]
κ ionic conductivity in the electrolyte A/Vm 1 [3],

0.3 [7]
i0 reference current density A/m2 10−6−1.4×10−2 [3]

10−2 [14],
4.4× 10−7 [10]

γ real catalyst area per geometric area m2 m−2 0.4 [3]
L active layer thickness m 10−6 [3],

0.287× 10−4 [6],
10−5 [5]

γ

L
effective catalyst area per unit volume 1/m 4× 105 [3]

η0 total overpotential V 0.6 [3]
b Tafel slope V 0.06− 0.12 [3]

0.0529 [5],
0.0874 [5]

d mean particle diameter m 10−8 [3]
a interparticle distance m 10−7 [3]
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