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Abstract: In periodic homogenization problems, one considers a se-
quence (uη)η of solutions to periodic problems and derives a homogenized
equation for an effective quantity û. In many applications, û is the weak
limit of (uη)η, but in some applications û must be defined differently.
In the homogenization of Maxwell’s equations in periodic media, the
effective magnetic field is given by the geometric average of the two-
scale limit. The notion of a geometric average has been introduced by
Bouchitte and Bourel in [3]; it associates to a curl-free field Y \Σ→ R3,
where Y is the periodicity cell and Σ an inclusion, a vector in R3. In
this article, we extend previous definitions to more general inclusions.
The physical relevance of the geometric average is supported by various
results, e.g., a convergence property of tangential traces.
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1 Introduction
This work provides and analyzes a new definition of the geometric average, a concept that
has been introduced in [3] and that turned out to be crucial in the periodic homogenization
of time-harmonic Maxwell’s equations. We use the setting of periodic homogenization
in three dimensions with a periodicity cell Y = [0, 1)3

] = R3/Z3 and inclusions Σ ⊂ Y

with complement Σ∗ := Y \ Σ. Given a curl-free field u : Σ∗ → R3, our aim is to define a
vector

∮
Σ∗ u ∈ R3 such that the formula∫

Σ∗
u ∧ φ =

(∮
Σ∗
u

)
∧
(∫

Σ∗
φ

)
(1.1)

holds for a class of test vector fields φ.
In time-harmonic Maxwell’s equations with perfectly conducting inclusions, the mag-

netic field uη is defined on a perforated domain Ω∗η, which is constructed by removing
η-scaled copies of Σ from an underlying domain Ω. The magnetic field uη : Ω∗η → C3
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2 The geometric average of curl-free fields

satisfies curl uη = wη for some field wη and one can assume that both (uη)η and (wη)η
are bounded in L2(Ω∗η). Under certain assumptions on Σ, the homogenization yields an
effective equation of the form curl û = εeffw, where εeff is an effective coefficient matrix
and w is the weak L2-limit of (wη)η. The important aspect of the effective equation
curl û = εeffw is that the field û is not the weak limit of the sequence (uη)η, but the
geometric limit: Up to subsequences, (uη)η converges in the sense of two-scale convergence
(as defined in [1]) to a limit u0 = u0(x, y), and the field û(x) is the geometric average of
u0(x, ·).

While the homogenization of Maxwell’s equations (with split ring inclusions) was
performed in [6] without the notion of a geometric average, the notion was introduced in
[3] and made the analysis more accessible. The geometric average was introduced in [3]
for inclusions Σ that are simply-connected and compactly contained in the periodicity
cell (0, 1)3. The authors used a formula similar to (1.1), but in their definition they used
scalar products instead of wedge products (and a different class of test functions φ). They
note, however, that (1.1) is a consequence of their definition. We emphasize that the
equivalence of the two definitions holds only for a certain class of geometries.

In order to analyze split ring geometries for perfectly conducting inclusions, the concept
of a geometric average was extended in [18] to cover the case of compactly contained
inclusions without the assumption of simple connectedness. The concept of a geometric
average was extended further in [22] in order to cover the case that the inclusions touch
the boundary of the periodicity cell (0, 1)3.

In the work at hand, we introduce a very general concept of a geometric average
encompassing all previous definitions. It turns out to be a natural concept in terms of
elementary de Rham theory. We derive properties of the new geometric average and show,
in particular, that it allows the homogenization of Maxwell’s equations for very general
microstructures. Moreover, we derive a result on the convergence of tangential traces: If
(uη)η is an appropriate sequence and û is defined as described above (with the geometric
average), then, at the interface {x1 = 0}, there holds∫

{x1=0}
θuη3 →

∫
{x1=0}

θû3 (1.2)

as η → 0 for all test functions θ. This result supports the physical relevance of the notion
of the geometric average. We have to accept that (1.2) is only conditionally valid; it
requires that the microstructure allows for a sufficiently large class of solutions to cell
problems.

Literature. The analysis of homogenization problems in domains with periodically
distributed holes has a long history, we mention [11] for some typical early results; the
approach was considerably simplified with the notion of two-scale convergence in [1, 14].
While in such standard cases the limit functions are directly linked to the weak limit of
the solution sequence as in [8, 10, 14], this can fail in problems that involve one of the
following: (a) high contrast as in [3, 6, 7], (b) Maxwell’s equations with perfect conductors
and singular geometries [18, 22], (c) Helmholtz problems with singular geometries [17].

The subject of singular homogenization of Maxwell’s equations has drawn great interest
due to the works [20, 21, 23], in which artificial materials were introduced that have
effectively (i.e., after homogenization) a negative index. Investigations from an applied
perspective have been provided in [12, 19]. One ingredient for the negative index effect can
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be achieved with wires: The wires are constructed as a periodic material, but the inclusion
connects opposite points in the periodicity cell. As a result, the length of the single wire
in the heterogeneous medium is of order 1 and special homogenization effects can be
observed, see [5, 2, 13]. Mie resonances and singular geometries can lead to artificial
magnetism, see (a) and (b) above. The combination of wires and bulk resonance can
produce a negative index material, see [16].

It was already observed in [15] for the Maxwell equations that physical averaged
quantities should use line integrals since the fields H and E are naturally interpreted as
1-forms. For the analysis in an effectively two-dimensional geometry, we mention [9].

Degeneracy issues. For general microstructures Σ ⊂ Y , the fundamental equation (1.1)
does not determine the vector

∮
Σ∗ u ∈ R3. The admissible test vector fields φ : Y → R3

for (1.1) are curl-free in Y and vanish in Σ. Relation (1.1) is solvable in the sense that
we always find a vector b ∈ R3 such that

∫
Σ∗ u ∧ φ = b ∧

∫
Σ∗ φ holds for all φ. On the

other hand, if the space A(Σ∗) = {
∫

Σ∗ φ | φ admissible} ⊂ R3 has a dimension smaller
than 2, the vector b is not uniquely determined. In order to have a unique solution b, we
introduce a certain subspace A(Σ∗) ⊂ R3 (see (2.4)) and search for b ∈ A(Σ∗) .

Let us provide here an intuitive description of the spaces A(Σ∗) and A(Σ∗) . We
consider the directions P ⊂ R3 that can be realized with curves in Σ. More precisely,
we study the set P0 := {γ(1)− γ(0) | γ ∈ C0([0, 1];R3) with γ(1)− γ(0) ∈ Z3 and γ(t) ∈
Σ + Z3 for every t ∈ [0, 1]} ⊂ Z3 and P := spanR P0 ⊂ R3. Then

A(Σ∗) = P⊥ , A(Σ∗) :=


R3 if dimP ≤ 1
P if dimP = 2
{0} if dimP = 3 .

(1.3)

The two subspaces A(Σ∗) and A(Σ∗) are not artificially invented for the definition
of the geometric average. For example, in the homogenization of Maxwell’s equations,
certain components of the limiting fields necessarily vanish and, accordingly, certain parts
of the equations should not be imposed.

In another form, the subspaces A(Σ∗) and A(Σ∗) appear in our result on limits
of traces; see (1.2). The convergence of any tangential component only holds if a
perpendicular tangential vector is contained in A(Σ∗).

The above description of the space A(Σ∗) indicates that the notion of geometric
average depends on topological properties of Σ. While the description in terms of paths is
quite intuitive, it turns out that the description is simplified if we use cohomology instead
of homotopy. This is in accordance with the formulation of Maxwell’s equations in terms
of differential forms leading to de Rham cohomology.

Outline of the paper. After defining the geometric average in Section 2.1, we show how
to compute it in a few simple cases in Section 2.2. In particular, we see that in the absence
of holes (Σ = ∅), geometric average and volume average coincide; that the geometric
average of a gradient vanishes; and that the geometric average of a constant vector is
equal to the orthogonal projection of this constant vector onto A(Σ∗) . Furthermore, we
prove that the geometric average is invariant under deformations of Σ that do not affect
the topology of the pair (Y,Σ). In Section 2.3, we discuss the connection between our
definition of the geometric average and previous definitions.
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We begin Section 3 by outlining a macroscopic geometry, also allowing different
microstructures in different patches of the domain. We then present a key computation
in Theorem 3.1, which shows that curl uη = wη in Ω∗η implies curl û ·

∫
Y φ =

∫
Y w0 · φ

for all test functions φ, where w0(x, y) is the two-scale limit of wη(x). This implies that
certain components of curl û are L2-functions, and therefore that certain components of
the tangential trace of û exist—namely, the components ν ∧ v, where ν is a normal vector
and v ∈ A(Σ∗). This also holds where two patches with different microstructure meet
(see Corollary 3.2).

In Section 4, we use elementary concepts from de Rham theory in order to restate our
definition of the geometric average. The geometric average then becomes a map from the
first de Rham cohomology group of Σ∗ to a subspace of the first de Rham cohomology
group of Y , ∮

Σ∗
: H1

dR(Σ∗)→ A(Σ∗) ⊂ H1
dR(Y ) . (1.4)

Using the embedding i : H1
dR(Y,Σ) → H1

dR(Y ), the defining relation of the geometric
average then becomes

[u ∧ φ] =
(∮

Σ∗
[u]
)
∧ i[φ] , [u] ∈ H1

dR(Σ∗) , [φ] ∈ H1
dR(Y,Σ) . (1.5)

The key idea is that on both the space of vector fields u and the space of test vector fields
φ, an equivalence relation can be defined, which leads to the de Rham cohomogy group
H1

dR(Σ∗) and the relative de Rham cohomology group H1
dR(Σ, Y ), respectively.

These cohomology groups are closely related to the solution space of the cell problems
of Maxwell’s equations. Indeed, the solutions of the cell problem for the H-field yield
a set of representatives for H1

dR(Y ). Similarly, the solutions to the cell problem for the
E-field yield a set of representatives for H1

dR(Y,Σ); see Lemma 4.4 and Lemma 4.5.
In Section 5, we show that under certain assumptions the geometric limit û(x) captures

all the information which the full two-scale limit u0(x, y) provides. Combined with our
previous efforts, this allows us to easily homogenize the time harmonic Maxwell equations
in a periodic medium with perfectly conducting inclusions.

2 The geometric average
Let Y denote the flat 3-torus, which can be pictured as the unit cube [0, 1]3 ⊂ R3 with
opposite faces identified. Occasionally, we will identify it (as a set) with [0, 1)3 ⊂ R3. We
remark that H1(Y ) is not equal to H1((0, 1)3). However, it can be identified with the
subspace of H1((0, 1)3) consisting of those functions for which the traces at opposite faces
coincide. Similar remarks apply when we consider subsets of Y .

We consider a (possibly empty) subset Σ ⊂ Y of the torus which is open and has
a Lipschitz boundary. The complementary open set is denoted by Σ∗ := Y \ Σ. We
assume both Σ and Σ∗ to be connected. A subset Σ ⊂ Y as above is called an admissible
microstructure.

2.1 Definition of the geometric average

The space of vector fields for which we define the geometric average is

X(Σ∗) :=
{
u ∈ L2(Σ∗;R3) : curl u = 0 in Σ∗

}
. (2.1)
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Figure 1: The above figure shows three admissible microstructures. The cube represents
the periodicity cell Y and the dark grey areas illustrate the microstructures Σ.

The definition will involve the following space of test functions:

V (Σ∗) :=
{
φ ∈ L2(Y ;R3) : curl φ = 0 in Y, φ = 0 in Σ

}
. (2.2)

Both X(Σ∗) and V (Σ∗) can be considered as closed subspaces of L2(Σ∗;R3) and inherit
its Hilbert space structure. We also introduce the space of attainable averages of fields
from V (Σ∗),

A(Σ∗) :=
{∫

Y
φ : φ ∈ V (Σ∗)

}
⊂ R3 . (2.3)

We finally have to construct, starting from a linear subspace U ⊂ R3, a new subspace
U ⊂ R3: Given U ⊂ R3, we introduce the wedge-annihilator U∧ := {b ∈ R3 : b ∧ x =
0∀x ∈ U}. The set U ⊂ R3 is defined as its orthogonal complement, U := (U∧)⊥. It
turns out that

U =


{0} if dimU = 0
U⊥ if dimU = 1
R3 if dimU ≥ 2 .

(2.4)

Definition 2.1 (Geometric average). The geometric average is the unique linear map

G : X(Σ∗)→ A(Σ∗) , G(u) =:
∮

Σ∗
u , (2.5)

that satisfies the identity ∫
Σ∗
u ∧ φ =

(∮
Σ∗
u

)
∧
(∫

Σ∗
φ

)
(2.6)

for all u ∈ X(Σ∗) and φ ∈ V (Σ∗). We say that
∮

Σ∗ u is the geometric average of u.

Remark. The unique vector
∮
Σ∗ u ∈ A(Σ∗) in Definition 2.1 is the one with the minimal

Euclidean norm among all vectors
∮

Σ∗ u ∈ R3 satisfying (2.6).
The following theorem establishes the validity of Definition 2.1 by proving existence

and uniqueness of
∮

Σ∗ u. In the proof we use a fact from linear algebra, formulated in
Lemma 2.3 after the proof of the theorem.

Theorem 2.2. There exists one and only one map that satisfies (2.5) and (2.6). This
map is linear, bounded and onto.



6 The geometric average of curl-free fields

Proof. Let u ∈ X(Σ∗). For the proof of existence and uniqueness of the map G, we
consider the map

B : A(Σ∗)→ R3,

∫
Σ∗
φ 7→

∫
Σ∗
u ∧ φ for φ ∈ V (Σ∗) ,

and prove that B is well-defined (i.e., independent of the choice of φ) and skew-symmetric
in the sense that it satisfies Bc · c = 0 for every c ∈ A(Σ∗). Once we have done this,
existence and uniquenes of the map G follows from Lemma 2.3 below.

The map B is well-defined. It suffices to show that
∫

Σ∗ u∧φ = 0 holds for all φ ∈ V (Σ∗)
with

∫
Σ∗ φ = 0. Fix such a vector φ ∈ V (Σ∗). As curl φ = 0 in Y , we find f ∈ H1(Y ) and

c ∈ R3 such that φ = grad f + c in Y . Butthen
∫

Σ∗ φ = 0 implies c = 0. Moreover, we can
choose f = 0 in Σ since φ vanishes in the connected set Σ. In particular, f |Σ∗ ∈ H1

0(Σ∗)
and hence ∫

Σ∗
u ∧ φ =

∫
Σ∗
u ∧ grad f = −

∫
Σ∗

curl (fu) = 0 .

The map B is skew-symmetric. Given c ∈ A(Σ∗), we find φ ∈ V (Σ∗) such that∫
Σ∗ φ = c. For φ we find f ∈ H1(Y ) such that φ = c + grad f in Y and f |Σ∗ ∈ H1

0 (Σ∗).
Observe that curl u = curl φ = 0 in Σ∗ and therefore∫

Σ∗
(u ∧ φ) · grad f =

∫
Σ∗

div (f(u ∧ φ)) = 0 . (2.7)

Using (2.7), we see that

Bc · c =
∫

Σ∗
(u ∧ φ) · c =

∫
Σ∗

(
u ∧ φ

)
·
(
c+ grad f

)
=
∫

Σ∗
(u ∧ φ) · φ = 0 ,

which proves the claim.
It is now a simple fact from linear algebra, written down in Lemma 2.3 below, and

proved in the appendix, that these properties of the map B imply the existence and
uniqueness of a vector

∮
Σ∗ u ∈ A(Σ∗) such that (2.6) holds. As the dependence on u

is linear, this defines a linear map G : V (Σ∗)→ A(Σ∗) . It remains to prove that G is
bounded and onto.

The map G is bounded. Since A(Σ∗) is finite dimensional, we only need to show
that kerG ⊂ X(Σ∗) is closed. Let (uk)k be a sequence in kerG and suppose that uk → u
in X(Σ∗) for some u ∈ X(Σ∗). Then, for every φ ∈ V (Σ∗) there holds

0 = lim
k→∞

∫
Σ∗
uk ∧ φ =

∫
Σ∗
u ∧ φ .

Thus Gu = 0 and the claim follows.
The map G is onto. Given any c ∈ A(Σ∗) , consider the constant function u ≡ c ∈

X(Σ∗). Since (2.6) holds true with c instead of
∮

Σ∗ u, we conclude that
∮

Σ∗ u = c.

In the above proof we used the following simple fact from Linear Algebra, a proof of
which is provided in Appendix A.

Lemma 2.3 (Linear Algebra fact). Let U ⊂ R3 be a linear subspace and B : U → R3

a linear map such that Bx · x = 0 for every x ∈ U . Then there exists a unique vector
b ∈ U such that

Bx = b ∧ x, for all x ∈ U . (2.8)

Remark. The unique vector b ∈ U in Lemma 2.3 is the one with the minimal Euclidean
norm among all vectors b ∈ R3 satisfying (2.8).
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2.2 Properties of the geometric average

In this subsection, we collect a few basic properties of the geometric average and provide
computations for a few simple cases.
Remark. Assume that A(Σ∗) = span{e1, . . . , ek}, where k ∈ {0, 1, 2, 3}. Then there exist
φ1, . . . , φk ∈ V (Σ∗) with

∫
Σ∗ φi = ei for 1 ≤ i ≤ k. Setting φk+1 := . . . := φ3 := 0, we

have the following explicit formula for the geometric average:

∮
Σ∗
u =

 (
∫

Σ∗ u ∧ φ2)3
− (
∫

Σ∗ u ∧ φ1)3
(
∫

Σ∗ u ∧ φ1)2

 . (2.9)

Proof. In the case k = 0 we have A(Σ∗) = {0} and A(Σ∗) = {0}, hence
∮

Σ∗ u = 0,
which is in accordance with (2.9) since φ1 = φ2 = 0.

In the case k ≥ 1 we can verify the second and third component of equation (2.9) by
explicit computations:(∮

Σ∗
u

)
2

= −
((∮

Σ∗
u

)
∧ e1

)
3

= −
(∫

Σ∗
u ∧ φ1

)
3
,

and (∮
Σ∗
u

)
3

=
((∮

Σ∗
u

)
∧ e1

)
2

=
(∫

Σ∗
u ∧ φ1

)
2
.

For the first component, we consider the cases k = 1 and k ≥ 2 separately. In the case
k = 1 we have A(Σ∗) = Re1 and A(Σ∗) = {0} × R2, hence (

∮
Σ∗ u)1 = 0. This is in

accordance with (2.9) since φ2 = 0. In the case k ≥ 2 we compute(∮
Σ∗
u

)
1

=
((∮

Σ∗
u

)
∧ e2

)
3

=
(∫

Σ∗
u ∧ φ2

)
3
.

Thus (2.9) holds for all 0 ≤ k ≤ 3.

Proposition 2.4. Let Σ be an admissible microstructure.

(i) In the case Σ = ∅ the geometric average coincides with the volume average. More
precisely, for every vector field u ∈ L2(Y ;R3) with curl u = 0 in Y there holds∮

Y
u =

∫
Y
u .

(ii) For every f ∈ H1(Σ∗) the vector field grad f is an element of X(Σ∗) with∮
Σ∗

grad f = 0 .

(iii) Any constant vector field c ∈ R3 is an element of X(Σ∗) with∮
Σ∗
c = πA(Σ∗) (c) ,

where πA(Σ∗) : R3 → R3 is the orthogonal projection onto A(Σ∗) .



8 The geometric average of curl-free fields

Proof. (i) Let u ∈ L2(Y ;R3) be a vector field with curl u = 0 in Y . As every c ∈ R3 is
an element of V (Y ), we find that(∮

Y
u

)
∧ c =

∫
Y
u ∧ c =

(∫
Y
u

)
∧ c .

As A(Σ∗) = R3, the condition
∫
Y u ∈ A(Σ∗) trivially holds, and the claim is proved.

(ii) Let f ∈ H1(Σ∗) and let φ ∈ V (Σ∗) be arbitrary. We choose an H1(Y )-extension
f̃ ∈ H1(Y ) of f and compute(∮

Σ∗
grad f

)
∧
(∫

Σ∗
φ

)
=
∫

Σ∗
grad f ∧ φ =

∫
Y

grad f̃ ∧ φ =
∫
Y

curl (f̃φ) = 0 .

The claim follows as 0 ∈ A(Σ∗) .
(iii) For c ∈ R3 and φ ∈ V (Σ∗) we find(∮

Σ∗
c

)
∧
(∫

Σ∗
φ

)
=
∫

Σ∗
c ∧ φ = c ∧

(∫
Σ∗
φ

)
= πA(Σ∗) (c) ∧

(∫
Σ∗
φ

)
,

where the last equality holds by the definition of A(Σ∗) and
∫

Σ∗ φ ∈ A(Σ∗).

Next, we investigate how the geometric average is affected when we enlarge the
microstructure.

Proposition 2.5. Let Σ1 and Σ2 be two admissible microstructures with Σ1 ⊂ Σ2, and
let u ∈ X(Σ∗1). Then there holds

∮
Σ∗

2

u|Σ∗
2

= πA(Σ∗
2)

(∮
Σ∗

1

u

)
,

where πA(Σ∗
2) : R3 → R3 is the orthogonal projection onto A(Σ∗2) .

In particular, if A(Σ∗1) = A(Σ∗2) we have∮
Σ∗

2

u|Σ∗
2

=
∮

Σ∗
1

u .

Proof. Let c ∈ A(Σ∗2). Then there exist φ ∈ V (Σ∗2) and a function f ∈ H1(Y ) such that
φ = c+ grad f in Y . As φ = 0 in Σ2 and Σ1 ⊂ Σ2 we infer that φ ∈ V (Σ∗1).(

πA(Σ∗
2)

(∮
Σ∗

1

u

))
∧ c =

(∮
Σ∗

1

u

)
∧ c =

∫
Σ∗

1

u ∧ φ

=
∫

Σ∗
2

u|Σ∗
2
∧ φ =

(∮
Σ∗

2

u|Σ∗
2

)
∧ c .

As c ∈ A(Σ∗2) was arbitrary, the claim follows.

Lemma 2.6. Let Σ be an admissible microstructure that is compactly contained in (0, 1)3.
Then A(Σ∗) = R3, A(Σ∗) = R3, and

∮
Σ∗ u is the unique vector in R3 that satisfies (1.1)

for all φ ∈ V (Σ∗).
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Proof. For c ∈ R3 we consider the function g : Σ→ R, g(y) := −y · c, which is an element
of H1(Σ), since Σ does not touch the boundaries of the cube. Let f ∈ H1(Y ) be the
solution to the Dirichlet problem

−∆f = 0 in Σ∗ ,
f = g in Σ .

We set φ := grad f + c. The function φ is an element of V (Σ∗) with the average c.

Remark (Examples from Figure 1). Let us discuss the spaces V (Σ∗), A(Σ∗), and A(Σ∗)
for the three microstructures of Figure 1.

(a) Let γ ∈ (0, 1/2) and define

Σ :=
{

(y1, y2, y3) ∈ Y : y1 ∈
(1

2 − γ,
1
2 + γ

)}
.

The space V (Σ∗) contains the function φ1 := |Σ∗|−1e1 1Σ∗ . The tangential trace of a
vector field in V (Σ∗) does not jump across ∂Σ, which can be used to show A(Σ∗) = Re1,
compare the definition in (2.3). This implies A(Σ∗) = span{e2, e3}. We further conclude
by (2.9) that for every u ∈ X(Σ∗) there holds:

∮
Σ∗
u =

 0
−(
∫

Σ∗ u ∧ φ1)3
(
∫

Σ∗ u ∧ φ1)2

 =

 0
−
∫

Σ∗ u2
−
∫

Σ∗ u3

 .

(b) For a fixed radius r ∈ (0, 1/2) we set

Σ :=
{

(y1, y2, y3) ∈ Y :
(
y1 −

1
2

)2
+
(
y2 −

1
2

)2
< r2

}
.

We have no explicit formula for basis functions of V (Σ∗). Nevertheless, one can easily see
that averages in e2 and e3 direction can be realized by solving two-dimensional elliptic
equations. We find that A(Σ∗) = Re1 + Re2. Consequently, there holds A(Σ∗) = R3

by (2.4).
(c) In the geometry with a torus that touches opposite faces, we have that A(Σ∗) =

Re2 + Re3 and thus A(Σ∗) = R3.

2.3 Comparison to other definitions

In this section we compare our definition of the geometric average with the ones already
present in the literature.

The first definition appeared in the work of Bouchitté, Bourel, and Felbacq [3]. It
was also used, e.g., in [16]. As the notion of a geometric average turned out to be useful
in the homogenization of Maxwell’s equations, it was later generalised to more general
geometries in [18] and [22].

2.3.1 Microstructures that are compactly contained in the unit cube

In [3, 4, 18] the authors consider a microstructure Σ ⊂ Y which is not only connected
but also compactly contained in (0, 1)3. The notion of a geometric average which they
introduce satisfies our defining formula (2.6). By Lemma 2.6 we know that the assumption
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on Σ implies A(Σ∗) = R3. Hence, formula (2.6) uniquely defines the geometric average.
It follows that the notion of a geometric average introduced in [3, 4, 18] is contained in
our definition of the geometric average.

To be more precise, in [3] it is further assumed that Σ∗, considered as a subset of the
unit cell (0, 1)3, is simply connected. The authors then define the geometric average by
the identity ∫

Σ∗
u · ψ =

(∮
Σ∗
u

)
·
(∫

Σ∗
ψ

)
, (2.10)

which should hold for all ψ ∈ L2(Y ;R3) with div ψ = 0 in Y and ψ = 0 in Σ. Given
any φ ∈ V (Σ∗) and c ∈ R3, one easily verifies that ψ := φ ∧ c has these properties (in
particular, curl φ = 0 implies div ψ = 0 in Y ). Inserting ψ into (2.10) for c ∈ {e1, e2, e3},
one recovers condition (2.6).

In [3] it is also remarked (still assuming that Σ∗ is simply connected in (0, 1)3) that
any u ∈ X(Σ∗) can be written in the form u = c+ grad g for some c ∈ R3 and g ∈ H1(Σ∗),
and it holds c =

∮
Σ∗ u.

In [4] it is remarked that one can interprete
∮

Σ∗ u as given by line integrals: Suppose
u ∈ X(Σ∗) is continuous, and γ : [0, 1]→ Σ∗ is a continuous path joining opposite faces
of Σ∗, that is, γ(1)− γ(0) = ek for some k ∈ {1, 2, 3}, then(∮

Σ∗
u

)
· ek =

∫
γ
u · ds . (2.11)

The value of this integral is independent of the choice of γ since u is curl -free and Σ∗ is
simply connected.

In [18] the authors drop the assumption that Σ∗ has to be simply connected. They
define the geometric average by (2.11), that is, in terms of line integrals. In order to cope
with the possible non-uniqueness arising from the missing simple connectedness of Σ∗,
they make the specific choice γ ∈ {γ1, γ2, γ3}, where γk(t) := tek for t ∈ [0, 1].

2.3.2 Microstructures touching the boundary of the unit cube

Two authors of this article suggested a definition of the geometric average that applies
for microstructures Σ which are connected, but not necessarily compactly contained in
(0, 1)3; see [22]. They assume that Σ belongs to the class of microstructures defined by
the following property: every u ∈ X(Σ∗) admits a decomposition u = c+ grad g in Σ∗ for
some c ∈ R3 and g ∈ H1(Σ∗).

In the setting of [4], the vector c ∈ R3 was uniquely determined. However, when Σ
connects opposite faces of the cube (0, 1)3, this uniqueness is no longer granted. Using
the notion of k-loops, the authors of [22] select the components of c that are uniquely
determined. We would like to sketch the construction here, which gives us the opportunity
to correct the definition of the geometric average that was given in [22] (there exist
microstructures Σ for which the original definition cannot be used).

Given a vector k ∈ Z3, a closed loop γ : [0, 1]→ Σ∗ is called a k-loop if one (and then
every) lift γ̃ : [0, 1] → R3 of γ with respect to the canonical projection R → R/Z ∼= Y
satisfies γ̃(1)− γ̃(0) = k. Define the space

LΣ∗ := spanR

{
k ∈ Z3 : there is a k-loop γ : [0, 1]→ Σ∗

}
,

and denote by πΣ∗ : R3 → R3 the orthogonal projection onto LΣ∗ . The geometric average
of u = c+ grad g is then defined as

∮
Σ∗ u := πΣ∗(c).
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In [22] the geometric average is correctly defined if LΣ∗ is spanned by vectors of the
form nkek (k ∈ {1, 2, 3}, nk ∈ N) for which there exist (nkek)-loops in Σ∗. This is true
for all the examples discussed in Section 5 of [22] but not for general microstructures Σ.

As the notion introduced in [22] satisfies (2.10), we can conclude (as above) that in
the case dimA(Σ∗) ≥ 2 this notion is contained in our definition of the geometric average.

In the case dimA(Σ∗) = 0 the two notions do not necessarily coincide. We provide
the following example: Choosing

Σ∗ :=
{

(y1, y2, y3) ∈ Y : (y1 − 1/2)2 + (y2 − 1/2)2 < 1/4
}
,

we find that the constant vector field u ≡ e3 is an element of X(Σ∗). As there is an
e3-loop in Σ∗, we conclude that the geometric agerage of u in the sense of [22] is e3.
However, since A(Σ∗) = {0}, we know that the geometric average of u as defined in the
present paper vanishes.

3 Geometric average and two-scale convergence

In this section, we investigate the geometric average in the context of periodic homoge-
nization. A classical task is to consider sequences of functions uη in a periodic geometry
and to derive effective equations for limits of these functions. The fundamental tool for
this procedure is two-scale convergence. Here, we are interested in sequences uη of vector
fields that vanish inside the microstructure and that have a bounded curl . Such sequences
naturally appear in the study of the time harmonic Maxwell equations (see Section 5).

Our main interest is the homogenization in a situation that two different microstruc-
tures are used in two different parts of the domain. At the interface of the two subdomains,
we expect that certain components of the limiting field satisfy continuity properties. In
this context, the geometric average plays an important role, since trace properties can
only be exected for the limit field that is defined via the geometric average.

Let Ω denote any open subset of R3, Ω1 ⊂ Ω an open subset and Ω2 = Ω \ Ω1 the
complementary open subdomain.

In the two subdomains, we want to use two different microstructures. Let therefore
two admissible microstructures be given by Σ1,Σ2 ⊂ Y . As before, the complementary
open sets are denoted by Σ∗i := Y \ Σi. The case Σi = ∅ is permitted and accounts for
the absence of microstructure in Ωi. For η > 0 we define the index sets

K := {k ∈ Z3 : ηk ∈ Ω} , and Ki := {k ∈ Z3 : ηk ∈ Ωi} .

These allow us to define the perforated domain by

Ωη := Ω ∩

 ⋃
k∈K1

η
(
k + Σ1

)
∪
⋃
k∈K2

η
(
k + Σ2

) and Ω∗η := Ω \ Ωη .

We will see that the study of interfaces requires also a study of the interaction of
the two microstructure. The relevant quantity turns out to be the union of the two
microstructures. We set

Σ := Σ1 ∪ Σ2 and Σ∗ := Y \ Σ .
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We keep in mind that we have the inclusions

Σi ⊂ Σ , Σ∗ ⊂ Σ∗i , V (Σ∗) ⊂ V (Σ∗i ) ,

and the restriction map

X(Σ∗i )→ X(Σ∗) , u 7→ u|Σ∗ .

3.1 The geometric average in effective equations

In the subsequent theorem we use two-scale convergence, which we denote with 2−⇀.

Theorem 3.1. Let (uη)η be a sequence in L2(Ω;R3) with the two properties

uη = 0 in Ωη , (3.1a)

wη := curl
(
uη|Ω∗

η

)
∈ L2(Ω∗η;R3) . (3.1b)

We extend wη by 0 to all of Ω and assume that uη 2−⇀ u0 and wη
2−⇀ w0 for some

limit functions u0, w0 ∈ L2(Ω× Y ;R3). Then u0(x, ·) ∈ X(Σ∗i ) for almost every x ∈ Ωi.
Furthermore, if we define the geometric limit by û(x) :=

∮
Σ∗
i
u0(x, ·) for x ∈ Ωi, there

holds
curl û ·

∫
Σ∗
i

φ =
∫

Σ∗
i

w0 · φ for all φ ∈ V (Σ∗i ) , (3.2)

in the sense of distributions on Ωi. Globally, i.e. on Ω, there holds:

curl û ·
∫

Σ∗
φ =

∫
Σ∗
w0 · φ for all φ ∈ V (Σ∗) , (3.3)

in the sense of distributions on Ω.

Proof. The L2-bound on the sequence (curl uη|Ω∗
η
)η implies, by standard arguments in the

theory of two-scale convergence, that curl u0(x, ·) = 0 holds in Σ∗i for almost all x ∈ Ωi.
This implies u0(x, ·) ∈ X(Σ∗i ) for almost all x ∈ Ωi.

In order to show (3.2), we choose a macroscopic test function θ ∈ C∞c (Ωi) and
a microscopic test function φ ∈ V (Σ∗i ). For η > 0 we set ψ(x, y) := θ(x)φ(y) and
ψη(x) := ψ(x, x/η). As (wη)η two-scale converges to w0, we find, by the definition of
two-scale convergence,

lim
η→0

∫
Ω
wη(x) · ψη(x) dx =

∫
Ω
θ(x)

(∫
Y
w0(x, y) · φ(y) dy

)
dx . (3.4)

On the other hand, as curl φ = 0 in Y , there holds curl ψη(x) = grad θ(x) ∧ φ(x/η)
for all x ∈ Ωi. Using this and (3.1), we can compute the term also differently:

lim
η→0

∫
Ω
wη(x) · ψη(x) dx = lim

η→0

∫
Ω∗
η

curl uη(x) · ψη(x) dx

= lim
η→0

∫
Ω∗
η

uη(x) ·
(
grad θ(x) ∧ φ(x/η)

)
dx

= −
∫

Ω
grad θ(x) ·

(∫
Σ∗
i

u0(x, y) ∧ φ(y) dy
)

dx

= −
∫

Ω
grad θ(x) ·

(
û(x) ∧

∫
Σ∗
i

φ(y) dy
)

dx . (3.5)
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Comparing (3.4) and (3.5), recalling that θ was arbitrary and that
∫
Y φ(y) dy is a constant,

we obtain equation (3.2).
In order to derive equation (3.3), we argue with a new interpretation of equation (3.2).

We consider the union Σ := Σ1 ∪ Σ2 of the two microstructures and a new domain ΩΣ
η ,

which is obtained from the microstructure Σ. Then (uη)η and (wη)η satisfy all prerequisites
of the theorem with the single perforation type Σ (the functions are restricted to a smaller
set). Proposition 2.5 implies that the geometric average of the twoscale limit ûΣ satisfies

ûΣ = πA(Σ∗)
(
û
)
.

Relation (3.2) can be used with Σ on all of Ω and provides

curl
(
πA(Σ∗)

(
û
))
·
∫

Σ∗
φ = curl ûΣ ·

∫
Σ∗
φ =

∫
Σ∗
w0 · φ (3.6)

for all φ ∈ V (Σ∗).
We claim that any two vectors a, c ∈ R3 with a ∈ A(Σ∗) satisfy

πA(Σ∗)
(
c
)
∧ a = c ∧ a . (3.7)

Indeed, the difference of the two sides is
(
c− πA(Σ∗)

(
c
))
∧ a where the term in brackets

is an element of
(
A(Σ∗)

)⊥ =
((
A(Σ∗)∧

)⊥)⊥ = A(Σ∗)∧. This implies that the wedge
product with a ∈ A(Σ∗) vanishes, and (3.7) is shown.

With the help of (3.7) we can calculate for the left-hand side of (3.6) with a :=
∫

Σ∗ φ

curl
(
πA(Σ∗)

(
û
))
· a = ∇ ·

((
πA(Σ∗)

(
û
))
∧ a
)

= ∇ ·
((
û
)
∧ a
)

= curl (û) · a .

This proves (3.3).

Corollary 3.2. In the situation of Theorem 3.1,

πA(Σ∗) (curl û) ∈ L2(Ω;R3) ,

where πA(Σ∗) : R3 → R3 is the orthogonal projection onto A(Σ∗). In particular, if
Γ := Ω1 ∩ Ω2 is a smooth two-dimensional surface in Ω, certain tangential components of
û possess a trace on Γ; the subspace A(Σ∗) determines, which components.

Proof. For any c ∈ A(Σ∗) and a corresponding function φ ∈ V (Σ∗) with c =
∫
Y φ, the

right hand side of (3.3) is an element of L2(Ω), hence also curl û · c ∈ L2(Ω).

3.2 Convergence of tangential traces

In this subsection, we consider the special case Ω1 = Ω ∩ {x1 > 0}. When we assume
e2 ∈ A(Σ∗), then Corollary 3.2 shows that the component û3 possesses a trace on
Γ := Ω∩{x1 = 0}. In particular, û3 does not jump across Γ. Indeed, for any test function
θ ∈ C∞c (Ω), an integration by parts shows that∫

Ω1
curl (θû) · e2 =

∫
Γ
(−e1 ∧ θû) · e2 =

∫
Γ
θû3 .

Even more can be said in the above situation: We can analyze the limit of traces of
uη3. This is the result of the next proposition.
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Proposition 3.3 (Convergence of tangential traces). We consider the situation of Theo-
rem 3.1: Ωη is constructed from Ω with Σi and Σ, the sequences (uη)η and (wη)η satisfy
all the properties of Theorem 3.1. We assume Ω1 = Ω ∩ {x1 > 0} and e2 ∈ A(Σ∗), and
demand that {y1 = 0} ⊂ Σ∗. We use û(x) :=

∮
Σ∗ u0(x, ·) for all x ∈ Ω.

Then
uη3|Γ → û3|Γ (3.8)

in the sense of distributions on Γ := Ω∩{x1 = 0}, where uη3|Γ and û3|Γ are to be understood
in the sense of traces.

Proof. Consider any test function θ ∈ C∞c (Ω). Since e2 ∈ A(Σ∗), there exists a function
f ∈ H1(Y ) such that e2 +grad f ∈ V (Σ∗). Let g ∈ H1(Y ) be any function that vanishes in
a neighborhood of Σ, satisfying f+g = 0 on {y1 = 0}. Then φ := e2+grad(f+g) ∈ V (Σ∗).
The tangential trace of φ on {y1 = 0} equals e2, it vanishes on ∂Σ∗. We write φη := φ(·/η),
use integration by parts and exploit the two-scale convergence of (uη)η and (wη)η to find∫

Γ
θuη3 =

∫
Γ
(−e1 ∧ θuη) · eη2 =

∫
Γ
(ν ∧ θuη) · φη

=
∫

Ω+∩Ω∗
η

curl (θuη) · φη =
∫

Ω+
∇θ · (uη ∧ φη) + θwη · φη

→
∫

Ω+
∇θ ·

∫
Y
u0 ∧ φ+

∫
Ω+

θ

∫
Y
w0 · φ

=
∫

Ω+
∇θ · û ∧ e2 +

∫
Ω+

θ

∫
Y
w0 · φ .

We use (3.3) of Theorem 3.1 and conclude

lim
η→0

∫
{x1=0}

θuη3 =
∫

Ω+
(∇θ ∧ û) · e2 + θ curl û · e2

=
∫

Ω+
curl (θû) · e2 =

∫
{x1=0}

θuη3 .

This was the claim in (3.8).

4 De Rham theory and cell problems

In this section, we revisit the definition of the geometric average and state it in terms
of de Rham cohomology groups. We will see that the geometric average is a function
of cohomology classes, and that the test functions can also be grouped in cohomology
classes. It will turn out that the solutions to the well-known cell problems for the H-field
and the E-field constitute sets of representatives for these cohomology classes.

4.1 Cohomology groups and a special wedge product

We have to introduce a few elements of de Rham theory. Given any open subset U ⊂ Y ,
the first de Rham cohomology group of U is the quotient space

H1
dR(U) :=

{
u ∈ L2(U ;R3) : curl u = 0

}/
∼ ,
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where u ∼ u′ whenever there is a function f ∈ H1(U) such that u − u′ = grad f . The
second de Rham cohomology group of U is the quotient space

H2
dR(U) :=

{
v ∈ L2(U ;R3) : div v = 0

}/
∼ ,

where v ∼ v′ whenever there is a vector field w ∈ L2(U ;R3) such that v − v′ = curl w.
Given two open subsets V ⊂ U ⊂ Y , the first de Rham cohomology group of U relative

to V is the quotient space

H1
dR(U, V ) :=

{
u ∈ L2(U ;R3) : curl u = 0 in U, u = 0 in V

}/
∼ ,

where u ∼ u′ whenever there is a function f ∈ H1(U) such that u− u′ = grad f in U and
f = 0 in V . The condition f = 0 in V is dispensable if V is connected. As Σ is connected,
this implies in the case (U, V ) = (Y,Σ) that there is a well-defined inclusion map

i : H1
dR(Y,Σ)→ H1

dR(Y ), [φ]→ [φ] .

We also remark that there are the following well-known isomorphisms (which we take as
identities):

Hk
dR(Y )→ R3, [u] 7→

∫
Y
u, k ∈ {1, 2} .

Being acquainted with some of the language of de Rham theory, we can now introduce the
following wedge product which lies at the heart of our definition of the geometric average.

Lemma 4.1. There is a well-defined product

a : H1
dR(Σ∗)×H1

dR(Y,Σ)→ H2
dR(Y ) , a([u], [φ]) := [u ∧ φ] ,

where, on the right-hand side, u is arbitrarily extended to all of Y .

Proof. Let [u] ∈ H1
dR(Σ∗) and [φ] ∈ H1

dR(Y,Σ) be arbitrary. We will extend u to all of Y ;
as φ = 0 in Σ, the choice of the extension does not effect the product u ∧ φ. Our aim is
to prove that div (u ∧ φ) = 0 in Y . In order to show this fact, we extend u to a function
u ∈ L2(Y ;R3) such that curl u ∈ L2(Y ;R3). Using that curl u = 0 in Σ∗, φ = 0 in Σ, and
curl φ = 0 in Y , we then find that

div (u ∧ φ) = (curl u) · φ− u · (curl φ) = 0 ,

proving that u ∧ φ represents a de Rham class [u ∧ φ] ∈ H2
dR(Y ).

To conclude the proof that the product is well-defined, we have to show that [u∧φ] = 0
whenever [u] = 0 or [φ] = 0.

In the first case, u = grad f for some f ∈ H1(Σ∗). We extend f to a function f ∈ H1(Y )
and compute

[grad f ∧ φ] =
∫
Y

grad f ∧ φ =
∫
Y

curl (fφ) = 0 .

In the second case, φ = grad g for some g ∈ H1(Y ) with g = 0 in Σ∗. Then

[u ∧ grad g] =
∫
Y
u ∧ grad g = −

∫
Y

curl (gu) = 0 ,

where we used that g = 0 in Σ to obtain the second equality.
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We next restate the definition of the geometric average in a form that makes use of
the language that we acquired in this section.

Definition 4.2 (Geometric average—cohomological version). Consider the spaces

A(Σ∗) := iH1
dR(Y,Σ) ⊂ H1

dR(Y ) , A(Σ∗) ⊂ H1
dR(Y ) .

The geometric average is the linear map∮
Σ∗

: H1
dR(Σ∗)→ A(Σ∗) , [u] 7→

∮
Σ∗

[u] ,

that satisfies

[u ∧ φ] =
(∮

Σ∗
[u]
)
∧ i[φ]

for all [u] ∈ H1
dR(Σ∗) and [φ] ∈ H1

dR(Y,Σ).

4.2 Cell problems

We now introduce the E-cell problem and the H-cell problem. These appear in the
homogenization of Maxwell’s equations and yield canonical representatives for the elements
of H1

dR(Σ∗) and H1
dR(Y,Σ). The solution space of the E-cell problem is

V E(Σ∗) :=
{
φ ∈ L2(Y ;R3) : curl φ = 0 in Y, div φ = 0 in Σ∗, φ = 0 in Σ

}
=
{
φ ∈ V (Σ∗) : div φ = 0 in Σ∗

}
.

(4.1)

The solution space of the H-cell problem is

XH(Σ∗) :=
{
u ∈ L2(Y ;R3) : curl u = 0 in Σ∗, div u = 0 in Y, u = 0 in Σ

}
=
{
u ∈ L2(Y ;R3) : u|Σ∗ ∈ X(Σ∗), div u = 0 in Y, u = 0 in Σ

}
.

(4.2)

The importance of the cell problems results from the following proposition.

Proposition 4.3 (Cell problems). We consider the geometric setting outlined in Section 3.
Let (uη)η and (wη)η be sequences in L2(Ω;R3) that satisfy

uη = wη = 0 in Ωη , (4.3a)
curl wη = uη in Ω , (4.3b)
curl uη = wη in Ω∗η . (4.3c)

We assume that uη 2−⇀ u0 and wη 2−⇀ w0 for some u0, w0 ∈ L2(Ω × Y ;R3). Then, for
almost all x ∈ Ωi,

u0(x, ·) ∈ XH(Σ∗i ) , w0(x, ·) ∈ V E(Σ∗i ) .

For the simple proof of this proposition and for the homogenization of the time-
harmonic Maxwell equations we refer to [18] and [22]. The following two lemmas show
that the cell problems yield a set of representatives for the spaces H1

dR(Σ∗) and H1
dR(Y,Σ).
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Lemma 4.4 (E-cell problem solutions). The map

V E(Σ∗)→ H1
dR(Y,Σ) , φ 7→ [φ]

is an isomorphism of vector spaces.

Proof. Injectivity. Suppose that φ ∈ V E(Σ∗) and φ = grad f for some f ∈ H1(Y ) such
that f = 0 on Σ. Then f |Σ∗ ∈ H1

0(Σ∗) and ∆f = div φ = 0 in Σ∗. Hence f = 0 and thus
φ = 0.

Surjectivity. Let φ ∈ L2(Y ;R3) such that curl φ = 0 in Y and φ = 0 in Σ. Now denote
by f ∈ H1(Y ) the solution to the boundary value problem

∆f = −div φ in Σ∗

f = 0 in Σ ,

Then [φ] = [φ+ grad f ] and

curl (φ+ grad f) = 0 in Y
div (φ+ grad f) = 0 in Σ∗

φ+ grad f = 0 in Σ ,

that is, φ+ grad f ∈ V E(Σ∗).

Lemma 4.5 (H-cell problem solutions). The map

XH(Σ∗)→ H1
dR(Σ∗) , u 7→ [u|Σ∗ ]

is an isomorphism of vector spaces.

Proof. Injectivity. Suppose u ∈ XH(Σ∗) and u|Σ∗ = grad f for some f ∈ H1(Σ∗). As
∆f = 0 and the normal trace of u across ∂Σ∗ vanishes, f solves the Neumann boundary
value problem ∫

Σ∗
grad f · gradϕ = 0

for all ϕ ∈ H1(Σ∗). It follows that f is locally constant. Hence u|Σ∗ = 0 and thus u = 0.
Surjectivity. Let w ∈ L2(Σ∗;R3) be such that curl w = 0, and let f ∈ H1(Σ∗;R) with∫

Σ∗ f = 0 be the unique solution to the Neumann boundary value problem∫
Σ∗

grad f · gradϕ =
∫

Σ∗
w · gradϕ

for all ϕ ∈ H1(Σ∗). Set

u :=
{
w − grad f in Σ∗

0 in Σ .

One readily verifies that u ∈ XH(Σ∗) and [w] = [u|Σ∗ ].

5 Maxwell’s equations and effective material properties
The most important application of the geometric average is the homogenization of
Maxwell’s equations in piecewise periodic geometries. In this section, we derive effective
equations for general geometries which may contain inclusions of macroscopic dimension
(e.g. wires).
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5.1 Reconstructions from the geometric limit

Proposition 5.1. We consider the geometric setting outlined at the beginning of Section
3 with the subdomains Ω1 and Ω2 and the inclusion domains Σ1 and Σ2. Let (wη)η be a
sequence in L2(Ω;R3) with the two properties

wη = 0 in Ωη , (5.1a)
uη := curl wη ∈ L2(Ω;R3) . (5.1b)

We assume that uη 2−⇀ u0 and wη 2−⇀ w0 for some limit functions u0, w0 ∈ L2(Ω× Y ;R3).
We denote the weak limit by ŵ(x) :=

∫
Y w0(x, ·) for x ∈ Ω. Then there holds, for arbitrary

v ∈ X(Σ∗i ),
curl ŵ ·

∮
Σ∗
i

v =
∫

Σ∗
i

u0 · v (5.2)

in the sense of distributions on Ωi.

Proof. We fix θ ∈ C∞c (Ωi) and v ∈ X(Σ∗i ). For η > 0 we define ψ(x, y) := θ(x)v(y) and
ψη(x) := ψ(x, x/η). As (uη)η two-scale converges to u0, there holds

lim
η→0

∫
Ω
uη(x) · ψη(x) dx =

∫
Ω
θ(x)

(∫
Y
u0(x, y) · v(y) dy

)
dx . (5.3)

On the other hand, as curl v = 0 in Σ∗i , we find that curl ψη(x) = grad θ(x) ∧ v(x/η) for
all x ∈ Ω∗η. Using this and (5.1a)-(5.1b), we compute

lim
η→0

∫
Ω
uη(x) · ψη(x) dx = lim

η→0

∫
Ω∗
η

curl wη(x) · ψη(x) dx

= lim
η→0

∫
Ω∗
η

wη(x) ·
(

grad θ(x) ∧ v(x/η)
)

dx

= −
∫

Ω
grad θ(x) ·

(∫
Σ∗
i

w0(x, y) ∧ v(y) dy
)

dx

= −
∫

Ω
grad θ(x) ·

(
ŵ(x) ∧

(∮
Σ∗
i

v

))
dx . (5.4)

Combining (5.3) and (5.4), we obtain equation (5.2).

Equation (5.2) implies that, for almost all x ∈ Ωi, the function u0(x, ·) is orthogonal to
the kernel of G(Σ∗i ). In order to formalize this observation, we introduce the L2-orthogonal
decomposition

X(Σ∗i ) = X0(Σ∗i )⊕X1(Σ∗i ) with X0(Σ∗i ) := ker(G : X(Σ∗i )→ A(Σ∗i ) ) . (5.5)

Corollary 5.2. In the situation of Proposition 5.1, for almost all x ∈ Ωi, there holds: If
u0(x, ·) ∈ X(Σ∗i ), then u0(x, ·) ∈ X1(Σ∗i ). In particular, since

G : X1(Σ∗i )→ A(Σ∗i )

is one-to-one, u0(x, ·) is uniquely determined by û(x) :=
∮

Σ∗
i
u0(x, ·).

The corollary shows that the geometric average û(x) :=
∮

Σ∗
i
u0(x, ·) contains all the

information that is needed to reconstruct the function u0(x, y). We will use Corollary 5.2
in the derivation of effective equations in Theorem 5.6.
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5.2 Effective equations

In the following definition, we use V E(Σ∗) from (4.1).

Definition 5.3 (Effective permittivity). Let Σ ⊂ Y be an admissible microstructure. The
effective permittivity is the linear map

εeff(Σ∗) : A(Σ∗)→ A(Σ∗)

that satisfies
εeff(Σ∗)

(∫
Σ∗
φ

)
·
∫

Σ∗
φ′ =

∫
Σ∗
φ · φ′ (5.6)

for all φ, φ′ ∈ V E(Σ∗).

The effective permittivity is well-defined by (5.6). Indeed, by Lemma 4.4, the map

V E(Σ∗)→ A(Σ∗) , φ 7→
∫

Σ∗
φ

is an isomorphism. This implies that there is no freedom in the choice of φ ∈ V E(Σ∗) for
a given average

∫
Σ∗ φ, and accordingly for φ′.

Lemma 5.4. Equation (5.6) remains true if φ is chosen from the larger space V (Σ∗).
Similarly, also φ′ can be taken from the larger space V (Σ∗) for φ ∈ V E(Σ∗).

Proof. Consider any ψ ∈ V (Σ∗). By Lemma 4.4, there exists a function f ∈ H1(Y ) such
that φ := ψ + grad f ∈ V E(Σ∗). But then

∫
Y ψ =

∫
Y φ and

∫
Y ψ · φ′ =

∫
Y φ · φ′ since

div φ′ = 0. This shows that (5.6) remains valid if φ is replaced by ψ. Analogously, one
shows that (5.6) still holds when φ′ is replaced by ψ.

Definition 5.5 (Effective permeability). Let Σ ⊂ Y be an admissible microstructure.
The effective permeability is the linear map

µeff(Σ∗) : A(Σ∗) → R3

defined by
µeff(Σ∗)

(∮
Σ∗
u

)
:=
∫

Σ∗
u (5.7)

for all u ∈ X1(Σ∗).

The definition of X1(Σ∗) in (5.5) and the surjectivity of the geometric average (see
Theorem 2.2) ensure that the effective permeability is well-defined by (5.7).

Theorem 5.6 (Effective equations). We consider the geometric setting outlined at the
beginning of Section 3. Let (uη)η and (wη)η be sequences in L2(Ω;R3) that satisfy

uη = wη = 0 in Ωη , (5.8a)
curl wη = uη in Ω , (5.8b)
curl uη = wη in Ω∗η . (5.8c)

We assume that uη 2−⇀ u0 and wη 2−⇀ w0 for some u0, w0 ∈ L2(Ω×Y ;R3). For all x ∈ Ωi

we set
û(x) :=

∮
Σ∗
i

u0(x, ·) , ŵ(x) :=
∫
Y
w0(x, ·) , (5.9)
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and
ε̂(x) := εeff (Σ∗i ) , µ̂(x) := µeff (Σ∗i ) . (5.10)

Then there holds

ŵ(x) ∈ A(Σ∗i ) for a.e. x ∈ Ωi , (5.11a)
û(x) ∈ A(Σ∗i ) for a.e. x ∈ Ωi , (5.11b)

curl ŵ = µ̂û in Ω , (5.11c)

πA(Σ∗
i )
(

curl û
)

= ε̂ŵ in Ωi , (5.11d)

πA(Σ∗)
(

curl û
)

= πA(Σ∗)
(
ε̂ŵ
)

in Ω . (5.11e)

Proof. Denote by

u(x) :=
∫
Y
u0(x, ·) and w(x) :=

∫
Y
w0(x, ·)

the weak L2(Ω;R3)-limits of (uη)η and (wη)η, respectively.
(i) By Proposition 4.3 we know in particular that u0(x, ·) ∈ X(Σ∗i ) and w0(x, ·) ∈ V (Σ∗i )

for almost all x ∈ Ωi. Therefore, (5.11a) and (5.11b) follow from the definition of the
effective fields û and ŵ in (5.9).

(ii) It follows from (5.8b) that curl w = u in Ω. But w = ŵ by definition. As for u,
we make use of Corollary 5.2 to infer that u0(x, ·) ∈ X1(Σ∗i ) for almost all x ∈ Ωi. Hence
u = µeff(Σ∗i )û = µ̂û by (5.7) and (5.11c) follows.

(iii) By (3.2) and (5.6), curl û · c = ε̂ŵ · c in Ωi for every c ∈ A(Σ∗i ). Hence (5.11d)
follows.

(iv) By (3.3) and (5.6), curl û · c = ε̂ŵ · c in Ωi for every c ∈ A(Σ∗). Hence (5.11e)
follows.

The effective equations of Theorem 5.6 should be read as follows. In the case of
compactly contained inclusions Σi, there holds A(Σ∗1) = A(Σ∗2) = R3 and therefore
A(Σ∗1) = A(Σ∗2) = R3, see (2.4). In this case, (5.11a) and (5.11b) impose no restriction
on ŵ and û and the effective equations are curl ŵ = µ̂û from (5.11c) and curl û = ε̂ŵ
from (5.11e).

In the general case, only certain components of the curl-relations are imposed, this is
expressed by the projections in (5.11d) and (5.11e). This lack of information in terms of
equations is compensated by restrictions on ŵ and û in (5.11a) and (5.11b).

The effective equations coincide with those obtained in [22].

A Proof of Lemma 2.3
Proof. We make use of the inclusion ı : U → R3 and the orthogonal projection ı∗ : R3 → U .
In particular, ı∗ı : U → U is the identity. By our assumption on B : U → R3, the linear
map ı∗B : U → U is skew-symmetric. We define

B̃ := Bı∗ − ıB∗ − ıı∗Bı∗ : R3 → R3 ,

and claim that B̃ is skew-symmetric. Indeed, for any x ∈ R3,

B̃x · x = Bı∗x · x− ıB∗x · x− ıı∗Bı∗x · x
= ı∗x ·B∗x−B∗x · ı∗x− ı∗Bı∗x · ı∗x = 0 ,
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where the last term vanishes by the skey-symmetry of ı∗B. We claim that, for x ∈ U ,
there holds B̃ıx = Bx. Indeed, for any y ∈ R3,

B̃ıx · y = Bx · y − ıB∗ıx · y − ıı∗Bx · y
= Bx · y − x · (ı∗B)ı∗y − (ı∗B)x · ı∗y = Bx · y ,

since ı∗B is skew-symmetric. Because B̃ : R3 → R3 is skew-symmetric, we find a (unique)
vector b ∈ R3 such that B̃x = b ∧ x for every x ∈ R3. In particular, Bx = b ∧ x for every
x ∈ U .

The set of all vectors b ∈ R3 that represent B is an affine subspace of R3, it is of the
form b0 + U∧ with the linear space

U∧ = {b ∈ R3 : b ∧ x = 0 for every x ∈ U} =


R3 dimU = 0 ,
U dimU = 1 ,
{0} dimU ≥ 2 .

In the affine space b0 + U∧, there is a unique vector b that is orthogonal to U∧. The
orthogonal complement of U∧ is (U∧)⊥ = U , which proves the lemma.
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