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Abstract: We investigate the one-dimensional non-equilibrium
Richards equation with play-type hysteresis. It is known that regu-
larized versions of this equation permit traveling wave solutions that
show oscillations and, in particular, the physically relevant effect of
a saturation overshoot. We investigate here the non-regularized
hysteresis operator and combine it with a positive τ -term. Our
result is that the model has monotone traveling wave solutions.
These traveling waves describe the behavior of fronts in a bounded
domain. In a two-dimensional interpretation, the result character-
izes the speed of fingers in non-homogeneous solutions.
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1 Introduction

When water is infiltrating a porous medium, the process can show a homogeneous
saturation front or the formation of fingers; in the latter case, water enters preferen-
tially along thin channels of high water saturation. We study a mathematical model
for unsaturated flow in porous media. We investigate a non-equilibrium Richards
equation with hysteresis, a model that allows the formation of fingers.

We are interested in the propagation of saturation profiles and restrict ourselves
to the one-dimensional case. The main result of this contribution is that there exist,
for appropriate parameter ranges, monotone traveling wave solutions for the system.
In the case of a homogeneous front, the traveling wave describes the propagation of
the front. In the case of fingering, the traveling wave describes the saturation profile
in one finger. Our results predict the speed of the finger, but they also yield that,
possibly after a transition time, no overshoot occurs in the finger tip, even in the
case of a positive redistribution time τ .
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Before we compare our results with the existing literature, we formulate the
model problem. Spatial points of the one-dimensional system are denoted by x ∈ R,
time instances are denoted by t ∈ [0,∞). The physical state in (x, t) is described by
two variables: saturation s̃ and pressure p̃. The tilde marks functions that depend
on space and time, s̃, p̃ : R× [0,∞)→ R in the case of entire domains. Combining
Darcy’s law with mass conservation yields the unsaturated media flow equation

∂ts̃ = ∂x[k(s̃)(∂xp̃+ 1)] . (1.1)

In this equation, we have normalized the porosity of the medium. Gravity points in
negative x-direction and is also normalized. The hydraulic conductivity k is a given
coefficient function s 7→ k(s); it is a nonnegative and nondecreasing function.

Equation (1.1) is complemented with a constitutional law that relates pressure
and saturation. Models for slow processes without hysteresis use an algebraic rela-
tion: With a given capillary pressure function pc one demands p̃ = pc(s̃). We can
include non-equilibrium effects (τ > 0) and play-type hysteresis (γ > 0) in the form

p̃ ∈ pc(s̃) + γ(s̃)H(∂ts̃) + τ∂ts̃ . (1.2)

In this relation, [0, 1] 3 s 7→ pc(s) ∈ R is a given non-decreasing function, the
capillary pressure curve for imbibition. The real parameter τ ≥ 0 is a measure for
a redistribution time in the microscopic geometry. The function γ : [0, 1] → [0,∞)
is a measure for the hysteretic width; one often uses a constant function and writes
γ ∈ [0,∞). The multivalued function H is the step function

H(ζ) :=


0 for ζ > 0 ,

[−1, 0] for ζ = 0 ,

−1 for ζ < 0 .

In the equilibrium case τ = 0, the model imposes that imbibition (∂ts̃ > 0) occurs
always with the imbibition capillary pressure p̃ = pc(s̃), while drainage (∂ts̃ < 0)
occurs always with the drainage capillary pressure p̃ = pc(s̃)− γ(s̃).

The above model (1.1)–(1.2) has received considerable attention in recent years.
It was suggested and studied in [1, 7] as a natural extension of the Richards equation.
It is thermodynamically consistent and includes the hysteresis effect with a play-
type model. We note that Richards emphasizes in his famous article of 1931 the
importance of hysteresis. For an overview regarding hysteresis modelling and the
development of the mathematical theory see [17].

Further research on (1.1)–(1.2) was mainly performed along three different lines:
A. Analysis of the hysteresis system in arbitrary dimension and fingering effect.

It was shown that the above system is well-posed for constant γ and positive per-
meability k [11], that solutions are unique [2], that the system does not define an
L1-contraction (and hence allows for the fingering effect) [16], and that it indeed
can produce the fingering effect, see e.g. [14]. Two-phase flow equations are treated
in [3] and [10]. For a stability analysis for the system without hysteresis see e.g. [6].

B. Numerical methods. The numerical investigations of [8] and [18] are per-
formed in order to detect the occurance of saturation overshoots (see below in part
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Figure 1: Sketch of the constitutive relation between saturation s and pressure p
using play-type hysteresis (τ = 0).

C) and their dependence on the data of the problem. Saturation plateaus are re-
covered in [18]. In [15], a numerical scheme is suggested for a version of the above
equations with non-vertical scanning curves. Indeed, introducing third order splines
as scanning curves seems to facilitate the Newton iterations in a numerical scheme.
A numerical analysis of a discontinuous Galerkin scheme is performed in [9].

C. One-dimensional analysis and saturation overshoots. Much of the analysis
in this field (including this contribution) is motivated by the effect of saturation
overshoots: Experiments show that an imbibition front can be non-monotone. In
this case, the saturation directly behind the front is higher than at larger distance
(behind the front) [5]. Even though the experimental results come with large errors,
one may interpret that the saturation forms plateaus. This is consistent with the
shape of solutions to Riemann problems and is well understood in the case of two-
phase flow equations [22]. It is also well understood that a positive parameter τ
in (1.2) can produce non-monotone profiles, see [4, 19] for systems without static
hysteresis, and [21, 12] for the full system. The methods are based on phase-space
analysis of ordinary differential equations. For an early result in a problem with
adsorption, see [20].

Traveling waves

In order to discuss traveling waves in further detail, we specify initial and boundary
conditions for the above systems. Let 0 < s∗ ∈ R denote the initial saturation
and 0 < F0 ∈ R prescribe an inflow at the top boundary (x = +∞). We then
complement (1.1)–(1.2) by

s̃(x, 0) = s∗ for every x ∈ R , (1.3a)

s̃(x, t)→ s∗ as x→ −∞ for every t ∈ (0,∞) , (1.3b)

k(s̃(x, t))[∂xp̃(x, t) + 1]→ F0 as x→ +∞ for every t ∈ (0,∞) . (1.3c)
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Much of the one-dimensional analysis is concerned with traveling wave solutions.
In the traveling wave ansatz, one seeks profile functions s, p : R → R and a scalar
velocity c > 0 such that the time-dependent functions have the special form

s̃(x, t) := s(x+ ct) , p̃(x, t) := p(x+ ct) . (1.4)

Equations (1.1)–(1.2) provide the following system for s, p : R→ R and c > 0:

c∂xs = ∂x[k(s)(∂xp+ 1)] , (1.5)

p ∈ pc(s) + γH(∂xs) + τc∂xs , (1.6)

where we used H(c∂xs) = H(∂xs) for positive c ∈ R. The boundary conditions are

s(ξ)→ s∗ as ξ → −∞ , (1.7a)

k(s(ξ))[∂xp(ξ) + 1]→ F0 as ξ → +∞ . (1.7b)

Main result. Our main result regards traveling waves in the case that drainage
does not occur. This happens in the physical experiment when γ is large compared
to the front width. Mathematically, we set γ = +∞ in the system or, formally more
correct: We replace (1.6) by the two conditions:

p(ξ) = pc(s(ξ)) + τc∂xs(ξ) if ∂xs(ξ) > 0 , (1.8a)

p(ξ) ≤ pc(s(ξ)) + τc∂xs(ξ) if ∂xs(ξ) = 0 , (1.8b)

and we demand ∂xs(ξ) ≥ 0 for all ξ ∈ R. We emphasize that the case γ = +∞ is of
physical relevance in the effect of gravity fingering, see the discussion in Section 4.

Essentially, our main result states that for every s∗ ∈ (0, 1) and every small flux
F0 > 0, there exists a monotone traveling wave solution s, p : R→ R and c > 0.

Theorem 1.1. Let k and pc be coefficient functions as specified in Assumption 2.2
below. Let s∗ ∈ (0, 1) and F0 > 0 be boundary data of the problem. With c− = k′(s∗)
as in (3.6) we demand that the flux satisfies the bounds k(s∗)+c−(1−s∗) < F0 < k(1).
We use c̄ = c̄(k, s∗, F0) from relation (3.17) below.

There exists a critical value τ∗ = τ∗(k, pc, s∗, F0) ≥ 0 such that, for every τ > τ∗,
there exists a velocity c ∈ (c−, c̄) and a traveling wave solution (s, p) to the system
(1.5), (1.7), and (1.8).

2 Reformulation of the traveling wave equations

We will construct solutions to (1.5), (1.7), and (1.8) in a special form: We obtain
saturation profiles s that are constant for ξ > 0 and pressure profiles p that are affine
for ξ > 0. The following lemma provides a simplified set of equations. Solutions to
the simplified equations can be extended as indicated above to find solutions to the
original problem.
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Lemma 2.1 (Traveling wave equations on a half space). Let F0, s∗ > 0 be boundary
data and let s0 > 0 satisfy k(s0) ≥ F0. For c > 0 let (s, p) : (−∞, 0]→ R× R be a
classical solution of the ordinary differential equation

c(s− s∗) = k(s) [∂xp+ 1]− k(s∗) (2.1a)

p = pc(s) + τc∂xs (2.1b)

on (−∞, 0), satisfying the conditions

s(ξ)→ s∗ as ξ → −∞ , (2.2a)

s(0) = s0 , (2.2b)

∂xs(0) = 0 , (2.2c)

c(s0 − s∗) + k(s∗) = F0 . (2.2d)

We furthermore assume that the function ξ 7→ s(ξ) is monotonically increasing on
(−∞, 0).

If we extend s and p for ξ > 0 by setting

s(ξ) = s0 , (2.3a)

p(ξ) =

(
F0

k(s0)
− 1

)
ξ + pc(s0) , (2.3b)

then the extended functions (s, p) : R→ R× R solve the system (1.5), (1.7)–(1.8).

A numerically computed solution as in Lemma 2.1 is depicted in Figure 2.

Figure 2: A numerically computed traveling wave solution. The figure shows the
saturation profile as a solid line and the pressure profile as a dashed line. The
solution is computed for pc(s) = s, k(s) = s2, τ = 5, s∗ = 0.1, F0 = 0.25. We obtain
numerically c = 0.2139 and s0 = 0.8013.

Proof. (a) Equations on (−∞, 0). Differentiating (2.1a) yields

c∂xs = ∂x[k(s)(∂xp+ 1)]
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on (−∞, 0), which is (1.5). We demanded that s is monotonically increasing on
(−∞, 0), hence ∂xs > 0 holds and we are always in the first case of (1.8) on that
interval. Therefore (2.1b) implies (1.8) on (−∞, 0).

(b) Boundary conditions. Condition (2.2a) is equivalent to (1.7a). In order to
verify (1.7b), we differentiate (2.3b). We obtain for any ξ > 0

k(s(ξ))(∂xp(ξ) + 1) = F0 ,

since s(ξ) ≡ s0 by (2.3a). This yields (1.7b).

(c) Equations on (0,∞). The extensions of s and p in (2.3) are defined in such
a way that ∂xs ≡ 0 and ∂xp+ 1 ≡ F0/k(s0) holds on (0,∞). Since k(s) is constant,
we see that both sides of equation (1.5) vanish.

We check that (1.8) holds on (0,∞): There holds ∂xs ≡ 0, hence we are in the
second case of (1.8). The pressure satisfies p ≤ pc(s0) by definition in (2.3b) and
the assumption F0/k(s0) ≤ 1. By s ≡ s0 we have verified (1.8).

(d) Equations in 0. We evaluate equation (2.1a) in ξ = 0 and insert (2.2b) to
obtain

c(s0 − s∗) = k(s0)(∂xp(0) + 1)− k(s∗) .

Condition (2.2d) provides the value of the flux in 0,

k(s0)(∂xp(0) + 1) = F0 . (2.4)

Both, the saturation s and the flux quantity [k(s)(∂xp+ 1)] are continuous in ξ = 0.
This implies that (1.5) holds in all of R.

In the following section we obtain our main result. We will show that, given
F0, s∗ > 0, we find c > 0, s0 > 0 with k(s0) ≥ F0, and s solving (2.1)–(2.2). We
derive this result under the following assumptions on the functions k and pc.

Assumption 2.2. Let the coefficient function k : [0, 1] → [0,∞) be of class C1,
non-decreasing and strictly convex, positive on (0, 1]. Let the coefficient function
pc : (0, 1) → R be of class C1 with p′c(s) > 0 for all s ∈ (0, 1). We furthermore
assume pc(s)→∞ for s↗ 1.

We remark that also other pc-functions can be treated with our methods. We find
the same results when the last part of Assumption 2.2 is replaced by: pc(s)→ ζ ∈ R
for s↗ 1 and pc is multi-valued with pc(1) = [ζ,∞).

3 Existence of hysteretic traveling wave solutions

In view of Lemma 2.1, our aim in the following is to construct solutions to system
(2.1)–(2.2). The equations (2.1) can be written as

∂x

(
s

p

)
=

(
(p− pc(s))/(cτ)

(c(s− s∗) + k(s∗))/k(s)− 1

)
. (3.1)
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With the function

G(s) := G(s; c, s∗) :=
c(s− s∗) + k(s∗)

k(s)
− 1 , (3.2)

we can write the unknowns and the right hand side as

y :=

(
s
p

)
: (−∞, 0]→ R2 , G(y) :=

(
(p− pc(s))/(cτ)

G(s)

)
, (3.3)

and the dynamical system (3.1) in the plane reads

∂xy = G(y) . (3.4)

We recall that the right hand side depends on k, c, s∗, and τ . An example for
the function G is sketched in Figure 3. The function always vanishes in s∗. Our
assumptions will make sure that G has a positive slope G′(s∗) and is negative in
s = 1.

s

G(s)

s∗ = 0.1

s∗ = 0.3

1

1
3

G(s) = c(s−s∗)+k(s∗)
k(s) − 1

Figure 3: The graph of the function G(s) for the choice k(s) = s2, s∗ = 0.1 and
c = 0.4. We find a maximum with value maxs∈(s∗,1)G(s) = 1/3 and a second root
s∗ = 0.3.

Our aim is to find an orbit y = (s, p) : (−∞, 0] → R2 satisfying (3.4) and the
boundary conditions

y(ξ)→ (s∗, pc(s∗)) for ξ → −∞ , (3.5a)

p(0) = pc(s(0)) , (3.5b)

c(s(0)− s∗) + k(s∗) = F0 . (3.5c)

We note that (3.5a) implies (2.2a), (3.5b) implies (2.2b) for s0 := s(0) and, by the
first equations of (3.1), also (2.2c). Finally, (3.5c) is identical to (2.2d).

3.1 Construction of normalized orbits for given c

We introduce two bounds for the wave speed. A minimal speed c− > 0 is given by
the slope of k in s∗. A maximal speed c+ > c− is given by the constraint s ≤ 1.
More precisely, we set

c− := k′(s∗) , c+ :=
k(1)− k(s∗)

1− s∗
. (3.6)
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For every c ∈ (c−, c+) we denote by s∗ = s∗(c) > s∗ the second root of G: The real
number s∗ is the solution of (see Figure 3)

c(s∗ − s∗) + k(s∗) = k(s∗) . (3.7)

By Assumption 2.2 on k, there exists a unique solution s∗ ∈ (s∗, 1) to this equation.
The number s∗ is the point at which the line with slope c intersects the graph of
k, compare Figure 4. We emphasize that the value s∗ = s∗(c) ∈ [0, 1] depends on
c ∈ (c−, c+).

ss∗ s∗ 1

k(s)

c−(s− s∗) + k(s∗)

c+(s− s∗) + k(s∗)

c(s− s∗) + k(s∗)

Figure 4: The coefficient function s 7→ k(s) and the construction of the upper
saturation value s∗ ∈ (s∗, 1).

In the next result, we prescribe a velocity c > 0 and determine the flux F0 in
dependence of c.

Proposition 3.1 (Construction of orbits for given c). Let coefficient functions k
and pc be as in Assumption 2.2 and let c ∈ (c−, c+) be fixed. Then there exists a
critical value τ0 = τ0(k, pc, s∗, c) ≥ 0 such that the following holds:

1. For every τ > τ0, there exists a solution y = (s, p) to problem (3.1) that
connects the stationary point (s∗, pc(s∗)) with a point (s0, pc(s0)), s0 ∈ (s∗, 1),
which is reached for x = 0. In other words: The solution satisfies the boundary
conditions (3.5a) and (3.5b).

2. For every 0 < τ < τ0, there exists a heteroclinic orbit y : R→ R2 that connects
the stationary point (s∗, pc(s∗)) with the stationary point (s∗, pc(s

∗)).

Solutions of Item 1 satisfy p(ξ) > pc(s(ξ)) and ∂xs(ξ) > 0 for all ξ ∈ (−∞, 0), and
∂xp(0) < 0.

With s∗ = s∗(c) of (3.7) and s(0) the value of the solution of Item 1, we define
the function

S0 : R+ × (c−, c+)→ [0, 1] , S0(τ, c) :=

{
s(0) for τ > τ0 ,

s∗(c) for τ ≤ τ0 .
(3.8)
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The function S0 is continuous. There holds

τ0(k, pc, s∗, c) ≤ τcrit(c) := − (p′c(s
∗(c)))2

4cG′(s∗(c))
. (3.9)

Proof. Step 1: The stationary point (s∗, pc(s∗)). We observe that the point y∗ :=
(s∗, pc(s∗)) is a stationary point for (3.4): The property G(y∗) = 0 holds by pc(s∗)−
pc(s∗) = 0 and by G(s∗) = 0. In the following, we seek orbits that approach the
stationary point y∗ for ξ → −∞.

The linearisation of the right-hand side of (3.4) in the point y∗ = (s∗, pc(s∗)) is
given by the matrix

A := DG(y∗) =

(
−p′c(s∗)/(cτ) 1/(cτ)

G′(s∗) 0

)
. (3.10)

Because of c > c−, there holds G′(s∗) = c/k(s∗) − k′(s∗)/k(s∗) > 0. This yields
detA < 0, which implies that there is a stable and an unstable direction. The
characteristic polynomial of A is

det(A− λI) = λ2 +
p′c(s∗)

cτ
λ− G′(s∗)

cτ
,

and the eigenvalues of A are

λ± = −p
′
c(s∗)

2cτ
±

√
p′c(s∗)

2

4(cτ)2
+
G′(s∗)

cτ
. (3.11)

The eigenvalues of A are real and of opposite sign, λ+ > 0 and λ− < 0. The
Stable Manifold Theorem [13, §2.7] implies that there is a one-dimensional unstable
manifold U ⊂ R2 for the point y∗ = (s∗, pc(s∗)) (we recall that the set U is the

collection of points

(
y1,0
y2,0

)
such that solutions y of (3.4) with y(0) =

(
y1,0
y2,0

)
satisfy

y(ξ)→ y∗ as ξ → −∞). The tangential space to U at y∗ = (s∗, pc(s∗)) is

Ty∗U = Ker

(
−p′c(s∗)/(cτ)− λ+ 1/(cτ)

G′(s∗) −λ+

)
= R

(
1

p′c(s∗) + cτλ+

)
=: Eλ+ . (3.12)

The calculation provides that the slope of the tangential space is larger than p′c(s∗).
In the following we consider the branch U+ of the unstable manifold U that

approaches the point (s∗, p∗) from the right; for some ε > 0 holds: (s, p) ∈ U+ with
‖(s, p) − (s∗, p∗)‖ < ε implies s > s∗. We can parametrize the branch U+ with an
orbit y : ξ 7→ y(ξ) ∈ U+ that satisfies y(ξ) → (s∗, p∗) for ξ → −∞. One of our
aims is to show for large τ > 0: There is a parametrization of the orbit (a shift in
ξ) such that the re-parametrized orbit ends on a point (y1, y2)(0) = (s, p)(0) with
p(0) = pc(s(0)).

Step 2: General properties of orbits. Given τ and c, we fix an orbit y that
parametrizes U+. We want to collect properties of this orbit.
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s

p

s∗ s∗

pc(s∗)

pc(s
∗)

p = pc(s)

U+

Ty∗U

s

p

s∗ s0

pc(s∗)

pc(s0) p = pc(s)

U+

Ty∗U

Figure 5: The phase plane (s, p) ∈ R2, the parameter c > 0 is fixed. The left
figure shows the situation for small τ , the right figure for large τ . The thick line
indicates the orbit U+ originating in the point y∗ = (s∗, pc(s∗)). It is one branch of
the unstable manifold U of the dynamical system (3.4). The dashed line indicates
the set {p = pc(s)}. Left: for small τ > 0, the orbit approaches the point (s∗, pc(s

∗))
for ξ → ∞. Right: for large τ , the orbit reaches the point (s0, pc(s0)) at ξ = 0. It
approaches the point vertically from above.

In the phase space R2, we consider the unbounded domain

Σ := {(s, p) ∈ R2|s∗ < s < 1, p > pc(s)} . (3.13)

For sufficiently small ξ (negative and large in absolute value), there holds y(ξ) ∈
Σ. This is a consequence of the fact that the slope of the orbit is given by Eλ+ , and
it is larger than p′c(s∗).

The orbit y can never leave Σ through the left boundary since ∂xs is positive on
∂Σ ∩ {s = s∗}, see the first equation of (3.1).

We claim that the orbit is bounded, as long as it is contained in Σ. To prove the
claim, we consider the quantity z(ξ) := p(ξ)− pc(s(ξ)), for which (3.1) provides the
relation

∂xz(ξ) = G(s(ξ))− p′c(s(ξ))
z(ξ)

cτ
. (3.14)

We note that z(ξ)→ 0 holds as ξ → −∞. The ordinary differential equation (3.14)
implies

z(ξ) ≤ z0 := cτ
maxs∈[s∗,1]G(s)

mins∈[s∗,1] p
′
c(s)

(3.15)

for all ξ ∈ R. Indeed, z satisfies the relation for small ξ (negative and large in
absolute value) by positivity of the right hand side. Whenever z exceeds the value
z0, there holds ∂xz(ξ) ≤ 0 by (3.14). This implies that the value cannot be exceeded.

We finally observe that the orbit moves to the right at all times: ∂xs(ξ) ≥ 0 for
all ξ with y(ξ) ∈ Σ.
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We collect our results on the orbit y: The orbit starts in (s∗, p∗), or, more
precisely: y(ξ) → (s∗, p∗) for ξ → −∞. The orbit travels in Σ, it does not diverge
to infinity and it travels always to the right. We recall the property of pc that
pc(s)→∞ for s↗ 1. We conclude that there are only two possibilities:

1.) The orbit reaches the pc-curve after finite time; in this case we can re-
parametrize such that this time instance is 0. We find that (s(0), p(0)) = (s0, pc(s0))
for some s0 ∈ (s∗, 1).

2.) The orbit approaches a stationary point. Since all stationary points lie on
the pc-curve, we find that (s(ξ), p(ξ))→ (s∗, pc(s

∗)) as ξ →∞ for some s∗ ∈ (s∗, 1).

Step 3: Investigation of case 2.) and definition of τ0. Let us further investigate
case 2.). Since (s∗, pc(s

∗)) is a stationary point, s∗ is indeed the second zero of G.
In this point holds G′(s∗) < 0. The eigenvalues of the linearization of the dynamical
system can be calculated as above; we find

λ∗± = −p
′
c(s
∗)

2cτ
±

√
p′c(s

∗)2

4(cτ)2
+
G′(s∗)

cτ
.

We see that, for τ > τcrit(c) = (p′c(s
∗))2/(−4cG′(s∗)), the eigenvalues are non-real.

This implies that the point (s∗, pc(s
∗)) is a spiral sink for τ > τcrit(c): orbits are

going in spirals into the stationary point. Since we defined the orbit y such that it
is contained in Σ, we conclude that τ > τcrit(c) excludes case 2.)

We define
τ0(c) := inf {τ > 0| the orbit is as in case 1.)} , (3.16)

and note that 0 ≤ τ0(c) ≤ τcrit(c) holds.

Step 4: Investigation of case 1.). In case 1.), there holds s(0) > s∗. Indeed, for
all ξ with s(ξ) ≤ s∗, there holds ∂xp(ξ) = G(s(ξ)) ≥ 0. On the curve p = pc(s) holds
∂xs = 0 and, for s < s∗, ∂xp > 0. This implies that the orbit cannot hit the lower
boundary of Σ for s < s∗.

Let us assume that τ > 0 is such that the orbit y is as in case 1.). Then, for every
value τ̂ > τ , the corresponding orbit ŷ is also as in case 1.). This can be concluded
as follows: For a larger value of τ , the slope of Eλ+ is larger, see (3.12) and (3.11).
Furthermore, the orbit for τ (denoted with (s, p)) and the orbit for τ̂ (denoted
with (ŝ, p̂)) can never intersect: For two points ξ and ξ̂ with (ŝ, p̂)(ξ̂) = (s, p)(ξ)
there holds ∂xp(ξ) = G(s(ξ)) = G(ŝ(ξ̂)) = ∂xp̂(ξ̂) and τ∂xs(ξ) = τ̂ ∂xŝ(ξ̂), hence
∂xs(ξ) > ∂xŝ(ξ̂). This implies that the orbit marked with hats remains always
above the other orbit. In particular, it cannot approach the point (s∗, pc(s

∗)), it is
also an orbit as described in case 1.).

We conclude from these considerations: For every τ > τ0(c), orbits are as de-
scribed in case 1.), for every τ < τ0(c), orbits are as described in case 2.).

Step 5: Properties of solutions and continuity of S0. The properties of solutions
as in case 1.) are clear from the construction: p(ξ) > pc(s(ξ)) and ∂xs(ξ) > 0 for all
ξ ∈ (−∞, 0). The inequality s(0) > s∗ implies ∂xp(0) = G(s(0)) < G(s∗) = 0. The
upper bound for τ0 in (3.9) was already observed after (3.16).

It remains to verify the continuity of S0. In points (τ, c) with τ 6= τ0(c) the
continuity is clear by continuous dependence of solutions to ordinary differential
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equations. Let us consider a sequence of parameters (τk, ck)→ (τ0(c), c) as N 3 k →
∞, c ∈ (c−, c+), τ0(c) > 0. Without loss of generality, we can assume τk > τ0(ck),
since otherwise S0(τk, ck) = s∗(ck), and the function s∗ is continuous.

For every (τk, ck), the corresponding orbit satisfies (s(k)(0), p(k)(0)) = (sk0, pc(s
k
0)).

It remains to show sk0 → s∗. Let us assume the contrary. Then we find a subsequence
(not relabeled) with sk0 → s∞ > s∗. In this situation, the orbits (s(k), p(k)) converge
to a limiting orbit that reaches s∞ for ξ = 0. We conclude that, for τ = τ0(c),
there is an orbit as in Item 1.), reaching s∞ > s∗ after finite time. Since the stable
manifold (and hence the orbit) depends continuously on the parameter τ (compare
[13, §2.7]), small perturbations of τ can be performed and we find orbits as in Item
1.) for τ slightly smaller than τ0(c). This contradicts Item 2.).

3.2 Construction of c to satisfy the flux condition

We now change the unknowns of the system, since the wave-speed c is a priori
unknown. The task of physical relevance is the following: Given an initial saturation
s∗ and a flux boundary value F0, we seek for the appropriate traveling wave speed
c to satisfy (3.5c).

The setting of the physical experiment makes it is reasonable to assume F0 >
k(s∗): The inflow rate at the top boundary must exceed the flux at x = −∞ which is
induced by gravity. On the other hand, inflow is lower than that for full saturation,
hence we will use F0 < k(1). We will actually strengthen these assumptions below.

For the subsequent construction it is useful to define further quantities: We
define s̄ ∈ (s∗, 1) and c̄ ∈ (c−, c+) by

k(s̄) = F0 , c̄ =
k(s̄)− k(s∗)

s̄− s∗
. (3.17)

The number c̄ is defined such that s∗(c̄) = s̄ and hence k(s∗(c̄)) = k(s̄) = F0.

Lemma 3.2 (Construction of the wave speed). Let k and pc be as in Assumption
2.2 and s∗ ∈ (0, 1). We use c− from (3.6) and define F− := k(s∗) + c−(1 − s∗).
We use c̄ from (3.17). Then, for every F0 ∈ (F−, k(1)), there exists a critical value
τ∗ = τ∗(s∗, F0) > 0 such that the following holds: For every τ > τ∗, there exists
a wave speed c ∈ (c−, c̄) such that the orbit (s, p) of Proposition 3.1 satisfies all
boundary conditions (3.5).

Proof. Step 1: The function Q. We introduce the function Q : R+ × (c−, c+)→ R,

Q(τ, c) := c (S0(τ, c)− s∗) + k(s∗)− F0 . (3.18)

Loosely speaking, zeroes of Q are parameters (τ, c) with the following property: the
corresponding orbit satisfies the boundary condition (3.5c) with the prescribed value
of F0. In order to find roots of Q, we will use the intermediate value theorem for
continuous functions.

The argument is slightly more involved since we have to make sure that the
orbit is ending in a point (s0, pc(s0)) at ξ = 0. To be precise, we look for τ > 0 and
c ∈ (c−, c̄) such that

Q(τ, c) = 0 and S0(τ, c) > s∗(c) . (3.19)
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Let us assume that (τ, c) satisfies (3.19). Because of S0(τ, c) > s∗(c), the param-
eters are such that we are in the first case of Proposition 3.1. Therefore, there exists
an orbit (s, p) with (s, p)(ξ) → (s∗, p∗) for ξ → −∞ and (s, p)(0) = (s0, pc(s0)) for
some s0 ∈ (s∗, 1). In particular, the orbit satisfies (3.5a) and (3.5b). In order to
check (3.5c), we calculate, using first the definition of Q and then (3.19),

c(s(0)− s∗) + k(s∗) = Q(τ, c) + F0 = F0 .

This verifies (3.5c).

Step 2: Solution of problem (3.19).

Step 2a: Sign of Q for c = c̄. We calculate the sign of Q for parameters (τ, c̄)
with τ > τ0(c̄). The defining relation (3.17) implies s∗(c̄) = s̄. Since the orbit ends
at a point S0(τ, c̄) > s∗(c̄) = s̄, we find

Q(τ, c̄) = c̄ (S0(τ, c̄)− s∗) + k(s∗)− F0

> c̄ (s̄− s∗) + k(s∗)− F0

= k(s̄)− k(s∗) + k(s∗)− F0 = k(s̄)− F0 = 0 .

We see that, for large τ > 0, the zeroes of Q are not at the boundary {c = c̄}.
Step 2b: Sign of Q for c ≈ c−. For a small number ε > 0, we now calculate the

sign of Q for parameters (τ, c) with c ≤ c− + ε. We calculate

Q(τ, c) = c (S0(τ, c)− s∗) + k(s∗)− F0

< c (1− s∗) + k(s∗)− F0

≤ (c− + ε)(1− s∗) + k(s∗)− F0

≤ F− + ε(1− s∗)− F0 < 0 ,

where the last inequality is satisfied for all sufficiently small values of ε > 0 by the
choice of F− and the assumption F0 > F−. We see that zeroes of Q are not near the
boundary {c = c−}.

For 0 < ε < (F0 − F−)/(1− s∗) and with τcrit(c) of (3.9), we set

τ∗ := sup{τcrit(c)|c ∈ [c− + ε, c̄]} . (3.20)

Note that τcrit(c) tends to infinity for c tending to c−. It is therefore important that
we define τ∗ as above with ε > 0. With our definition we achieve, by continuity of
τcrit, the finiteness τ∗ <∞.

Let τ > τ∗ be arbitrary. Since Q(τ, .) : (c−, c̄] → R depends continuously on c,
we can use the intermediate value theorem. The function is negative for small values
of c and positive at the right boundary. We conclude the existence of c ∈ (c−, c̄)
with Q(τ, c) = 0. Because of τ > τ∗ > τcrit(c), the second condition of (3.19) is also
satisfied.

Lemma 3.2 imposes for the flux F0 the lower bound F0 > F− := k(s∗)+c−(1−s∗).
With a more involved argument, the lower bound can be improved to F0 > F− :=
k(s∗).

The existence result of Lemma 3.2 for a wave speed c > 0 allows to show our
main result, formulated in Theorem 1.1.
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Proof of Theorem 1.1. The assumptions of the theorem imply that Proposition 3.1
and Lemma 3.2 can be applied. Thus, for any F0 as in the theorem, there exist
functions s, p satisfying the dynamical system (3.1) with boundary conditions (3.5).
The functions s, p solve also the equivalent problem (2.1)–(2.2).

We want to apply Lemma 2.1. The monotonicity assumption on s is satisfied
since ∂xs > 0 holds on (−∞, 0) by Proposition 3.1. Proposition 3.1 also provides
∂xp(0) < 0 and we can calculate, using (3.1) and inserting (3.5c) into (3.2): 0 >
∂xp(0) = G(s(0)) = (F0/k(s(0)))− 1. Hence F0 < k(s0) is satisfied and Lemma 2.1
can be applied. The lemma implies that s, p can be extended to a traveling wave
solution.

4 Discussion

We have found monotone traveling wave solutions for the Richards equation with
play-type hysteresis for a positive non-equilibrium term (τ > 0). This result is
surprising since models without hysteresis (and also regularized hysteresis models)
usually show saturation overshoots for τ > 0.

Figure 6: A solution of the two-dimensional system corresponding to (1.1)–(1.2)
with play-type hysteresis and τ > 0, for the setting see [14]. In this result, the
fingers are of moderate length and the drainage process in the fingers has not set in.
This justifies the assumption that only imbibition and scanning curves are relevant.

Previous results of related systems [4, 12, 18, 19, 21] provide traveling wave
solutions with saturation overshoot. The overshoot is obtained when either the
play-type hysteresis is regularized or when the pressure oscillations are large enough
to see both, the imbibition and the drainage part of the hysteresis loop. In the work
at hand we studied a situation in which the drainage curve is not reached by the
traveling wave profile. Instead, the profile only explores the imbibition curve and a
scanning curve.

In our setting, monotone saturation profiles can occur — at least for sufficiently
large τ . Our results show the existence of a critical value τ∗ ≥ 0 such that, for
τ > τ∗, monotone traveling waves occur. We may interpret these solutions as the
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known “plateau-shaped” solutions that have been observed before; in our setting,
these solutions are truncated in the plateau and extended with a constant saturation
profile.

We have obtained traveling waves with the help of the simplified system (2.1).
This system can be used to understand the formation of fingers in two space di-
mensions, see Figure 2. We interpret x as the vertical direction and consider a slice
through one finger. The saturation profile along the slice can be expected to be a
one-dimensional traveling wave solution to the system studied here. With this in-
terpretation, our system allows to predict the speed c of the finger and the constant
saturation s0 in the finger, away from the finger tip.
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