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Abstract: Fluids in unsaturated porous media are described by the
pressure p and the saturation u. Darcy’s law and conservation of
mass provides an evolution equation for u, the capillary pressure
provides a relation between p and u of the form p ∈ pc(u, ∂tu). The
multi-valued function pc leads to hysteresis effects. We construct
weak and strong solutions to the hysteresis system and homogenize
the system for oscillatory stochastic coefficients. The effective equa-
tions contain a new dependent variable which encodes the history of
the wetting process and provide a better description of the physical
system.

1 Introduction

Our aim is an effective description of fluid flow in porous media, where only
part of the pore space is occupied by the fluid, say water, while the rest
of the pore space is occupied by air at a constant pressure. We are not
aiming at a description of the microscopic situation, but rather use the two
macroscopic scalar variables of fluid pressure p = p(x, t) and water content
u = u(x, t). Here, u(x, t) ∈ [0, 1] is a measure for the volume fraction of
liquid in the pore-space, looking in the vicinity of the point x at time t. It
is standard to relate velocity and pressure with Darcy’s law which imposes
a linear relation between velocity and pressure-gradient. Conservation of
mass then implies

∂tu = ∇ · (K∇p). (1.1)

We allow K to depend on the position x, but we assume for simplicity that
K is independent of u.

We must now consider the microscopic situation in order to understand
the capillary relation between u and p. If the volume fraction of water is
increased, the liquid must fill smaller and smaller pores; in order to do so, an
increasing local capillary pressure must be overcome (we describe the case
of a non-wetting fluid). Since the gas phase is under a constant pressure,
we find a monotone relation between p and u.

1Mathematisches Institut, Universität Basel, Rheinsprung 21, CH-4051 Basel, Switzer-

land. Ben.Schweizer@unibas.ch

1



Capillary hysteresis. A more detailed study of the microscopic interfaces
in the single pore reveals an additional property: the bottleneck effect. If
the water content increases, water-air interfaces must repeatedly pass very
small pores. In order to overcome these “bottlenecks”, a high pressure is
needed. In the opposite case of a decreasing water content, the interfaces
must repeatedly be pulled out of large pores, which means that a lower
pressure is needed. If, instead, the water content is constant, the pressure has
the freedom to adjust at any value in between. These arguments are made
precise in [17] and [18]. Choosing an affine function as a simple monotone
relation, the arguments justify

p ∈ au+ b+ γ sign(∂tu). (1.2)

The parameters a, b, γ : Ω → R satisfy a, γ > 0. We use the multivalued
sign function defined as sign(ξ) = ±1 for ±ξ > 0 and sign(0) = [−1, 1].
Formally, (1.1)–(1.2) defines an evolution equation for u. The system must
be complemented with appropriate initial and boundary conditions. We
consider evolutions that are driven by imposed pressures on the boundary.
Given g ∈ C1([0, T ],H2(Ω)) and U0 ∈ L

2(Ω) we impose

u(., t = 0) = U0 in Ω, (1.3)

p(., t) = g(., t) on ∂Ω, ∀t ∈ [0, T ]. (1.4)

On the initial conditions we have to assume some compatibility. For sim-
plicity, we restrict to initial values that are compatible with a vanishing
pressure. We demand

g(., t = 0) = 0, (1.5)

a(x)U0(x) + b(x) ∈ [−γ(x), γ(x)] ∀x ∈ Ω. (1.6)

Recent studies of the play-type hysteresis system (1.1)-(1.2) are due to Be-
liaev. In [3] he introduces a concept of weak solutions and shows existence
and uniqueness results by means of semigroup theory of [1].

The model was developed further in [4] and [5] in order to include dy-
namic effects and rate dependent laws, essentially by replacing the sign
function in (1.2) with a strictly monotone function. In the present work,
we use such a modification as a regularization. We rediscover existence and
uniqueness properties of (1.1)-(1.2) and provide a Galerkin approximation.

Homogenization. The next step in the analysis of the hysteresis sys-
tem regards homogenization. A first homogenization result was derived by
Beliaev in [2] for a periodic setting. He considered a situation in which
the physical parameters have a finite range of values, Ki, ai, bi, and γi,
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i = 1, ..., N . These values are repeated with a period ε > 0 in a periodic
way across the medium. Beliaev was able to derive the homogenized sys-
tem which describes the limit ε → 0. If the values indexed by i are chosen
in a region with volume fraction ci, the limit system for p = p(x, t) and
ui = ui(x, t) reads

N
∑

i=1

ci∂tui = ∇ · (K∗∇p),

p ∈ aiui + bi + γi sign(∂tui) ∀i = 1, ...,N,

(1.7)

where K∗ is a homogenized diffusion matrix obtained from cell-problems.
Our aim in this contribution is to study the stochastic situation. It is

interesting to note that, in the stochastic situation, the limit system is more
accessible in some respects. We study the situation that the parameters a,
b, K, and γ can take all values in given intervals. In cells of size ε, the four
values are chosen randomly and independent of each other, and we consider
the limit ε→ 0. We expect two modifications with respect to system (1.7).

◦ the discrete variable γi is replaced by a real variable y with values in
an interval.

◦ The parameters a and b are averaged.

We further note that, in the discrete case, the values γi either vanish or
have a finite distance from 0. In our study we allow all values γ ∈ [0, 1]; this
difference leads to smooth scanning curves for the upscaled system.

Our main result is Theorem 4.2. It is shown that the following is the
upscaled hysteresis system in the stochastic case. With expected values
denoted by 〈.〉 we introduce the averaged quantities

a∗ :=
〈

a−1
〉−1

, b∗ := 〈b〉 ,

and an effective permeability matrix K∗ that is defined by the standard
stochastic cell-problem. We denote by

Γ(x, .) ∈M([0, 1]) the distribution of γ in the point x.

We seek for functions p(x, t), w(x, y, t), such that the saturation

u(x, t) =

∫ 1

0

w(x, y, t) − b∗

a∗
dΓ(x, y) (1.8)

satisfies the hysteresis system

∂tu = ∇ · (K∗∇p) in Ω× (0, T ), (1.9)

p(x) ∈ w(x, y) + y sign(∂tw(x, y)) ∀x ∈ Ω, y ∈ supp(Γ(x, .)). (1.10)
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We see that two new variables are introduced. The dependent variable
w(x, y, t) can be regarded as an expected pressure at points with the γ-
value y. The new independent variable y substitutes the parameter γ. The
parameter a is homogenized to the harmonic mean a∗. The system is com-
plemented by boundary and initial conditions

w(x, ., t = 0) = W0(x, .) ∈ Lip1([0, 1]) ∀x ∈ Ω, (1.11)

p(., t) = g(., t) on ∂Ω, ∀t ∈ [0, T ]. (1.12)

For compatibility, we demand that the initial condition can be realized with
a vanishing pressure,

g(., t = 0) = 0, (1.13)

W0(x, y) ∈ [−y, y] ∀y ∈ supp(Γ(x, .)), x ∈ Ω. (1.14)

Equations (1.8)–(1.10) with the general measure Γ include the two equa-
tions of interest as special cases. Setting Γ(x, .) = δγ(x)(.) and W0(x, .) =
a(x)U0(x) + b(x), we recover the original system (1.1)-(1.2). On the other
hand, the homogenized system will be of the form (1.8)–(1.10) with the
one-dimensional Lebesgue measure Γ(x, .) = dy. In particular, existence
and uniqueness results and a priori estimates for the homogenized system
(1.8)–(1.10) imply the same results for the original system (1.1)–(1.2).

In the language of hysteresis theory [20], we may state our main result
as follows: The evolution equation (1.1) with a play-type hysteresis relation
between u and p is homogenized to (1.1) with a Prandtl-Ishlinskii hysteresis
relation.

Outline and further literature. This paper is organized as follows. In
section 2 we analyze a Galerkin scheme that provides approximate solutions
to the general equations (1.8)–(1.12). For the approximate solutions we
prove a priori estimates and the fundamental structure property (2.18). In
section 3 we perform the limit procedure, we find weak and strong solutions
of (1.8)–(1.12) and show the uniqueness. Section 4 is devoted to the ho-
mogenization. In the limit ε → 0, strong solutions of (1.1)–(1.4) converge
almost surely to solutions of the homogenized system (1.8)–(1.12). In this
theorem we exploit the bounds for strong solutions of section 3 and use the
approximate solutions of section 2 in the construction of test functions.

We restrict here to an affine underlying p-u-relation, nonlinear and de-
generate problems are studied e.g. in [10], [16], [19]. A construction of
approximate solutions to a one-dimensional unsaturated flow problem can
be found in [14]. Homogenization of two-phase flows is performed e.g. in
[6], [7], a filtration model with hysteresis is studied in [15]. Regarding ho-
mogenization of stochastic flow problems we mention [9], [11], [13].
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Interpretation: Effective scanning curves. In imbibition/drainage
experiments one increases/decreases the water content u in a porous ma-
terial and measures the pressure p. Up to transitional behavior, one finds
a fixed relation between p and u for both processes. In our model, the two
relations are p = au + b + γ and p = au + b − γ. The curves that are ob-
tained when changing from imbibition to drainage (or vice versa) are called
scanning curves. In the play-type hysteresis of (1.2) with constant parame-
ters, these scanning curves are vertical lines — in contrast to experimental
results.

In order to understand better the homogenized system, we now calculate
a scanning curve after a drainage process, assuming b∗ = 0, a∗ = 1, and the
homogeneous distribution Γ = dy. For homogeneous fields p(x, t) = p(t),
w(x, y, t) = w(y, t) we find w(0, t) = p(t) by (1.10) and u(t) =

∫ 1
0 w(y, t) dy.

After drainage with ∂tw < 0 we have w(y, 0) = p(0) + y, again by (1.10).

w(y, t)

ys(t) 1

p

u

Figure 1: a) The function w(., t) b) effective scanning curves

Starting from this drainage situation, we study an evolution with ∂tp(t) =
1. For small values of y, the value w(y, t) must increase after the short time
y, since equation (1.10) does not allow larger differences between w(y, t) and
p(t). The qualitative picture is that of figure 1a). To be precise, the value

s(t) := sup {y0|∂tw(y, t) > 0∀y < y0} (1.15)

increases, and the function w has the form

w(y, t) =

{

p(t)− y y < s(t),
p(t)− 2s(t) + y y ≥ s(t).

(1.16)

For y > s(t) we find 0 = ∂tw(y, t) = ∂tp(t)− 2∂ts(t) and thus ∂ts(t) = 1
2 for

the position of the free boundary. We can therefore calculate for the water
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content u

u(t) = p(t)−2s(t)+
1

2
+s(t)2, ∂tu(t) = 1−2∂ts(t)+2s(t)∂ts(t) = s(t) =

t

2
.

This yields the qualitative scanning curves of figure 1b) for the upscaled
equations. In the original system of play-type hysteresis, the scanning curves
are vertical, and, in particular, independent of the history. We see that, af-
ter homogenization, the function w(x, ., t) contains the relevant information
about the history of the process and determines the shape of the scanning
curves.

We conclude that the experimental observations can be described well
with the effective equations (1.8)–(1.12), the history variable w provides a
rich variety of possible scanning curves. In this work, we rigorously de-
rive the effective equations in a homogenization process, starting from the
elementary hysteresis model (1.1)–(1.4).

2 Approximate solutions

The aim of this section is to approximate solutions of the homogenized sys-
tem with a Galerkin scheme. We will find uniform estimates for the approx-
imate solutions, which in turn provide us with estimates for the solutions
of the limit system. Moreover, the approximate solutions will be well-suited
for the construction of test-functions in the homogenization procedure. We
would like to emphasize that all the results on existence of solutions and
estimates carry over to the original problem with the special choice of the
distribution function Γx = δγ(x).

For notational convenience we choose a rectangle Ω ⊂ Rn as macroscopic
domain and fix a time interval [0, T ]. On the physical parameters we assume
K∗ ∈ L∞(Ω,Rn×n) uniformly positive definite, a∗, b∗ ∈ L∞(Ω,R) with a∗ ≥
α > 0 bounded from below. We furthermore assume that for a triangulation
T0 of the domain the functions a∗, b∗, and K∗ are constant on each triangle
A ∈ T0 and that the probability distributions

Γ(x, .) ∈M([0, 1]),

are independent of x in each triangle A ∈ T0. Our aim is to study (1.8)-
(1.10), to find a discrete approximation of the equations, and to find strong
solutions. Our main result is the existence of approximate solutions that
satisfy the structure condition (2.18). These are the approximate solutions
that will be used in the construction of test-functions in the homogenization
procedure.
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Spatial discretization. We consider a sequence of triangulations Th of
the domain Ω with vertices Ωh := {x1, ..., xK}, where h > 0 is the maximal
distance between neighbors. We assume that each triangulation Th is a
refinement of the coarse triangulation T0. In this way we achieve that the
coefficients are x-independent on each triangle A ∈ Th. Additionally, we
discretize the interval I := [0, 1] with equidistant nodes Iη := {y1, ..., yL},
0 = y0 < y1 = η < ... < yL = 1, with η > 0 the distance between neighbors.
The weights for the discretization are

Γη(x, y) := Γx((y − η, y] ∩ I) ∀y ∈ Iη, (2.1)

with the closed interval for y = y1 = η.
Regularization. We replace the inequalities of (1.10) by a dynamic con-

dition. For δ > 0 we use the following approximation of the inverse sign-
function. For y ∈ I and δ > 0 let ψy

δ : R→ R be the function

ψy
δ (r) :=







δr for r ∈ [−y, y],
yδ + 1

δ
(r − y) for r > y,

−yδ + 1
δ
(r + y) for r < −y.

(2.2)

Given the triangulation Th of Ω, we can associate to every triangle A ∈ Th
a corner x ∈ Ωh. This provides us an interpolation operator Q, which
maps a discrete function u : Ωh → R to piecewise linear interpolations ū.
Furthermore we have the L2-orthogonal projection P , which maps functions
v ∈ L2(Ω) to piecewise constant functions v̄ ∈ L2(Ω). To every piecewise
constant function v̄ we can associate a discrete map v̂ : Ωh → R such that
Qv̂ = v̄. In such a situation, we will not distinguish between v̂ and v̄. On
the initial values W0 we assume that they are x-independent on triangles
A ∈ T0 as are a∗, b∗,K∗, and Γ.

Definition 2.1 (Galerkin scheme). We consider the following system of

ordinary differential equations for pδ = ph,η
δ : Ωh × [0, T ] → R and wδ =

wh,η
δ : Ωh × Iη × [0, T ]→ R.

∂twδ(x, y, t) = −ψy
δ (wδ(x, y, t)− pδ(x, t)) ∀x ∈ Ωh, y ∈ Iη, (2.3)

wδ(., y, t = 0) = W η
0 (., y) :=

1

η

∫ y

y−η

W0(., ζ) dζ ∀y ∈ Iη. (2.4)

It remains to describe how the pressure pδ is reconstructed from wδ. We
identify wδ with its piecewise constant interpolation, and solve the following
elliptic problem for p̃δ(., t) : Ω→ R and pδ := P p̃δ,

∇(K∗∇p̃δ)(x) = −
1

a∗(x)

∑

y∈Iη

Γη(x, y) ψ
y
δ (wδ(x, y)− pδ(x)) , (2.5)

p̃δ(., t) = g(., t) on ∂Ω,∀t ∈ [0, T ]. (2.6)
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We will see that these solutions can be used to find solutions of (1.8)-
(1.10). But first we have to study the solvability of the equations and a
priori estimates.

Lemma 2.2 (Existence for the ODE). The solution map wδ 7→ pδ defined by
equations (2.5), (2.6) is well-defined and Lipschitz continuous. In particular,
Definition 2.1 describes a system of ordinary equations. There is a unique
local solution (pδ, wδ) for all positive δ, h, and η.

Proof. We show the argument for g = 0, the general case is analogous. We
define the operator A : H1

0 (Ω)→ H−1(Ω) by

〈Au, v〉 := 〈K∗∇u,∇v〉L2(Ω)

−

〈

1

a∗(x)

∑

y∈Iη

Γη(x, y) ψ
y
δ (wδ(x, y)− Pu(x)) , v

〉

L2(Ω)

.

We claim that A is monotone, coercive, and continuous on finite dimensional
subspaces. Once this is shown, the theory of monotone operators (e.g. [12],
Chapter III, Cor. 1.8) yields the existence of a solution to the equation
Au = 0. For the monotonicity we calculate

〈Au−Av, u− v〉 = 〈K∗∇(u− v),∇(u− v)〉L2(Ω)

−

〈

∑

y∈Iη

Γη(., y)

a∗(x)

[

ψy
δ (wδ(., y) − Pu)− ψ

y
δ (wδ(., y) − Pv)

]

, u− v

〉

L2(Ω)

= 〈K∗∇(u− v),∇(u − v)〉L2(Ω) −
∑

y∈Iη

∑

T∈Th

1

a∗(T )
|T |Γη(T, y)·

〈[

ψy
δ (wδ(., y)− Pu(.)) − ψ

y
δ (wδ(., y)− Pv(.))

]

, Pu(.)− Pv(.)
〉

L2(T )

≥ 〈K∗∇(u− v),∇(u − v)〉L2(Ω) .

In the last step we exploited that all ψy
δ are monotonically increasing. The

right hand side is non-negative and we conclude the monotonicity of A. The
Poincaré inequality yields the coerciveness of A. The continuity on finite
dimensional subspaces follows from the continuity of ψy

δ and P .
For a sequence w→ w0 ∈ L

∞(Ωh× Iη,R) we consider the corresponding
operators Aw and Aw0

and find solutions uw and uw0
of Awuw = 0 and

Aw0
uw0

= 0. By uniform coerciveness of Aw, the solutions uw are bounded.
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With the Poincaré inequality we calculate

c‖uw − uw0
‖2 ≤ 〈Awuw −Awuw0

, uw − uw0
〉

= 〈Aw0
uw0
−Awuw0

, uw − uw0
〉

≤ C
1

δ
‖w −w0‖ ‖uw − uw0

‖.

Dividing by ‖uw − uw0
‖ we conclude the local Lipschitz continuity of the

map w 7→ u.

Lemma 2.3 (Estimates and global solutions). Every solution wδ, pδ to the
scheme of Definition 2.1 satisfies for every t ∈ [0, T ] the estimate

∫

Ω

∑

y∈Iη

Γη(x, y) |∂twδ(x, y, t)|
2 dx+

∫ t

0

∫

Ω
|∇∂tp̃δ(x, t

′)|2 dx dt′

≤ C1(g) + C2(δ, h, η).

(2.7)

The constants depend on the bounds for a∗ and K∗. We can choose C2 with

lim
δ→0

C2(δ, h, η) = 0 ∀h, η > 0. (2.8)

The function wδ is Lipschitz in y with constant 1, for all x ∈ Ωh and all
t ∈ [0, T ],

wδ(x, ., t) ∈ Lip1(Iη). (2.9)

A consequence of the lemma is that we can extend the local solutions to
the ODE to the whole interval [0, T ].

Proof. We insert (2.3) into (2.5). Omitting the dependence on t we can
write

∇(K∗∇p̃δ(x)) =
∑

y∈Iη

Γη(x, y)

a∗(x)
∂twδ(x, y) ∀x ∈ Ω,

where the right hand side is piecewise constant in x. We differentiate with
respect to t and find

∇(K∗∇∂tp̃δ(x)) =
∑

y∈Iη

Γη(x, y)

a∗(x)
∂2

twδ(x, y).

Multiplication with ∂t(p̃δ − g) and an integration over Ω yields

−

∫

Ω
K∗∇∂tp̃δ · ∇∂tp̃δ +

∫

Ω
K∗∇∂tg · ∇∂tp̃δ

=
∑

y∈Iη

∫

Ω

Γη(x, y)

a∗(x)
∂2

twδ(x, y)∂tpδ(x) dx. (2.10)
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The function ψy
δ is invertible and we denote the inverse by Φy

δ . Note that
Φy

δ is a regularized and scaled sign-function. Relation (2.3) can be written
as

−Φy
δ(∂twδ(x, y)) = wδ(x, y)− pδ(x).

We can differentiate with respect to t and find

∂tpδ(x) = ∂twδ(x, y) +DΦy
δ(∂twδ(x, y)) · ∂

2
twδ(x, y).

We can now insert this expression into (2.10),

−

∫

Ω
K∗∇∂tp̃δ · ∇∂tp̃δ +

∫

Ω
K∗∇∂tg · ∇∂tp̃δ

=
∑

y∈Iη

∫

Ω

Γη(x, y)

a∗(x)
∂2

twδ(., y)
[

∂twδ(., y) +DΦy
δ(∂twδ(., y)) · ∂

2
twδ(., y)

]

=
∑

y∈Iη

∫

Ω

Γη(x, y)

a∗(x)
∂t

1

2
|∂twδ(., y)|

2 +DΦy
δ(∂twδ(., y)) · |∂

2
twδ(., y)|

2

≥
∑

y∈Iη

∫

Ω

Γη(x, y)

a∗(x)
∂t

1

2
|∂twδ(., y)|

2,

where in the last step we used that DΦy
δ is positive. An integration over

(0, t) yields the a priori estimate (2.7) with

C2(δ, h, η) := C
∑

y∈Iη

∫

Ω

Γη(x, y)

a∗(x)
|∂twδ(., y)|

2

∣

∣

∣

∣

∣

∣

t=0

.

δ-dependence of C2. In order to show (2.8), it remains to verify for the
initial values ∂twδ(., y, t = 0)→ 0 for δ → 0 for all y ∈ Iη with Γη(., y) > 0.
Since the spatial variables are discrete, p̃δ(t = 0) is contained in a finite
dimensional subspace of H2(Ω). It therefore suffices to show p̃δ(t = 0)→ 0.
At this point we exploit the compatibility condition (1.14) on the initial
values. We must study the monotone operator Aδ

W
η
0

and the solution p̃δ of

Aδ
W

η
0

p̃δ = 0. We use that for the trivial pressure distribution, by compati-

bility, Aδ
W

η
0

0 → 0, where we exploit the direction of the discretization Iη of

I. The uniform coerciveness of coerciveness of Aδ
W

η
0

yields

c‖p̃δ − 0‖2 ≤ C
〈

Aδ
W

η
0

0−Aδ
W

η
0

p̃δ, 0− p̃δ

〉

≤ C‖Aδ
W

η
0

0‖ ‖p̃δ‖.

Dividing by ‖p̃δ‖ we have verified the claim.
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Lipschitz property. The initial values satisfy the Lipschitz estimate. We
claim that the Lipschitz constant can never exceed the value 1. To this end,
let t by a time instance, x a point in Ωh, and 0 ≤ y1 < y2 ≤ 1 such that

wδ(x, y2, t)−wδ(x, y1, t) = y2 − y1. (2.11)

Our claim is proven once we find that the time derivative of the left hand
side is negative. We restrict here to the case wδ(x, y2, t) > wδ(x, y1, t), the
other sign is treated in the same way.

First case: If wδ(x, y1, t) ≤ pδ(x)+ y1, then wδ(x, y2, t) ≤ pδ(x)+ y2. We
find

∂t [wδ(x, y2, t)− wδ(x, y1, t)] = −δ [wδ(x, y2, t)− wδ(x, y1, t)] < 0.

Second case: If wδ(x, y1, t) > pδ(x) + y1, then also wδ(x, y2, t) > pδ(x) + y2.
We find

∂t [wδ(x, y2, t)− wδ(x, y1, t)]

= −δy2 −
1

δ
(wδ(x, y2, t)− pδ(x)− y2) + δy1 +

1

δ
(wδ(x, y1, t)− pδ(x)− y1)

= −δ(y2 − y1) < 0.

This shows the Lipschitz estimate for all δ > 0.

We can now study the limit δ → 0 in order to find spatially discrete
approximate solutions.

Theorem 2.4 (Approximate solutions). For x and y discrete, there exists
a solution (uh,η, ph,η, wh,η) of the following discretization of (1.8)-(1.10).

uh,η =
∑

y∈Iη

Γη(., y)
wh,η(., y) − b∗

a∗
(2.12)

∇(K∗∇p̃h,η) = ∂tu
h,η (2.13)

ph,η ∈ wh,η(., y) + y sign(∂tw
h,η(., y)) ∀y ∈ Iη with Γη(., y) > 0,

(2.14)

for almost all t ∈ (0, T ), together with the initial values wh,η = W η
0 and the

boundary values p̃h,η = g on ∂Ω.
The solutions satisfy uniform a priori bounds in the norms of

∂tw
h,η ∈ L∞L2(Ω× I, dx⊗ dΓη(x, y)), (2.15)

∂tp̃
h,η ∈ L2H1(Ω), (2.16)

p̃h,η ∈ L∞H2(Ω). (2.17)
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For some zh,η ∈ L∞(Ω× (0, T )) the solution satisfies the structure condition

∂tw
h,η(x, y, t) =

{

∂tp
h,η(x, t) for y ≤ zh,η(x, t),

0 else,
(2.18)

for almost every t and all y with Γη(x, y) > 0.

Proof. We use the approximations wh,η
δ and ph,η

δ of Definition 2.1. For a
subsequence we find a weak-∗ limit in W 1,∞((0, T ), L∞) and a weak limit in
the space H1((0, T ), L∞) (we use that x and y are discrete),

(wh,η
δ , ph,η

δ )⇀(wh,η, ph,η) for δ → 0.

The a priori estimates (2.15) and (2.16) are guaranteed by Lemma 2.3. The
estimate (2.17) is a consequence of equation (2.13) and the bound of (2.15).
All bounds depend only on C1(g) and are therefore independent of h and η.

In order to derive the equations we insert once more (2.3) into (2.5),

∇(K∗∇p̃h,η
δ ) =

1

a∗

∑

y∈Iη

Γη(., y) ∂tw
h,η
δ (., y).

We can take weak limits for δ → 0 and find equation (2.13).

Relation (2.14). We study (2.3),

∂tw
h,η
δ (x, y, t) = −ψy

δ

(

wh,η
δ (x, y) − ph,η

δ (x)
)

.

The left hand side is bounded in L∞((0, T ), L∞) with a bound that is in-
dependent of δ, since x and y are discrete. By the estimates for their
time derivatives, wh,η

δ → wh,η and ph,η
δ → ph,η are weak convergences in

H1((0, T )), and can therefore be assumed to be also pointwise convergences.
We use |ψy

δ (ξ)| ≥ δ−1(ξ − y)+ to find for fixed x, y, t, Γη(x, y) > 0,

0← δ
∣

∣

∣ψ
y
δ

(

wh,η
δ (x, y, t)− ph,η

δ (x, t)
)∣

∣

∣

≥
(

wh,η
δ (x, y, t)− ph,η

δ (x, t)− y
)

+
→

(

wh,η(x, y, t)− ph,η(x, t)− y
)

+
.

The same calculation for −y yields for all t and all the (discrete) values of
x and y the relation

wh,η(x, y, t) − ph,η(x, t) ∈ [−y, y]. (2.19)

Let now (x, y, t) be a point as above, now with wh,η(x, y, t)−ph,η(x, t) >
−y. Then, for all small δ, by the pointwise convergence, also

wh,η
δ (x, y, t)− ph,η

δ (x, t) > −y,

12



whence the positive part (∂tw
h,η
δ (x, y, t))+ = (−ψy

δ )+ ≤ δy. We find for all
x, y, t

(∂tw
h,η
δ (x, y, t))+ 1{wh,η(x,y,t)−ph,η(x,t)>−y} → 0 for δ → 0.

Since ∂tw
h,η
δ are bounded, independent of δ, we can apply the Lebesgue

convergence theorem to conclude

(∂tw
h,η
δ (x, y, t))+ 1{wh,η(x,y,t)−ph,η(x,t)>−y} → 0 in L2((0, T )),

for δ → 0. But by definition of the limit function wh,η and the L2-weak
lower semicontinuity of the positive part, we find in the limit for the left
hand side

(∂tw
h,η(x, y, t))+ 1{wh,η(x,y,t)−ph,η(x,t)>−y} ≤ 0 (2.20)

in the sense of L2-functions. We have verified the implication

∂tw
h,η(x, y, t) > 0 ⇒ wh,η(x, y, t) − ph,η(x, t) = −y (2.21)

for almost every t and all x, y with Γη(x, y) > 0. The conclusion for the
other sign is calculated in the same way by replacing the positive part with
the negative part. Relation (2.14) is shown.

The structure property (2.18). We next verify the equality

(∂tw
h,η(x, y, t)− ∂tp

h,η(x, t)) 1{|wh,η(x,y,t)−ph,η(x,t)|=y} = 0 (2.22)

for all x ∈ Ωh, y ∈ Iη, and almost every t. For fixed x and y the set
{t ∈ [0, T ] : |wh,η(x, y, t) − ph,η(x, t)| = y} is a countable union of closed
intervals by the continuity of ph,η and wh,η, and the two functions differ by
one constant on these intervals. In particular, the weak derivatives coincide
almost everywhere on the intervals.

For every t and x, the sets {y ∈ Iη : wh,η(x, y, t) − ph,η(x, t) = ±y}
are of the form {y ∈ Iη : y ≤ zh,η} for some zh,η by the Lip1-estimate for
wh,η. This defines zh,η. Property (2.18) is a consequence of (2.22) and (2.20)
(together with the equality with opposite signs).

3 Weak and strong solutions

In this section we show that the approximate solutions of the last section
can be used to find continuous solutions of the upscaled system. We proceed
in two steps and show that

13



(i) limits of approximate solutions for (h, η)→ 0 are weak solutions,

(ii) under regularity assumptions on Γ, weak solutions are strong solutions.

In particular, we find strong solutions to the original system with uniform
bounds that allow the homogenization. For the original system we essentially
recover a result of Beliaev that was obtained with the help of semigroup
theory.

In order to prepare for the limit procedure (h, η) → 0, we show a com-
pactness result. For a function u : Ω → R that is piecewise constant on
the h-grid, we denote by |∇hu| the upper bound for the discrete difference-
quotient: in every node we take the supremum over the norms of the finite
difference quotients along outgoing edges. This function on the nodes is
identified with its piecewise constant interpolation |∇hu| : Ω→ R.

We recall that, by our assumptions, the data a∗, b∗,K∗,Γ, and W0 are
constant on triangles A ∈ T0 covering Ω.

Lemma 3.1 (Compactness). The approximate solutions ph,η, wh,η of The-
orem 2.4 satisfy the following pointwise estimate for discrete spatial deriva-
tives. For all triangles A ∈ T0, x ∈ Ωh an inner point of A, and all y ∈ Iη
with Γη(A, y) > 0 there holds

|∇hwh,η(x, y, t)| ≤

∫ t

0
|∂t∇

hph,η(x, t′)| dt′. (3.1)

We define functions F h,η
j : Ω× [0, T ]→ R, j = 1, 2, 3, by

F h,η
0 (x, t) :=

∑

y

Γη(x, y) w
h,η(x, y, t),

F h,η
1 (x, t) :=

∑

y

Γη(x, y) y w
h,η(x, y, t),

F h,η
2 (x, t) :=

∑

y

Γη(x, y) |w
h,η(x, y, t)|2.

Then F h,η
j are compact in L1(Ω×(0, T )), and F h,η

j (., t) are compact in L1(Ω)
for all t, j = 1, 2, 3.

Proof. We omit the superscript (h, η) and write shortly (w, p) for (wh,η, ph,η).
We fix A ∈ T0 and want to show for all x1, x2 in A, all y ∈ Iη with Γη(y) > 0,
all t ∈ [0, T ], for δ = 0, the inequality

|w(x1, y, t)− w(x2, y, t)| ≤

∫ t

0
|∂tp(x1, t

′)− ∂tp(x2, t
′)| dt′ + δ(1 + t). (3.2)

14



Estimate (3.1) follows if we show (3.2) for all δ > 0. Note that W0 was
assumed to be piecewise constant on A such that the estimate holds initially.
We claim that the estimate can never cease to hold. For a contradiction
argument, let t < T be the last time instance such that the estimate holds up
to time t. Interchanging x1 with x2 if necessary, we can assume w(x1, y, t) >
w(x2, y, t). We have to consider two cases.

Case 1. ∂tw(x1, y, t) > 0. In this case we have sign(∂tw(x1, y, t)) = 1
and therefore w(x1, y, t) = p(x1, t)− y. We can calculate

w(x1, y, t)− w(x2, y, t) ≤ p(x1, t)− y − p(x2, t) + y = p(x1, t)− p(x2, t)

≤

∫ t

0
|∂tp(x1, t

′)− ∂tp(x2, t
′)| dt′.

Thus inequality (3.2) holds strictly and case 1 can not occur.
Case 2. ∂tw(x1, y, t) ≤ 0. In this case we have either (a) ∂tw(x2, y, t) ≥

0, or (b) ∂tw(x2, y, t) < 0. In case (a) we find

∂t[w(x1, y, t)− w(x2, y, t)] ≤ 0.

But the time derivative of the right hand side in (3.2) is positive and the
inequality does not cease to hold.

In case (b) we have sign(∂tw(x2, y, t)) = −1 and therefore w(x2, y, t) =
p(x2, t) + y. We then find

w(x1, y, t)− w(x2, y, t) ≤ p(x1, t) + y − p(x2, t)− y = p(x1, t)− p(x2, t)

≤

∫ t

0
|∂tp(x1, t

′)− ∂tp(x2, t
′)| dt′.

The inequality holds again strictly and case 2 can not occur, either.

Compactness. For the compactness it suffices to consider a single triangle
A ⊂ Ω out of the finite number of triangles A ∈ T0. The right hand side of
(3.1) is bounded in L2(A×(0, T )), hence the inequality can be regarded as a
replacement for spatial regularity of wh,η(., y, .). To be precise, we claim that

F h,η
j has temporal and discrete spatial derivatives bounded in L1(A×(0, T )).

Indeed, for F0,

∫ T

0

∫

A

|∇hF h,η
0 (x, t)| dx dt =

∫ T

0

∫

A

∑

y

Γη(x, y) |∇
hwh,η(x, y, t)| dx dt

≤

∫ T

0

∫

A

∑

y

Γη(x, y)

{
∫ t

0
|∂t∇

hph,η(x, t′)| dt′
}

dx dt

≤

∫ T

0

∫

A

{∫ t

0
|∂t∇

hph,η(x, t′)| dt′
}

dx dt ≤ C,
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where, in the last step, we used (2.16). For temporal derivatives we calculate

∫ T

0

∫

A

|∂tF
h,η
0 (x, t)| dx dt =

∫ T

0

∫

A

∑

y

Γη(x, y) |∂tw
h,η(x, y, t)| dx dt ≤ C,

using (2.15). The other integrals Fj are treated similarly and we find the
L1(Ω × (0, T ))-compactness. For fixed t ∈ [0, T ], the L1(Ω)-compactness
follows along the same lines from (3.1).

Our next result is on the existence of a weak solution. The solution
concept is analogous to that in [2], but we use a stronger formulation in the
third term.

Theorem 3.2 (Weak solutions). There exists a pair (p,w)

w ∈ L∞(0, T ;L2(Ω,Lip1(I))), (3.3)

p ∈ H1(0, T ;H1(Ω, dx)), (3.4)

which is a weak solution of equations (1.8)-(1.10) in the following sense. The
relation w(x, y, t) − p(x, t) ∈ [−y, y] holds for Ln+1-almost every (x, t) and
all y ∈ supp(Γ(x, .)). Moreover, with u defined by (1.8), for all q ∈ H1(Ω)
and all 0 ≤ t1 < t2 ≤ T we have

0 ≥

∫

Ω

{
∫

I

1

2a∗
|w(x, y, t)|2 dΓ(y)− u(x, t) · q(x)

}

dx

∣

∣

∣

∣

t2

t=t1

+

∫

Ω

1

a∗

∫

I

y |w(x, y, t2)− w(x, y, t1)| dΓ(y) dx

+

∫ t2

t1

∫

Ω
K∗∇p(x, t)∇(p(x, t)− q(x)) dx dt

−

∫ t2

t1

∫

∂Ω
n · (K∗∇p(t))(g(t) − q) dHn−1 dt.

(3.5)

The solution (w, p) is bounded in the above norms by a constant that depends
only on Ω, g, and the bounds for the parameters.

Proof. We assume a∗ = 1 and b∗ = 0 for brevity of the calculations. It
suffices to restrict to smooth functions q. We consider the approximate
solutions (ph,η, wh,η) of Theorem 2.4. We can choose a sequence (h, η) → 0
and limit functions such that the following convergences hold: ph,η → p
weakly and weakly-∗ in the norms of (2.16) and (2.17), and, for all j = 1, 2, 3,

F h,η
j → Fj strongly in L1(Ω × (0, T )), weakly in H1((0, T ), L1(Ω)), and

F h,η
j (., t)→ Fj(., t) in L1(Ω) for rational t ∈ (0, T ).
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The next step is to define the limit object w : Ω× I × (0, T )→ R. For a
fixed triangle A ∈ T0 and t ∈ (0, T ) we consider y ∈ supp(Γ(A, .)). By (3.1)
and the 1-Lipschitz continuity in y we have the compactness of the sequence
wh,η(., y, t) in the space L2(A). We can therefore assume on our sequence
(h, η) → 0 additionally that wh,η(., y, t) → w(., y, t) in L2(A) for all y in a
dense subset of supp(Γ(A, .)) and all t ∈ (0, T ) ∩ Q. This defines a limit
function w(x, y, t) for almost all x ∈ Ω, for all t in a dense subset, and, by
the uniform Lipschitz estimate in y, for all y ∈ supp(Γ(A, .)). We claim that
for all such y the function t 7→ w(., y, t) ∈ L2(A) is uniformly continuous.
Indeed, the approximations satisfy with a Dirac family Φε(ζ) := Φ0(y+ζ/ε),
for ε→ 0,

‖wh,η(., y, t2)− w
h,η(., y, t1)‖L2(A)

≤ O(ε) +

∥

∥

∥

∥

1

Γ(Φε)

∫

I

[

wh,η(., ζ, t2)− w
h,η(., ζ, t1)

]

Φε(ζ) dΓ(ζ)

∥

∥

∥

∥

L2(A)

≤ O(ε) +
1

Γ(Φε)

∥

∥

∥

∥

∥

∥

∫ t2

t1

∑

ζ∈Iη

∂tw
h,η(., ζ, t)Φε(ζ) Γη(ζ) dt

∥

∥

∥

∥

∥

∥

L2(A)

≤ O(ε) +
1

Γ(Φε)
C |t2 − t1|

by (2.15). In particular, w extends uniquely to all of [0, T ] to a function w

as in (3.3). We claim that for w the strong L1-limits of F h,η
j coincide almost

everywhere with the expressions

F0(x, t) =

∫

I

w(x, y, t) dΓ(x, y), F1(x, t) =

∫

I

y w(x, y, t) dΓ(x, y),

F2(x, t) =

∫

I

|w(x, y, t)|2 dΓ(x, y).

For rational t ∈ (0, T ) this follows by the strong convergence of wh,η(., y, t)→
w(., y, t) for y in a dense set of supp(Γ) and the uniform Lipschitz continuity
in y. The equality for general t follows by the continuity of both sides in t.

After these preparations we can now derive inequality (3.5). We multiply
(2.13) with p̃h,η−q and integrate over Ω to find at an arbitrary time instance
t ∈ (0, T )

∫

∂Ω
n · (K∗∇p̃h,η)(g − q)

−

∫

Ω
K∗∇p̃h,η∇(p̃h,η − q) +

∫

Ω
∂tu

h,η(x) · q dx
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=

∫

Ω
∂tu

h,η · p̃h,η =

∫

Ω

∑

y

Γη(., y) ∂tw
h,η(., y) · ph,η

(2.14)
∈

∫

Ω

∑

y

Γη(., y) ∂tw
h,η(., y) · [wh,η(., y) + y sign(∂tw

h,η(., y))]

= ∂t

∫

Ω

∑

y

Γη(., y)
1

2
|wh,η(., y)|2 +

∫

Ω

∑

y

Γη(., y) y |∂tw
h,η(t, y)|.

We integrate over (t1, t2) and find

∫ t2

t1

∫

∂Ω
n · (K∗∇p̃h,η(t))(g(t) − q) dt

−

∫ t2

t1

∫

Ω
K∗∇p̃h,η(t)∇(p̃h,η(t)− q) dt+

∫

Ω
uh,η(., t) · q

∣

∣

∣

∣

t2

t=t1

=

∫

Ω

∑

y

Γη(., y)
1

2
|wh,η(., y)|2

∣

∣

∣

∣

∣

t2

t=t1

(3.6)

+

∫ t2

t1

∫

Ω

∑

y

Γη(., y) y |∂tw
h,η(., y)|

≥

∫

Ω

∑

y

Γη(., y)
1

2
|wh,η(., y)|2

∣

∣

∣

∣

∣

t2

t=t1

+

∫

Ω

∑

y

Γη(., y) y
∣

∣

∣wh,η(., y, t2)− w
h,η(., y, t2)

∣

∣

∣ .

By the strong L1-convergence of the F h,η
j we can take the limit (h, η) → 0

and find (3.5) for t1, t2 in a dense subset of (0, T ). As all terms in (3.5) are
continuous in t1 and t2, the inequality holds for all t1, t2 ∈ [0, T ].

The equality (wh,η(x, y, t)− ph,η(x, t)− y)+ = 0 carries over to the limit
(also for reversed sign). Therefore w(x, y, t)−p(x, t) ∈ [−y, y] is valid almost
everywhere. The Lipschitz continuity of w in y implies the inclusion for all
y ∈ I.

We are particularly interested in two special cases of the equations. The
first is the original problem which we recover by setting Γ(x, .) = δγε(x)(.).
The second is the homogenized problem in which the measure Γ(x, .) = L1⌊I
appears. In both cases, the above constructed weak solutions are indeed
strong solutions. As a corollary to the above proof we find the following.

Corollary 3.3 (Strong solutions). Let Γ be one of the following.
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(i) dΓ(x, y) = ϕ(x, y) dy, with a positive function ϕ : Ω × [0, 1] → R+,
piecewise constant in x and continuous in y.

(ii) Γ(x, .) = δγ(x)(.) with γ ∈ L∞(Ω, [0, 1]) piecewise constant.

Then the weak solution (p,w) found in Theorem 3.2 is a strong solution, i.e.

∂tw ∈ L
∞((0, T ), L2(Ω× I, dx⊗ dΓ)), (3.7)

in particular ∂tu ∈ L∞((0, T ), L2(Ω)), and relations (1.8)–(1.10) hold al-
most everywhere.

Proof. We consider once more the approximate solutions (uh,η, ph,η, wh,η) of
(2.12)–(2.14) and identify them with their piecewise constant interpolations.

By estimate (2.15) we find u ∈W 1,∞(0, T ;L2(Ω)) such that ∂tu
h,η ∗

⇀ ∂tu in

L∞(0, T ;L2(Ω)). Furthermore, the compactness of F h,η
0 implies the strong

convergence uh,η → u in L1(Ω × (0, T )).
In case (i) we find, starting again from estimate (2.15), the convergence

wh,η ∗
⇀ w in W 1,∞(0, T ;L2(Ω× I)), and, in particular, the regularity (3.7).

In case (ii), by the characterization of F0 = L1 − limh,η F
h,η
0 , we find that

w essentially coincides with u, w(x, γ(x), t) = u(x, t). This implies the
regularity (3.7) in case (ii).

We now verify the equations. By the characterization of F0, relation (1.8)
is a consequence of (2.12), relation (1.9) is the limit of (2.13). It remains to
check (1.10). We recall that w(x, y, t)− p(x, t) ∈ [−y, y] was already verified
in Theorem 3.2. The main point is therefore to show for Lebesgue-almost
every point (x, t) ∈ Ω× (0, T ) and for every y ∈ I that

|(w − p)(x, y, t)| < y ⇒ ∂tw(x, y, t) = 0. (3.8)

An improved characterizing inequality. The principal idea is to improve
the calculation of (3.6). We do not have to take the norm out of the integral
in the term

∫ t2

t1

∫

Ω
F h,η with F h,η(x, t) :=

∑

y

Γη(x, y) y |∂tw
h,η(x, y, t)|.

Case (i). By continuity of ϕ(x, .), we may rewrite F h,η up to a uniformly
small error as

F h,η(x, t) =

∫

I

y |∂tw
h,η(x, y, t)|ϕ(y) dy + o(1)

for η → 0. We use the lower semicontinuity of convex functionals to find

lim inf
(h,η)→0

∫ t2

t1

∫

I

y |∂tw
h,η(., y, t)|ϕ(y) dy dt ≥

∫ t2

t1

∫

I

y |∂tw(., y, t)|ϕ(y) dy dt.
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Thus (3.6) yields the following stronger version of the characterizing inequal-
ity.

0 ≥

∫

Ω

{∫

I

1

2a∗
|w(x, y)|2 dΓ(x, y) − u(x) · q

}

dx

∣

∣

∣

∣

t2

t1

+

∫ t2

t1

∫

Ω

1

a∗

∫

I

y|∂tw(x, y, t)| dΓ(x, y) dx dt

+

∫ t2

t1

∫

Ω
K∗∇p(t)∇(p(t)− q) dt

−

∫ t2

t1

∫

∂Ω
n · (K∗∇p(t))(g(t) − q) dt.

(3.9)

Case (ii). We write

F h,η(x, t) = γ(x) |∂tw
h,η(x, γ(x), t)| + o(1)

for η → 0. The lower semicontinuity of convex functionals yields

lim inf
(h,η)→0

∫ t2

t1

F h,η ≥

∫ t2

t1

∫

I

γ(.) |∂tw(., γ(.), t)| dt.

and therefore again inequality (3.9).

Verification of (3.8). We give all arguments for case (i) and Γ(x, .) = L1,
the other cases are similar. We assume again a∗ = 1 and b∗ = 0 for notational
convenience. We can write for the first two integrals of (3.9)

∫

Ω

∫

I

|w(., y, t2)|
2 − |w(., y, t1)|

2 dy =

∫ t2

t1

∫

Ω

∫

I

2w(., y, s)∂tw(., y, s) dy ds,

∫

Ω
{u(t2)− u(t1)} q =

∫ t2

t1

∫

Ω
∂tu(s) q ds.

We now choose a countable family of test-functions q ∈ H1(Ω). To be
specific, we choose the family {p(t) : t ∈ (0, T )∩Q}. Almost every t ∈ (0, T )
is a Lebesgue point for the (countable family of) L1-functions

∫

Ω

∫

I
w∂tw,

∫

Ω

∫

I
y |∂tw|,

∫

Ω ∂tu q, and
∫

ΩK
∗∇p · ∇(p− q).

We can now consider t1 = t− τ , t2 = t+ τ and the limit 0 < τ → 0. We
divide the weak equation (3.9) by t2 − t1. In the limit τ → 0 we find in all
Lebesgue points t

0 ≥

∫

Ω

∫

I

w ∂tw − ∂tw q +

∫

Ω

∫

I

y |∂tw|

+

∫

Ω
K∗∇p · ∇(p− q)−

∫

∂Ω
n · (K∗∇p)(g − q).
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By continuity of p in t, we can choose the test-function q ∈ H1(Ω) arbitrarily
close to p(t). We conclude

0 ≥

∫

Ω

∫

I

(w − p)∂tw + y|∂tw|.

By |w − p| ≤ y, the integrand is non-negative. We conclude that the inte-
grand vanishes almost everywhere. This yields (3.8) almost everywhere and
sign(∂tw) = sign(p− w).

We have seen for strong solutions that either ∂tw vanishes, or w − p is
constant. Formally, this is equivalent to the structure property (2.18). But
we will need the strong formulation of (2.18) for the homogenization limit.
This is the main reason why we work with the space-discrete solutions as
test-functions.

We conclude the analysis of the original problem (related to Γ = δγ(x))
and of the limit problem (related to Γ = ϕdy) with a uniqueness result.

Remark 3.4 (Uniqueness). Let Γ be as in (i) or (ii) of Corollary 3.3. Then
there exists only one strong solution (p,w) of (1.8)–(1.12).

Proof. Let (p1, w1) and (p2, w2) be two strong solutions of (1.8)–(1.12) as
characterized in Corollary 3.3. We consider here case (i) with ϕ ≡ 1 and
with a∗ = 1, b∗ = 0, and K∗ = 1 for notational convenience. The equations
imply

∆(p1 − p2) = ∂t(u1 − u2) =

∫

I

∂t(w1 − w2) dy.

We multiply with (p1 − p2) and integrate over Ω to find

−

∫

Ω
|∇(p1 − p2)|

2 =

∫

Ω

∫

I

(p1 − p2)∂t(w1 − w2)

∈

∫

Ω

∫

I

(w1 + y sign(∂tw1)− w2 − y sign(∂tw2))∂t(w1 − w2)

=

∫

Ω

∫

I

1

2
∂t|w1 − w2|

2 + y (sign(∂tw1)− sign(∂tw2))∂t(w1 − w2).

This yields

∫ T

0

∫

Ω
|∇(p1 − p2)|

2 +

∫

Ω

∫

I

1

2
|(w1 − w2)(T )|2

∈ −

∫

Ω

∫

I

y (sign(∂tw1)− sign(∂tw2))∂t(w1 − w2) ≤ 0,

which provides p1 = p2 and w1 = w2.
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Our uniqueness result is for strong solutions. We emphasize that, by
Corollary 3.3, this implies also a uniqueness result for weak solutions as
soon as we incorporate the initial values in the solution concept. Regarding
Corollary 3.3 and Remark 3.4 we note that we restricted to the two cases
(i) and (ii) in order to keep the proofs accessible. With the help of some
additional tools of measure theory, the case of a general measure Γ can also
be treated.

4 Homogenization

In this section we consider flow in unsaturated porous media described by
the hysteresis system (1.1), (1.2). The material parameters a, b, γ and
K are assumed to vary across the medium and are chosen randomly. Our
aim is to derive upscaled equations that describe the averaged behavior
almost surely. We assume for simplicity that the material parameters are
piecewise constant in the medium, and that the different values are chosen
independently according to a stochastic law.

We consider again a rectangle Ω ⊂ Rn. For every ε > 0 we subdivide Ω
into cells

Qε
k := ε[k + (0, 1)N ] ∩ Ω, k ∈ ZN .

For given bounds 0 < al < au, bl < bu, and Kl < Ku, in each cell Qε
k ⊂ Ω,

we choose randomly ak ∈ Ja := [al, au], bk ∈ Jb := [bl, bu], Kk ∈ JK :=
[Kl,Ku], and γk ∈ I := [0, 1], all independently and, for simplicity, uniformly
distributed. We define

γε ∈ L∞(Ω,R), by γ(x) = γk ∀x ∈ Q
ε
k,

and similarly for aε, bε, and Kε. We consider (1.1), (1.2) in the stochastic
geometry, that is,

∂tu
ε = ∇ · (Kε∇pε), (4.1)

pε ∈ aεuε + bε + γεsign(∂tu
ε), (4.2)

with the initial and boundary values of (1.3), (1.4). Corollary 3.3 (ii)
provides the existence of a solution to this problem with bounds indepen-
dent of ε. The characterization of weak solutions in Theorem 3.2 implies
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|pε − aεuε − bε| ≤ γε almost everywhere and, by evaluating 1
2aε |aεuε + bε|2,

∫

Ω

(

aε

2
|uε|2 + bεuε − uεq

)∣

∣

∣

∣

t2

t1

+

∫ t2

t1

∫

Ω
Kε(∇pε −∇q) · (∇pε −∇q)

+

∫

Ω
γε|uε(., t2)− u

ε(., t1)|+

∫ t2

t1

∫

Ω
Kε∇q · (∇pε −∇q)

≤

∫ t2

t1

∫

∂Ω
n · (Kε∇pε(t))(g(t) − q) dt,

(4.3)

for all q ∈ H1(Ω) and all [t1, t2] ⊂ [0, T ].
The above described model of a stochastic medium can be realized as

in [11]. The independent distributions of the coefficients (a, b,K, γ) can be
realized with a probability space (Σ,A, P ) such that

Σ = {ω ∈ L∞(Rn, [al, au]× [bl, bu]× [Kl,Ku]× [0, 1]) :

ω constant in all cells x+ k + (0, 1)N , k ∈ Zn for some x ∈ [0, 1]n
}

.

We use the shift-operator T (x) : ω(.) 7→ ω(. + x). The coefficients of the
equations are determined for an element ω ∈ Σ as aε(x) := ω1(x/ε) =
[T (x/ε)ω]1(0), and similarly for bε,Kε, and γε.

In order to homogenize the diffusion operator we use the following cell
solutions on unbounded domains. With K(ω) := ω3(0), our aim is to study
for ω ∈ Σ a solution Qω

j , j = 1, ..., n, of the cell problem

∇ ·
[

K(T (x)ω) · (ej +∇Qω
j (x))

]

= 0. (4.4)

Following the approach of [11], we use the spaces L2
pot(Σ) and L2

sol(Σ) of
vector fields v ∈ L2(Σ)n, such that for almost all ω ∈ Σ, the realizations
v(T (x)ω) are potential and solenoidal, respectively. Instead of searching
for ∇xQ for fixed ω, we then search for vj = vj(ω), such that almost all
realizations are potential. We can write the family of problems (4.4) as

vj ∈ L
2
pot(Σ) ∩ {f |Ef = 0}, K · (ej + vj) ∈ L

2
sol(Σ), (4.5)

and this can be solved with the Lax-Milgram theorem. The homogenized
diffusion matrix K∗ is defined by

E(K · (ej + vj)) = K∗ · ej. (4.6)

As a preparation for the homogenization we collect some consequences
of the ergodicity of the system.
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Lemma 4.1. For every α ≥ 1 and almost all ω ∈ Σ we have

bε⇀b∗ in Lα(Ω), (4.7)

1

aε
1{γε≤z}⇀

1

a∗
z in Lα(Ω), (4.8)

Kε · (ej +∇Qω
j )⇀K∗ · ej in L2(Ω). (4.9)

Furthermore, for almost every ω ∈ Σ, there exists a continuous potential Qω
j

with
ε‖Qω

j (./ε)‖L∞(Ω) → 0, (4.10)

and for all εn < ε0 along a sequence εn → 0 we have

|{x ∈ Ω|γεn(x) < y}| < 2|Ω|y. (4.11)

Proof. The probability measure P is ergodic with respect to the translations
T . Therefore, by the Birkhoff ergodic theorem (cp. e.g. [11], Theorem 7.2)
the oscillating function bε converges weakly to its expected value b∗ = 〈bε〉,
hence (4.7). The same argument shows (4.9). In order to show (4.8) we first
notice that for a fixed z ∈ I, for almost all ω ∈ Σ, the limit follows from the
fact that aε and γε are independently distributed. Since Q is countable, we
conclude that for almost all ω, the convergence (4.8) is valid for all z ∈ I∩Q.
Using that the left hand side is monotone in z and the right hand side is
continuous in z, we conclude the result for all z ∈ I.

For almost every ω, the realization vj is indeed a gradient. We can choose
Qω

j (./ε) with vanishing average on Ω such that ∇(εQω
j (./ε)) = vj(./ε). The

Birkhoff theorem yields vj ⇀Evj = 0 in L2 by definition (4.5). This implies
the strong L2 convergence of εQω

j (./ε). The functions εQω
j (./ε) are solutions

of uniform elliptic equation and we can estimate the L∞-norm on a compact
set by the L2-norm on a larger set. This argument provides (4.10). The
argument is taken from [13], Lemma 2, and we refer to this article for more
details.

For all y ∈ I ∩ Q and almost all ω ∈ Σ, the characteristic function
1{x∈Ω|γεn (x)≤y} converges weakly to its expected value y. Therefore its aver-
age converges to y|Ω|. We find (4.11) first for all rational y, but this implies
the estimate for all y ∈ [0, 1].

The next theorem is the main result of this article. We find the averaged
equations for the hysteresis problem in unsaturated porous media.

Theorem 4.2 (Homogenization). Let a sequence of stochastic geometries be
given as above, let the pressure boundary values g satisfy (1.5), and let, for
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compatibility, the initial values for the saturation U
(ε)
0 result from a drainage

process at the point of vanishing pressure, i.e.

aε(x)U
(ε)
0 (x) + bε(x) = γε(x). (4.12)

We study a strong solution (pε, uε) of the original ε-equations (1.1)–(1.4),
and a strong solution (u, p,w) of the limit system (1.8)–(1.12) with initial
values W0(x, y) := y, both as constructed in Corollary 3.3.

Then, for any sequence ε→ 0, almost surely we find

pε⇀p in H1((0, T ),H1(Ω)), (4.13)

uε ∗
⇀ u in L∞((0, T ), L2(Ω)). (4.14)

Let us note that the drainage assumption (4.12) can be replaced by an
imbibition assumption without changes in the result. Much more general
initial values U0 can be considered; necessary is that W0 can be defined
consistently satisfying (1.14).

Proof. We note that the compatibilities (1.6) and (1.14) are satisfied; thus
Theorem 2.4 and Corollary 3.3 are applicable.

Let ε = εn → 0 be a fixed sequence. Corollary 3.3 provides solutions with
uniform estimates for pε ∈ H1((0, T ),H1(Ω)) and uε ∈W 1,∞((0, T ), L2(Ω)).
We can assume for a subsequence corresponding weak and weak-∗ conver-
gences pε⇀p0 and uε → u0 and we have to show u0 = u and p0 = p.
We fix ω ∈ Σ such that the convergences of Lemma 4.1 hold. We use
the function p̃h,η from Theorem 2.4 to construct an oscillating test-function
for the homogenization procedure. The bounds (2.16)–(2.17) provide uni-
form estimates for p̃h,η ∈ L∞((0, T ),H2(Ω))∩H1((0, T ),H1(Ω)) and uh,η ∈
W 1,∞((0, T ), L2(Ω)).

Step 1: Appropriate choice of a test-function in the weak equation. For
arbitrary s ∈ (0, T ) we set

q(x) := p̃h,η(x, s) + ε
∑

j

Qj

(x

ε

)

∂xj
p̃h,η(x, s).

In the subsequent calculations we will decompose one integral as

∫ t2

t1

∫

Ω
Kε∇q · (∇pε −∇q)

=

∫ t2

t1

∫

Ω
Kε

∑

j

(ej +∇Qj) ∂xj
p̃h,η(s) (∇pε −∇q)
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+

∫ t2

t1

∫

Ω
Kεε

∑

j

Qj ∇∂xj
p̃h,η (∇pε −∇q),

and exploit that the last integral is small. We insert q in the weak equation
(4.3) to find

∫

Ω

(

aε

2
|uε|2 + bεuε − uεp̃h,η(s)

)∣

∣

∣

∣

t2

t1

+ c0

∫ t2

t1

‖pε − q‖2H1

+

∫

Ω
γε|uε(., t2)− u

ε(., t1)|

≤ −

∫ t2

t1

∫

Ω

∑

j

Kε (ej +∇Qj) ∂xj
p̃h,η(s) (∇pε −∇p̃h,η(s)) (4.15)

+

∫ t2

t1

∑

j,k

∫

Ω

[

Kε (ej +∇Qj)∂xj
p̃h,η(s)

]

∇
(

εQk(./ε) ∂xk
p̃h,η(s)

)

+ q1(t1, t2, ε),

with

q1(t1, t2, ε) := Cε‖Q(./ε)‖L∞(Ω)‖u
ε(t2)− u

ε(t1)‖L2

+ Cε‖Q(./ε)‖L∞(Ω) (t2 − t1) + o(t2 − t1).

In order to treat the second integral on the right hand side, we have to
make use of the theorem of compensated compactness. The divergence of
the squared bracket converges weakly in L2(Ω), and therefore strongly in
H−1(Ω), since the divergence of Kε(ej + ∇Qj) vanishes. The gradient of
the other bracket is obviously curl-free. We can apply the theorem on com-
pensated compactness, compare e.g. [11]. On a dense set of time instances s,
the Ω-integral converges to zero. By the estimates for p̃h,η, the Ω-integral is
continuous in s, with modulus of continuity independent of ε. We therefore
have convergence of the Ω-integral to zero, uniformly in s.

In the first integral we would like to replace Kε (ej +∇Qj) byK∗, leading
to the error term

∫ t2

t1

∣

∣

∣

∣

∣

∣

∫

Ω

∑

j

[

K∗
.j −K

ε (ej +∇Qj)
]

∂xj
p̃h,η(s) · ∇(pε − p̃h,η(s))

∣

∣

∣

∣

∣

∣

=: q′2(t1, t2, ε) = oε(1) (t2 − t1). (4.16)

For this last estimate we use the same argument as above based on the
theorem on compensated compactness, and exploit estimate (3.4) for ph,η

and for pε.
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On the right hand side of (4.15) we have now after an integration by
parts and (2.13)

−

∫ t2

t1

∫

Ω

∑

j

Kε (ej +∇Qj) ∂xj
p̃h,η(s) (∇pε −∇p̃h,η(s))

≤ −

∫ t2

t1

∫

Ω
K∗∇p̃h,η(s) (∇pε −∇p̃h,η(s)) + q′2(t1, t2, ε)

=

∫ t2

t1

∫

Ω
∂tu

h,η · (pε − p̃h,η(s)) + q′2(t1, t2, ε) + o(t2 − t1),

where the last error term is introduced by the boundary integral. We have
thus transformed (4.15) into

∫

Ω

(

aε

2
|uε|2 + bεuε − uεp̃h,η(s)

)∣

∣

∣

∣

t2

t1

+ c0

∫ t2

t1

‖pε − q‖2H1

+

∫

Ω
γε|uε(., t2)− u

ε(., t1)| −

∫ t2

t1

∫

Ω
∂tu

h,η · (pε − p̃h,η(s))

≤ q1(t1, t2, ε) + q2(t1, t2, ε),

(4.17)

where q2(t1, t2, ε) = oε(1) (t2−t1) contains both error terms that were treated
by the method of compensated compactness.

We next replace in (4.17) the function p̃h,η by its piecewise averages ph,η.
This introduces an error

q3(t1, t2, ε) := Coh(1)

(

‖uε(., t2)− u
ε(., t1)‖L2 +

∫ t2

t1

‖∂tu
h,η‖L2

)

, (4.18)

with oh(1)→ 0 for h→ 0 independent of ε.

Step 2: An energy decay result. We next calculate for an appropriate
energy-function a decay result based on the ph,η-version of (4.17). To shorten
the calculations we write p(s) for ph,η(s), and perform the computations in
the case bε ≡ 0.

We can evaluate wh,η only in points y ∈ Iη. To an arbitrary point
y ∈ I we therefore define yη(y) := η[y/η + 1] ∈ Iη, which is the node in Iη
corresponding to y. We can now introduce wε(x, t) := wh,η(x, yη(γ

ε(x)), t)
to find

∫

Ω

1

2aε
|aεuε + bε − wε|2

∣

∣

∣

∣

t2

t1

+ c0

∫ t2

t1

‖pε − q‖2H1

=

∫

Ω

aε

2
|uε|2 − uεwε +

1

2aε
|wε|2

∣

∣

∣

∣

t2

t1

+ c0

∫ t2

t1

‖pε − q‖2H1
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(4.17)

≤

∫

Ω
uεp(s)

∣

∣

∣

∣

t2

t1

−

∫

Ω
γε|uε(., t2)− u

ε(., t1)|+

∫ t2

t1

∫

Ω
∂tu

h,η (pε − p(s))

−

∫

Ω
uεwε

∣

∣

∣

∣

t2

t1

+

∫

Ω

1

2aε
|wε|2

∣

∣

∣

∣

t2

t1

+
3

∑

j=1

qj(t1, t2, ε)

=

∫

Ω
uε[p(s)− wε(s)]

∣

∣

∣

∣

t2

t1

−

∫

Ω
γε|uε(., t2)− u

ε(., t1)|

+

∫ t2

t1

∫

Ω

[

∂tu
h,η −

1

aε
∂tw

ε

]

pε −

∫ t2

t1

∫

Ω

[

∂tu
h,η −

1

aε
∂tw

ε

]

p(s)

−

∫

Ω
uε[wε − wε(s)]

∣

∣

∣

∣

t2

t1

+

∫ t2

t1

∫

Ω

1

aε
[wε − p(s)] ∂tw

ε

+

∫ t2

t1

∫

Ω

1

aε
∂tw

ε pε +

3
∑

j=1

qj(t1, t2, ε).

We start by studying the first two integrals together. Exploiting (2.14) we
find

∫

Ω
uε[p(s)− wε(s)]

∣

∣

∣

∣

t2

t1

−

∫

Ω
γε|uε(., t2)− u

ε(., t1)|

∈

∫

Ω
uε yη(γ

ε)sign(∂tw
ε(s))

∣

∣

∣

∣

t2

t1

−

∫

Ω
γε|uε(., t2)− u

ε(., t1)|

≤ η

∫

Ω
|uε(., t2)− u

ε(., t1)|.

The last two integrals of the above calculation can be written as
∫ t2

t1

∫

Ω

1

aε
[wε − p(s)] ∂tw

ε +

∫ t2

t1

∫

Ω

1

aε
∂tw

ε pε

=

∫ t2

t1

∫

Ω
uε∂t[w

ε − wε(s)]

+

∫ t2

t1

∫

Ω
(pε − aεuε)

∂tw
ε

aε
+

∫ t2

t1

∫

Ω
[wε − p(s)]

∂tw
ε

aε

≤

∫ t2

t1

∫

Ω
uε∂t[w

ε − wε(s)] + q4(t1, t2, ε).

Here we estimated the last two integrals by the error term q4. We use that
(pε − aεuε) ∈ γεsign(∂tu

ε) by (4.2), and that wε − ph,η ∈ −yη(γ
ε)sign(∂tw

ε)
by (2.14). This makes the error negative, up to ph,η(t) 6= p(s) = ph,η(s). We
can set

q4(t1, t2, ε) := C

∫ t2

t1

∫ s

t1

∫

Ω
‖∂tp

h,η(ξ)‖L2(Ω) dξ ds.
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The last error term already shows that we must deal with the whole
time interval (0, T ) in one estimate. We consider discretizations F of (0, T )
given by families 0 = t0 < ... < tN = T , and apply the above estimate with
ti, ti+1 ∈ F and with s = ti. We fix ∆t > 0 and use only discretizations
F such that |ti+1 − ti| ≤ ∆t for all i. In the above inequality we take the
positive part and sum over i. Taking the supremum over all F as above, we
find essentially a BV-norm on the left hand side – the factor 2 stems from
the fact that we sum only the positive increments. We exploit here that the
integral vanishes initially. With ti(t) denoting the point s = ti ≤ t closest
to t we can write

1

2

∥

∥

∥

∥

∫

Ω

1

2aε
|aεuε + bε −wε|2

∥

∥

∥

∥

BV ([0,T ],R)

+ c0‖p
ε − q‖2L2H1

≤ Cη + sup
F

∫ T

0

∣

∣

∣

∣

∫

Ω

[

∂tu
h,η −

1

aε
∂tw

ε

]

(pε − p(ti(.)))

∣

∣

∣

∣

(4.19)

+ sup
F

∑

i

∣

∣

∣

∣

∣

−

∫

Ω
uε[wε − wε(ti)]

∣

∣

∣

∣

ti+1

ti

+

∫ ti+1

ti

∫

Ω
uε∂t[w

ε − wε(ti)]

∣

∣

∣

∣

∣

+ sup
F

∑

i

4
∑

j=1

qj(ti, ti+1, ε).

It remains to analyze this inequality (4.19).

Step 3: Conclusion. We consider after another the limits ∆t → 0, then
ε→ 0, then h→ 0, then η → 0.

The second supremum on the right of (4.19) vanishes for ∆t→ 0 as can
be seen with one integration by parts and using the uniform estimates for
derivatives of uε and of wh,η.

Concerning the first supremum on the right of (4.19) it suffices to show
that for every sequence ϕε bounded in L2H1 we have

F ε :=

∫ T

0

∫

Ω

(

∂tu
h,η −

1

aε
∂tw

ε

)

· ϕε → 0. (4.20)

We calculate for the first factor with (2.12) and the structure property (2.18)

∂tu
h,η −

1

aε
∂tw

ε =
1

a∗

∑

y∈Iη ,y≤zh,η

Γη(y) ∂tw
h,η(., y)−

1

aε
∂tw

h,η(., yη(γ
ε(x)))

= ∂tp
h,η

[

1

a∗
zh,η −

1

aε
1{γε≤zh,η}

]

.

The ergodicity result (4.8) implies, since zh,η takes only finitely many values,
that

Zε :=
1

a∗
zh,η −

1

aε
1{γε≤zh,η}⇀ 0,
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for ε → 0, weakly in every Lα(Ω), uniformly in t ∈ [0, T ]. For every q > 1,
there is α < ∞ such that the embedding W 1,q(Ω) ⊂ (Lα(Ω))′ = Lα∗

(Ω)
is compact. Choosing a subsequence, we may therefore assume Zε → 0 in
C0((0, T ),W 1,q(Ω)′).

On the other hand, for q > 1 depending on the dimension n, the product
of two bounded H1(Ω)-functions is an W 1,q(Ω)-function with corresponding
bound. Therefore

∂tp
h,η ϕε ∈ L1((0, T ),W 1,q(Ω))

is a bounded sequence. Integrals of their product with Zε vanish in the
limit. This verifies (4.20).

In the limit ε→ 0 we find from (4.19)

lim sup
ε→0

{

∥

∥

∥

∥

∫

Ω

1

2aε
|aεuε + bε − wε|2

∥

∥

∥

∥

BV (0,T )

+ c0‖p
ε − ph,η‖2L2H1

}

≤ oh(1) + oη(1), (4.21)

i.e., the right hand side is arbitrary small for h and η small. In particular,
since pε⇀p0 for ε→ 0 and ph,η ⇀p for (h, η)→ 0,

‖p0 − p‖2L2H1 = 0.

This shows the claim (4.13).

For the convergence of uε we study once more (4.19). Almost surely, the
functions wε = wh,η(., yη(γ

ε), .) converge weakly to the expected value for γ
ranging in (0, 1) and, by independency,

1

aε
(wε − bε)⇀

1

a∗





∑

y∈Iη

Γη(., y)w
h,η(y)− b∗



 (4.22)

=
1

a∗
(a∗uh,η + b∗ − b∗) = uh,η

in L2(Ω× (0, T )). Let now u0 be a weak limit of uε in the same space. Then
(4.19) yields

‖u0 − uh,η‖2L2(Ω×(0,T )) ≤ lim inf
ε→0

‖uε −
1

aε
(wε − bε) ‖2L2(Ω×(0,T ))

≤ C lim inf
ε→0

‖aεuε − wε + bε‖2BV ([0,T ],L2(Ω))

≤ oh(1) + oη(1).

This implies u0 = u and thus (4.14).
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5 Conclusion

Starting from simple play-type hysteresis equations for unsaturated porous
media we derived an effective hysteresis model. The effective model contains
the new variable w that can be regarded as an expected pressure. It encodes
the wetting history of the process.

The mathematical derivation was based on Galerkin approximations.
The approximations were used first to construct weak solutions, then to
construct test-functions. The crucial point is that the approximate solutions
satisfy the structure property (2.18) which cannot be shown for the solution.
The analysis is restricted to independent stochastic coefficients due to the
argument in (4.22).
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