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Abstract: We analyze a system of equations that describes the propaga-
tion of sound waves. We are interested in complex constructions along a
part of the boundary of the domain, for example constructions with small
chambers that are connected to the domain. We also allow that different
flow equations are used in the chambers, e.g., modelling a damping ma-
terial. In addition to the complex geometry, we assume that the viscosity
vanishes in the limit. The limiting system is given by wave equations,
we derive these equations and determine the effective boundary condi-
tions. The effective boundary conditions replace the large number of
small chambers. We provide examples for sound absorbing constructions
and their Dirichlet-to-Neumann boundary conditions.

MSC: 76M50, 35L05, 35B27

1. Introduction

To improve the acoustic properties of a room, one often uses sound absorbing
constructions, see Figure 1 for an example. Essentially, the rigid (sound-hard) wall
is replaced by a construction with many holes, these holes lead to small chambers,
in the chambers some acoustically relevant process takes place. The effect of the
whole construction is that sound waves are not perfectly reflected, but some part
of the energy is absorbed. The motivation for the article at hand is to understand
these constructions mathematically.

We use the compressible Stokes equations to describe air — the medium in which
sound propagation takes place. Even though this is a mathematical work, we provide
for all physical quantities the order of magnitude. This allows to compare different
terms that describe different effects. This analysis allows to check that the chosen
system of equations is, in the setting of interest, a good replacement for the full
compressible Navier-Stokes equations.

Our analysis also shows that, using only one equation in the whole complex do-
main (the underlying domain plus the sound-active small chambers) cannot explain
any sound absorbing effect. We therefore allow that, in the single chamber, other
flow equations are used. The most useful example is a Darcy law that models a
sound absorbing material. For this example, we derive the sound absorbing effective
boundary condition. Nevertheless, we keep the approach general, any flow model
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can be used in the chamber (or even different flow models in different parts of the
chamber).

Mathematically, we describe the problem as follows. The domain of interest is a
subset Ω ⊂ Rd, where d ≥ 2 is the dimension. The physics in Ω are described with
the following unknowns: density ρ, velocity v, pressure p, all depending on x ∈ Ω
and a time variable t ∈ R. We use the compressible Stokes equations:

ρ̄ ∂tv = −∇p+ µε∆v ,(1.1)

∂tp+ p̄∇ · v = 0 .(1.2)

The numbers ρ̄, p̄ and µε are given physical constants, compare Table 1. The
equations are to be solved in Ω or, more precisely, for some T > 0, on ΩT :=
Ω× (0, T ).

Along some part Γ ⊂ ∂Ω of the boundary (with exterior normal vector ν), there
is some construction that, ideally, leads to sound absorption. This construction
could be, e.g., small chambers with typical diameter ε that are connected to Ω. We
choose here an abstract setting and describe the effect of the construction with a
Dirichlet-to-Neumann map N ε, it maps pressure distributions p|Γ to normal velocity
distributions ν · v|Γ. We impose

(1.3) ν · v|Γ = N ε(p|Γ) .

The system is closed by imposing, for some smooth function g : ∂Ω × [0, T ] → R
with g = 0 on Γ, the boundary condition

(1.4) ν · v = g on ∂Ω \ Γ .

Our aim is to analyze, for relevant choices of the maps N ε, the limiting equations
for the above system (1.1)–(1.4). Below, we give more comments on the choice of
the physical equations and provide relevant choices of N ε.

The main mathematical result is an averaging result. We assume that N ε is
given by local operators N ε

Y through a procedure of rescaling and glueing. Under a
convergence assumption on the operators N ε

Y , we derive the convergence of N ε in
appropriate function spaces.

Figure 1. Left: A commercial broad-band absorber element. Right:
An illustration of effects leading to a nontrivial impedance condition,
taken from [7].
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Our results allow to analyze sound absorbing structures as follows:

(A) Chambers are specified by choosing a chamber geometry and by choosing
flow equations in the chamber.

(B) The chamber data define the operator N ε
Y . By averaging, one obtains the

operator N ε
∗ . One calculates the limit N0 of N ε

∗ and, if necessary, also the
limit N1 of ε−1(N ε

∗ −N0).
(C) Theorem 1.1 and Theorem 1.2 yield the effective system. A possible sound

absorption effect of the complex geometry is typically expressed by N1.

We illustrate the procedure with the two most relevant settings.

Stokes chambers: (A) We consider an arbitrary geometry of the chambers and
consider only compressible Stokes equations in the chamber. We use sound-hard
boundary conditions and assume ε−1µε → 0. (B) The limit operators are N0 = 0
and N1(p∗) = β ∂tp∗, see (2.6). (C) The effective equations are given by (1.15)–
(1.20). The limit system for p0 is the wave equation with a sound-hard boundary
condition (a limit system as if there were no chambers). The limit system for p1

is the wave equation with the boundary condition ∂νp1 = −ρ̄αβ ∂2
t p0. By energy

conservation (see Section 3), this limit system does not induce sound absorption.

Darcy chambers: (A) For an arbitrary geometry of the chambers we consider
a Darcy law in the chamber with flow resistence Mε, see (2.9). We assume that
there exists a nontrivial limit, Mεε → M∗ > 0. (B) The limit operators can be
calculated. There holds N0 = 0 and the operator N1(p∗) is given by (2.11)–(2.12).
(C) Theorems 1.1 and 1.2 provide the effective equations: p0 solves the wave equation
with a sound-hard boundary condition (again: as if there were no chambers). The
equation for p1 is now different: p1 solves the wave equation with the boundary
condition ∂νp1 = −ρ̄α ∂tN1(p0) along Γ. This boundary condition induces sound
absorption.

1.1. Literature. Our research is related to homogenization. Classical homogeniza-
tion questions treat the case that ε-scaled structures are distributed in the domain,
e.g., periodically. The situation is different here since the small structures are situ-
ated along a lower dimensional object, namely part of the boundary of the domain.

Domains with small structures along a manifold. An analysis of such a structure
for the Helmholtz equation was performed in [3]. As in our setting, one can derive
effective equations that provide a zero-order approximation p0 and a first order
approximation p1. Another aspect is analyzed in [16], where asymptotic expansions
are presented for a Helmholtz problem with a perforation along an interface; the
focus here is the approximation near the end-points of the perforation. In the
analysis of [15], a more abstract approach is introduced; this approach needs fewer
orders in the expansions, allows to study arbitrary dimensions and can cover more
general geometries.

Another important contribution of [3] is that effective boundary conditions are
investigated, we discuss this in some detail in the comments to Remark 1.3. In [8],
the time dependent Maxwell equations were treated with a similar goal. Here, one is
interested in effective boundary conditions in the situation that a perfect conductor
is coated with a thin layer of dielectric material, see also [4]. The effective description
of a thin layer of elastic material is treated in [1].

Homogenization of boundary conditions. Oftentimes, it is interesting to have small
structures along the boundary, one then asks for an effective boundary condition. A
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work of this type is [11]; part of the boundary is covered by a chess board structure
of period ε, a Dirichlet condition is imposed on the black and a Neumann condition
is imposed on the white squares. The authors ask for effective boundary conditions,
much like the “strange term coming from nowhere”.

In some sense, our main mathematical result in Proposition 4.7 is similar to such
a problem: We ask for the effective boundary condition (or, equivalently: Dirichlet-
to-Neumann map), when many Dirichlet-to-Neumann maps on small subsets are
combined.

Resonance. A special feature of the small structure can be resonance. In the
present work, resonance is not the main subject. Nevertheless, with an appropriate
choice of the response map N ε

Y , the model can have the features of a resonant system.
A mathematical verification that small objects (of size ε > 0) can show a resonant

behavior in an equation that has a fixed frequency ω (and, hence, a fixed typical
wave-length λ), was provided in [13]. The important feature of the geometry is
a three-scale structure. One chooses channels that are thin in comparison to the
chambers. Bulk homogenization of such resonators was analyzed in [9], where the
effective acoustic properties of the corresponding meta-material were derived. In [5],
comparable geometries were distributed along the boundary and a limit model was
derived for such a setting that is closely related to the sound absorber geometry. We
note that some of these resonances of small structures are addressed in the overview
article [14].

Also in [2], the boundary consists of many small resonators. For the Laplace
operator in this complex geometry, not only effective boundary conditions, but also
an analysis of the spectrum is presented. The acoustic problem is studied in [17] for a
thin layer of a complex microstructure; micro-channels of the size of the wave-length
in the thin layer lead to Fabry-Pérot resonances and to interesting transmission
conditions.

Some more applied and less mathematical literature. A very early study of Helm-
holtz resonator arrays is presented in [7], we show an illustration of [7] in Figure
1. Our analysis actually suggests that nonlinear terms are not important for stan-
dard sound absorbers. An historically influential article is [10], a more modern
contribution is [12]; in such works, the authors are interested in effective acoustic
impedances. To make the connection to these applications, we introduced and dis-
cussed the effective condition of (1.22), we relate this condition to an impedance
condition in the time-harmonic case in Remark 2.2. Books like [6] present many
sound absorbing structures, we see the importance of the research for applications.

1.2. On the choice of the model equations. Without doubt, the compressible
Navier-Stokes equations are a good model for air. The fundamental unknowns are
density, pressure, and velocity. In the situation of sound waves, linearizations are
justified, we will check this below. We therefore introduce density and pressure at
rest, denoted as ρ̄ and p̄, and variations of these quantities due to a sound wave,
denoted as ρ and p. Since we assume that velocity is only induced by the sound
wave, we use v̄ = 0.

For air at room temperature and room pressure, a linear gas law is adequate,
this leads to ρ/ρ̄ = p/p̄. Our methods cover also linearizations of general gas laws
p̄ + p = P (ρ̄ + ρ) for some function P : (0,∞) → R, the linearization reads p =
P ′(ρ̄)ρ =: c2 ρ. In fact, also in our setting, we use c2 = p̄/ρ̄ and p = c2 ρ.



B. Schweizer 5

We linearize also the momentum equation and the equation for mass conservation
in the values ρ̄, p̄, and v̄ = 0. This leads to the system (1.1)–(1.2). The coefficient
µ = µε denotes the dynamic viscosity, a material constant for air. The subscript ε
is introduced for later use. Table 1 lists orders and units for all quantities.

Without further mentioning, we always assume that the initial conditions are given
by v = 0 and p = 0. In our model, sound waves are generated by the nontrivial
Neumann condition (1.4), which is imposed on (∂Ω \ Γ) × (0, T ). Additionally, we
always impose that tangential components of v vanish along all boundaries. This
condition is a natural condition for a system of Stokes type such as (1.1). Later on,
we will consider the limit µε → 0 of a vanishing viscosity. In the limit equation, we
loose the condition of a vanishing tangential velocity.

A system of channels and chambers, possibly containing sound damping material,
can be encoded in a Dirichlet-to-Neumann map along a part Γ of the boundary ∂Ω.
We use an abstract operator N ε and write the condition as in (1.3), which must be
understood as an equality on Γ× (0, T ).

In the linearization, we neglect the inertia term ρ̄ (v · ∇)v and other terms such
as ∇ρ · v. We will check below that these terms are indeed small compared to the
terms that are linear in the triple of unknowns (ρ, p, v).

Our analysis can be used also for other flow equations in Ω. Thinking in the
direction of more complete models, one could, e.g., treat nonlinear laws. On the
other hand, thinking of simpler models, it is also possible to start the analysis from
a wave equation in Ω.

The methods can also be used to study the time-harmonic case in which all
quantities have the time dependence eiωt. In such a setting, one would probably
start from the Helmholtz equation in Ω.

1.3. Geometries with active interfaces and main results. We assume that Ω
is a bounded Lipschitz domain in Rd with

(1.5) Ω ⊂ Rd−1 × (−∞, 0) , Γ := (0, 1)d−1 × {0} ⊂ ∂Ω .

In particular, the (d−1)-dimensional set Γ is flat and ν = ed on Γ. We assume that,
for some height h > 0, the domain Ωh := (0, 1)d−1 × (−h, 0) is contained in Ω.

The boundary part Γ contains active interfaces. When these are given by small
devices, we denote by ε > 0 the typical distance of these devices. In applications,
they are the interfaces to channels which, in turn, connect Ω to chambers. The
chambers might contain damping material, possibly also an active elements such as
a loudspeaker. For a Lipschitz domain ΓY ⊂ (0, 1)d−1 (compactly contained), and
the index set Kε := {k ∈ Z2 | ε(k + ΓY ) ⊂ Γ}, we use

(1.6) Γεk := ε(k + ΓY ) , Γε :=
⋃
k∈Kε

Γεk ⊂ Γ .

The area fraction of active interfaces is α := |ΓY |, it is a real number with 0 < α < 1.
We assume that the interfaces are independent of each other (locality). More

precisely, we assume that each interface piece Γεk is described by a Dirichlet-to-
Neumann map that relates pressure distributions to velocity distributions: For every
k ∈ Kε, we are given a map

(1.7) N ε
k : H1(0, T ;H1/2(Γεk))→ L2(0, T ;H−1/2(Γεk)) .
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x1
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Figure 2. The complex domain Ωε in two space dimensions. It is given
as the union of domain Ω ⊂ {x|x2 < 0} and a large set of small chambers.
The interfaces Ωε ∩ {x|x2 = 0} are treated as active interfaces that induce
a Dirichlet-to-Neumann map.

The family of maps (N ε
k)k∈Kε defines a Dirichlet-to-Neumann map on Γ,

(1.8) N ε : H1(0, T ;H1/2(Γ))→ L2(0, T ;H−1/2(Γ))

through the following piecewise definition: A single function p ∈ H1(0, T ;H1/2(Γ))
defines boundary data pεk ∈ H1(0, T ;H1/2(Γεk)) through restriction. The flux fields
wεk = N ε

k(pεk) are, at first, defined on Γεk, but they can be extended trivially and
glued together:

(1.9) wε(x) :=

{
wεk(x) for x ∈ Γεk
0 for x ∈ Γ \ Γε .

Strictly speaking, the action of wε to a test-function must be prescribed, and a
point-wise definition as in (1.9) is not permitted; we skip here the obvious rig-
orous formulation of (1.9). The resulting function wε =: N ε(p) is an element of
L2(0, T ;H−1/2(Γ)). More on mathematical aspects related to restrictions and ex-
tensions in H1/2(Γ) and H−1/2(Γ) are discussed in the main part of this text.

Our second assumption is that all active boundary parts Γεk have the same response
behavior: Except for their position in space, the maps N ε

k are identical. This reflects
the fact that the same chamber construction is realized behind each interface Γεk.
We make the concept precise with the following assumption: There is a single map
N ε
Y

(1.10) N ε
Y : H1(0, T ;H1/2(ΓY ))→ L2(0, T ;H−1/2(ΓY )) ,

such that, for p ∈ H1(0, T ;H1/2(Γεk)),

(1.11) N ε
k(p) = wε with wε(ε(k + .)) := N ε

Y (p(ε(k + .)))

for all k ∈ Kε. The map N ε
Y is usually related to a cell-problem in the chamber. We

emphasize that we did not introduce any scaling in (1.11). Typically, prescribing a
pressure of order 1 can only create a response in the velocity field of order ε; we do
not want to anticipate the order of the response and introduce therefore no scaling
in (1.11).

Our next aim is to replace N ε
Y by a simpler function. Variations along Γεk are not

relevant (we will actually derive this fact), hence we insert only constant functions
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in N ε
Y . We define the map

(1.12) N ε
∗ : H1(0, T ;R)→ L2(0, T ;R) , N ε

∗ (p(.))(t) := −
∫

ΓY

N ε
Y (p(.))(t) .

Here and below, we use the integral average, defined as −
∫
A
f := |A|−1

∫
A
f . On the

right hand side we identify, for every time instance t, the real number p(t) with a
constant function on ΓY . Strictly speaking, the last expression cannot be formulated
as an integral; mathematically, the integral should be replaced by the application of
the H−1/2(ΓY )-element N ε

Y (p(.))(t) to the 1-function (the function that is identical
to 1 on ΓY ).

The reduction to functions that depend only on time makes convergences more
accessible. It is often possible to find a limit map that encodes the relevant behavior
of the active interface,

(1.13) N ε
∗ → N0 as ε→ 0 , N0 : H1(0, T ;R)→ L2(0, T ;R) .

Of course, the precise meaning of the convergence needs to be specified, we do that
in Assumption 4.5. In the application of interest, typically, a nontrivial behavior
can only be observed at first order. We then have N0 ≡ 0 and

(1.14) ε−1N ε
∗ → N1 as ε→ 0 , N1 : H1(0, T ;R)→ L2(0, T ;R) .

Our main results are the following two theorems. The first theorem treats an
approximation of order O(1), the second theorem an approximation of order O(ε).

Theorem 1.1 (Effective boundary condition N0). Let the geometry and the active
elements be given by Ω, Γ, ΓY , α = |ΓY |, N ε, N ε

Y , N ε
∗ , as described in (1.5)–(1.12).

Let (vε, pε) be a solution sequence to (1.1)–(1.2), we assume (vε, pε) ⇀ (v, p) in
H1(0, T ;H1(Ω,Rd)) × H1(0, T ;H1(Ω,R)) as ε → 0. We use c2 = p̄/ρ̄ and assume
µε → 0. Let the convergence conditions of Assumption 4.5 on N ε

Y be satisfied.
Then the limit pressure p solves, in the sense of distributions, the effective wave

equation

∂2
t p = c2∆p in Ω ,(1.15)

∂νp = −ρ̄α ∂tN0(p) along Γ ,(1.16)

together with the Neumann condition

(1.17) ∂νp = −ρ̄ ∂tg on ∂Ω \ Γ .

Theorem 1.2 (Effective system with N1). Let the geometry and the active elements
be given by Ω, Γ, ΓY , α = |ΓY |, N ε, N ε

Y , N ε
∗ , as described in (1.5)–(1.12). We use

c2 = p̄/ρ̄ and assume ε−1µε → 0. Let (vε, pε) be a solution sequence to (1.1)–
(1.2) with (vε, pε) → (v0, p0) in H1(0, T ;H1(Ω,Rd+1)) as ε → 0. We assume that,
additionally, first order corrections have a weak limit:

(1.18)
1

ε
[(vε, pε)− (v0, p0)] ⇀ (v1, p1) in H1(0, T ;H1(Ω,Rd+1)) .

Let the conditions of Assumption 4.8 on N ε
Y with limits N0 = 0 and N1 be satisfied.

Then the limit pressure p0 is the solution of the effective wave equation (1.15)–
(1.17) with N0 = 0. The pressure p1 solves the effective wave equation

∂2
t p1 = c2∆p1 in Ω ,(1.19)

∂νp1 = −ρ̄α ∂tN1(p0) along Γ ,(1.20)

together with the homogeneous Neumann condition ∂νp1 = 0 on ∂Ω \ Γ.
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We consider the above system with solutions p0 and p1 as the limit system for the
ε-problem. It provides an equation for the zero-order approximation p0 and another
equation (using p0) for the first-order approximation p1.

In the applied literature, one is oftentimes interested to have a single unknown p̃ε

and to have an effective equation for p̃ε. The following remark suggests with (1.22)
a simple effective condition. The boundary condition in such an effective system
can be regarded as the effective impedance condition and one can ask whether or
not the effective condition leads to sound absorption.

Remark 1.3 (Formal effective system with one unknown). The convergence (1.18)
of Theorem 1.2 yields that p0 + εp1 is an o(ε)-approximation to the solution pε of
the original system.

Formally, the solution p̃ε of the following system should also provide an o(ε)-
approximation:

∂2
t p̃

ε = c2∆p̃ε in Ω ,(1.21)

∂ν p̃
ε = −ρ̄α ε ∂tN1(p̃ε) along Γ ,(1.22)

with the homogeneous Neumann condition ∂ν p̃
ε = −ρ̄∂tg on ∂Ω \ Γ.

A rigorous justification of system (1.21)–(1.22) is beyond the scope of this con-
tribution and certainly not available for general N1. We sketch a formal derivation
and give some more comments in Appendix B.

In the time-harmonic case and for some classes of N1-operators, a verification
of (an appropriate variant of) Remark 1.3 is possible, see [3]. Indeed, one has to
choose a “non-centered” version of the limit system. Even in the time-harmonic
case, a justification is quite involved, see the non-centered scheme in Section 5 of [3]
and, in particular, the strong assumptions on the boundary operators in Hypothesis
17 and 19.

2. Active interfaces defined by small chambers

Before we start the analysis of the system and the proof of the two main theorems,
we sketch relevant choices for the active interfaces, defined by chambers. Our interest
is two-fold: On the one hand, we want to check if our assumptions on the maps
are satisfied in relevant examples. On the other hand, we want to show that our
theorems can provide interesting information on the effective properties for certain
models.

2.1. Compressible Stokes equations in chambers. A simple active interface
can be obtained from a complex geometry, leaving the equations unchanged. We can
describe the underlying model as follows. We assume that ΣY ⊂ Rd is a Lipschitz
domain ΣY ⊂ Y := (0, 1)d with Σ̄Y ∩ ∂Y = ΓY . The domain with a complex
boundary is

(2.1) Ωε := Ω ∪ Γε ∪
⋃
k∈Kε

ε(k + ΣY ) .

Imposing that (1.1)–(1.2) should hold for vε : Ωε → Rd and pε : Ωε → R gives a
relevant description of a sound-active geometry.

Here, we describe this model with active interfaces. The rescaling of vε and pε

in the single chamber with index k is performed via v(y, t) = vε(ε(k + y), t) and
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p(y, t) = pε(ε(k + y), t). Accordingly, spatial derivatives scale with factors of ε and
we have to consider in ΣY , with independent variables y and t,

ερ̄ ∂tv = −∇p+
1

ε
µε∆v ,(2.2)

ε∂tp+ p̄∇ · v = 0 .(2.3)

Given a pressure field p ∈ H1(0, T ;H1/2(ΓY )) along the active interface, we can
solve the equations (2.2)–(2.3) in the domain ΣY ⊂ Rd with the Dirichlet boundary
condition imposed by p on ΓY . We always use the initial condition v|t=0 ≡ 0. Part
of the solution is a field v : ΣY × (0, T ) → Rd and we can extract, for y ∈ ΓY , the
field w(y, t) = ed · v(y, t). More precisely, we define w as the trace of the normal
velocity along ΓY and obtain w ∈ L2(0, T ;H−1/2(ΓY )). This defines N ε

Y (p) := w.

Limit operator for Stokes chamber. Equation (2.3) allows to calculate with the
theorem of Gauß, for p∗ : [0, T ]→ R,

(2.4) N ε
∗ (p∗) = −

∫
ΓY

ed · v = − 1

|ΓY |

∫
ΣY

∇ · v =
ε

p̄ |ΓY |

∫
ΣY

∂tp .

When, for a sequence of solutions to (2.2)–(2.3), the integral over ∂tp remains
bounded (for fixed boundary data p∗), then N ε

∗ (p∗) is vanishing for ε → 0. We
find N0(p∗) = 0 for every argument p∗. The effective limit equation is given by
the sound-hard boundary condition only, i.e., the behavior is as if there were no
chambers. In particular, the effective law does not lead to sound absorption in order
ε0 = 1.

A different result is obtained at first order. With the above calculation, we find

(2.5) N1(p∗) = lim
ε→0

1

p̄ |ΓY |

∫
ΣY

∂tp .

Stokes chamber I, limit operator for ε−1µε → 0. We show in Appendix A that
the physical parameters suggest ε−1µε → 0. When this is the case, the formal limit
of the first equation is ∇p = 0, and we expect that the pressure is constant in the
chamber. In this case, the pressure p in the chamber coincides with the boundary
data p∗ and we find from (2.5)

(2.6) N1(p∗) =
|ΣY |
p̄ |ΓY |

∂tp∗ .

This is a nontrivial limit map N1.
Unfortunately, as a matter of fact, the effective law N1 of (2.6) does not lead to

sound absorption. We discuss this in Subsection 3.

Stokes chamber II, limit operator for ε−1µε → µ∗ > 0. Let us investigate the case
ε−1µε → µ∗ > 0 – even though this case is not included in our theorems. The limit
system for (2.2)–(2.3) in ΣY then reads

∇p = µ∗∆v ,(2.7)

∇ · v = 0 .(2.8)

This is a stationary incompressible Stokes equation. It defines a Dirichlet-to-Neu-
mann map, an approximation of N ε

Y , defined as p|ΓY
7→ ed · v|ΓY

. By Gauß theorem,
integrals over ed · v|ΓY

vanish. This is consistent with N0 = 0, which was already
observed after (2.4). The solution of (2.7)–(2.8) can be given explicitly: For (spa-
tially) constant boundary data p∗, the solution is v ≡ 0 and p ≡ p∗ (in the sense
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that p(y, t) = p∗(t) for every y ∈ ΣY and every t ∈ [0, T ]). This allows to calculate
N1 from (2.5); with the same calculation as above, we obtain once more (2.6).

2.2. Darcy law in chambers. In applications, the chambers are (partially) filled
with rock-wool or a similar material in order to obtain a damping mechanism.

We recall that the shape of the single chamber is described by ΣY . Rock-wool has
a micro-structure that is so small that the Stokes system is overdamped. This means
that a Darcy law (well-known from porous media modelling) is often appropriate to
describe the physics of this material. In this setting, equation (2.2) is replaced by

(2.9) ∇p = −Mε v .

We refer to Table 2 for typical values; in applications, Mε is called the flow resistivity.
Inserting v = −M−1

ε ∇p into (2.3), we see that we have to solve in ΣY the diffusion
equation

(2.10)
1

p̄
Mε ε ∂tp = ∆p .

Given pressure boundary data p ∈ H1(0, T ;H1/2(ΓY )), we can solve (2.10) in the
domain ΣY (we recall that we always use trivial initial conditions, p|t=0 ≡ 0). This
defines an operator N ε

Y .

Darcy chamber I, limit operator for Mε ε → 0. Let us first discuss the case
Mε ε→ 0. In this case, the limit ε→ 0 in (2.10) yields ∆p = 0 in ΣY , the Laplace-
equation. For constant (in space) boundary data p∗ at ΓY , the solution is a constant
pressure p(., t) = p∗(t) in the chamber ΣY . The corresponding maps N0 and N1 of
the active element can easily be calculated as in (2.5) and (2.6): There holds N0 = 0
and N1(p0) = |ΣY | (p̄ |ΓY |)−1 ∂tp0. In particular, there is no sound absorption.

Darcy chamber II, limit operator for Mε ε→M∗ > 0. We will now finally obtain
a useful limit system. In the case Mε ε → M∗ > 0, the limit ε → 0 in (2.10) yields
the diffusion equation

(2.11)
1

p̄
M∗∂tp = ∆p

in ΣY . The solution provides the effective map N1, given as

(2.12) N1(p∗) =
1

p̄ |ΓY |

∫
ΣY

∂tp ,

compare the derivation in (2.5). The system (2.11)–(2.12) is a useful limit system
that can explain sound absorption.

In order to understand the last claim, let us investigate the time-harmonic situa-
tion with frequency ω. Replacing in (2.11) the time derivative with a multiplication
by iω, we find the following equation in ΣY :

(2.13)
i ωM∗
p̄

p = ∆p .

For the typical data that we choose for our analysis in Appendix A, we find that the
non-dimensionalized pre-factor on the left hand side has approximately the value 5.
This shows that the two sides of (2.10) are balanced and the solution is not close to
a constant.
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In the time-harmonic setting, the limiting operator of (2.12) is given by

(2.14) N1(p∗) =
i ω

p̄ |ΓY |

∫
ΣY

p .

Using (2.14) in the effective law ∂νp1 = −ρ̄α ∂tN1(p0) of (1.20) and α = |ΓY |, we
find

(2.15) ∂νp1 = − ρ̄ ω
2

p̄

∫
ΣY

p ,

where p is the solution to (2.13) with boundary data p0.
We see in Appendix A that the non-dimensionalized pre-factor on the right hand

side has approximately the value 10. This implies that, when p0 is corrected by the
term ε p1 with ε = 1/20 (as chosen in our data set), we obtain a relevant correction.

Remark 2.1 (The importance of a balanced Darcy velocity). For sound absorption,
it is crucial to have the two sides in (2.10) balanced. Indeed, only a nontrivial limit
equation as in (2.11) can provide a pressure p in ΣY that does not coincide with p∗.

When the number Mε is too large, the effective system is ∆p = 0 and we have
p = p∗ as in Stokes I or Darcy I.

When the number Mε is too small, the effective system is ∂tp = 0, in which case
(2.12) yields N1 = N0 = 0. Once more, the system does not induce sound absorption.

Remark 2.2 (Impedance). One defines the impedance Z as the factor that relates
pressure and normal velocity: v · ν = Z−1p. Because of ρ̄ ∂tv = −∇p, in the
time-harmonic case with dependence eiωt, there holds ρ̄ i ω v · ν = −∂νp, hence the
impedance boundary condition is ∂νp = −i (ρ̄ ω/Z) p.

With the limit operator N1(p) = β∂tp of (2.6), the limiting boundary condition
of (1.22) reads ∂νp = −ρ̄ α ε β ∂2

t p along Γ. In the time-harmonic case, we find
∂νp = ρ̄ α ε β ω2p. A comparison with the impedance boundary condition yields the
purely imaginary impedance

(2.16) Z =
i

α ε β ω
.

We find it useful to work with the number z = z(ω) ∈ C such that the boundary
condition in the time-harmonic case reads ∂νp = z p. For the operator N1 under
consideration, we find z = (ρ̄ i ω/Z) = ρ̄ α ε β ω2. This is a real factor and, therefore,
the law N1(p) = β∂tp does not induce sound absorption, compare Section 3.

In the time-harmonic setting, the limit operator N1(p) = β∂tp is N1(p) = iωβp.
We observed that this phase shift of 90◦ does not imply sound absorption. In contrast,
the operator (2.14) for the Darcy chamber does not have a phase shift of 90◦ since
there is a non-vanishing phase shift between p∗ and the average of p.

2.3. Brinkman law and further extensions. A more complete model is to in-
clude the inertia term in the Darcy law, which leads to the Brinkman model. The
rescaled compressible Brinkman system reads, in ΣY :

ερ̄ ∂tv = −∇p+Mε v ,(2.17)

ε∂tp+ p̄∇ · v = 0 .(2.18)

Also these equations define a map of Dirichlet-to-Neumann type, N ε
Y (p) = ed · v|ΓY

,
a trivial limit map N0 = 0, and, possibly, a nontrivial limit map N1. Nevertheless,
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we do not expect that the Brinkman model in the above form gives a new limit
operators N1.

Combinations of the above. For applications, the most interesting cell-problem
is a combination of the above: One part of the cell is filled with absorber, the
other part is not. A relevant model would by that ΣY = Σ1

Y ∪ Σ2
Y ∪ γ where Σ1

Y

and Σ2
Y are disjoint open domains and γ = ∂Σ1

Y ∩ ∂Σ2
Y . One would impose, e.g.

(2.2)–(2.3) in Σ1
Y , and (2.10) in Σ2

Y . This also defines a Dirichlet-to-Neumann map
N ε
Y (p) = ed · v|ΓY

.

The aim of the contribution at hand is to separate the two aspects of the problem.
On the one hand, there is the task to average the operators N ε

Y and to find a limit
problem in Ω; this is the focus of the present analysis. On the other hand, there is
the question of an (optimal) design and the analysis of appropriate (limit) laws in
the chamber; this is a task for future work.

3. Conservation of energy

In the first analysis of the Stokes chambers, eventually, we neglected everywhere
the viscous term. When we do that from the start, then the limit equation is given,
in the whole domain Ωε, by the wave equation (A.1). Testing the wave equation in
the complex geometry with ∂tp, we find, when all boundaries prescribe either p = 0
or ∂νp = 0,

∂t

{∫
Ωε

|∂tp|2 + c2|∇p|2
}

= 0 .

This is energy conservation. This calculation (which includes the microscopic ele-
ments) shows that we cannot expect that energy dissipation occurs when we work
only with the Stokes system and neglect viscosity.

An ineffective limit operator. In the first Darcy setting, we found the law N1(p) =
β∂tp, see (2.6). In order to understand the effect of this boundary condition, let us
investigate the corresponding limit model (1.21)–(1.22), i.e., the wave equation in Ω
with the boundary condition ∂νp = −β∂2

t p at the part Γ of the boundary. Testing
the wave equation in Ω with ∂tp, we find, for this boundary condition,

∂t

{∫
Ω

|∂tp|2 + c2|∇p|2
}

= 2

∫
Γ

c2∂νp ∂tp = −2

∫
Γ

c2β∂2
t p ∂tp = −c2β ∂t

∫
Γ

|∂tp|2 .

We see that the last integral defines an extra term in the energy. This boundary
integral can be interpreted as the energy that is stored in the chambers.

Our result is that there is still energy conservation – even though the energy
expression is modified. The limit operators N0 and N1 obtained from Darcy I, given
as N0 = 0 and N1(p0) = p̄−1|ΣY ||ΓY |−1∂tp0, do not induce energy losses. Therefore,
they cannot explain sound attenuation.

The effect of a complex prefactor z. For this analysis, we use an ansatz with
an exponential time dependence. The aim is to find a solution with decay. We
assume p(., t) = p(.) eλt for λ ∈ C with ω := Imλ > 0. The wave equation in Ω
transforms into λ2p = c2∆p. Let us assume that this equation is complemented with
the boundary condition ∂νp = z p along Γ. Testing the equation with the complex
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conjugate of p (here denoted as p∗), we obtain{∫
Ω

λ2|p|2 + c2|∇p|2
}

= −
∫

Γ

c2∂νp p
∗ = −c2z

∫
Γ

|p|2 .

In the case that z is real, the imaginary part of the right hand side vanishes.
When p is not vanishing identically, then the imaginary part of λ2 must vanish. We
conclude that λ is purely imaginary, λ = iω. This reflects an oscillatory behavior
without damping.

Instead, in the case Im z > 0, there holds Imλ2 < 0, and hence Reλ < 0. This
implies that the system is damped. This calculation is the background of one of the
comments in Remark 2.2.

4. Homogenization of active interfaces

The main part of this section regards the mapping properties of the operators N ε

and their limit behavior as ε→ 0.

4.1. Estimates for norms. We prepare our analysis with some results for H1/2

and H−1/2-norms.
To simplify notation and without loss of generality, we assume here that we can

choose the height h = 1 in our assumptions on the geometry, i.e.: Ω1 = (0, 1)d−1 ×
(−1, 0) is contained in Ω. For a function φ : Γ → R we can introduce a norm via
extensions to the domain Ω1 with upper boundary Γ:

(4.1) ‖φ‖H1/2(Γ) := inf
{
‖φ̃‖H1(Ω1,R)

∣∣∣ φ̃ = φ on Γ
}
.

Obviously, the functions φ̃ must be elements of H1(Ω1,R) and boundary values of

φ̃ are understood in the sense of traces.
We also want to introduce a norm for a function on the domain ΓY ⊂ (0, 1)d−1 ⊂

Rd−1. We define similarly to (4.1), using the domain Y∗ = (0, 1)d−1 × (−1, 0) below
ΓY : For a function ψ : ΓY → R we use the norm

(4.2) ‖ψ‖H1/2(ΓY ) := inf
{
‖ψ̃‖H1(Y∗,R)

∣∣∣ ψ̃ = ψ on ΓY

}
.

Let us note that this definition makes a choice regarding boundary conditions outside
ΓY : We impose no condition (such as ψ̃ = 0) on (0, 1)d−1 \ ΓY .

An important preparation of the subsequent analysis regards the connections be-
tween the global norm (4.1) and the sum of local norms as in (4.2). We will inves-
tigate in several cases the situation that a function φ : Γ → R (e.g., of class L2(Γ)
or H1/2(Γ)) is locally given by functions ψk : ΓY → R in the sense that

(4.3) φ(ε(k + y)) = ψk(y) for all k ∈ Kε , a.e. y ∈ ΓY .

We recall that the set of relevant indices Kε was defined before (1.6), with our
normalization to Γ = (0, 1)d−1 × {0} ≡ (0, 1)d−1, the number of boundary pieces Γεk
is exactly |Kε| = 1/εd−1.

Lemma 4.1 (Relation of two norms of H1/2-type). Let φ be locally given by (ψk)k
as in (4.3). Then there holds

(4.4)
∑
k∈Kε

εd−1‖ψk‖2
H1/2(ΓY ) ≤ ‖φ‖

2
H1/2(Γ) .
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Proof. Let η > 0 be an arbitrary error quantifier. Using the definition of the norm
in (4.1), we choose a nearly optimal extension φ̃ : Ω1 → R of φ. We demand that
the infimum of (4.1) is attained up to an error η for the squared norms. Using the

extension φ̃ we set, for ŷ ∈ (0, 1)d−1 and yd ∈ (−1, 0),

(4.5) ψ̃k(ŷ, yd) := φ̃(ε(k + ŷ), yd) .

Note that we stretch d− 1 variables and leave one variable unchanged. This defines
extensions of ψk : ΓY → R to functions ψ̃k : Y∗ → R. In the subsequent calculation,
we use the elongated thin cylinders Sεk := ε(k+ (0, 1)d−1)× (−1, 0). We evaluate the
left hand side of (4.4) and use, in this order, (i) the definition of the H1/2-norm in
(4.2), (ii) the definition of the H1-norm, (iii) the transformation formula, (iv) ε ≤ 1:∑

k∈Kε

εd−1‖ψk‖2
H1/2(ΓY ) ≤

∑
k∈Kε

εd−1‖ψ̃k‖2
H1(Y∗)

=
∑
k∈Kε

εd−1

∫
Y∗

|ψ̃k|2 +
∑
k∈Kε

εd−1

∫
Y∗

|∇yψ̃k|2

=
∑
k∈Kε

∫
Sε
k

|φ̃|2 +
∑
k∈Kε

∫
Sε
k

(
|ε(∂x1 , ..., ∂xd−1

)φ̃|2 + |∂xdφ̃|2
)

≤
∫

Ω1

|φ̃|2 +

∫
Ω1

|∇xφ̃|2 = ‖φ̃‖2
H1(Ω1) ≤ ‖φ‖2

H1/2(Γ) + η .

Since η > 0 was arbitrary, this proves (4.4). �

The next lemma provides an improvement: When averages of the functions are
subtracted, we even gain the pre-factor ε in the estimate. We use, as before, the
integral average −

∫
A
f := |A|−1

∫
A
f .

Lemma 4.2 (Norms of H1/2-type with subtracted averages). Let φ be locally de-
scribed by (ψk)k as in (4.3). We consider the local averages

(4.6) ψk,0 := −
∫

ΓY

ψk ∈ R ∀k ∈ Kε .

Then there holds, for some constant C > 0 that depends only on ΓY :

(4.7)
∑
k∈Kε

εd−1‖ψk − ψk,0‖2
H1/2(ΓY ) ≤ C ε ‖φ‖2

H1/2(Γ) .

The subsequent proof uses other local extensions than the proof of Lemma 4.1.

Proof. Let η > 0 be an arbitrary error quantifier. We choose a nearly optimal
extension φ̃ : Ω1 → R of φ with a deviation of the squared norms less than η. With
this extension we set

(4.8) ψ̃k(ŷ, yd) := φ̃(ε(k + ŷ), εyd) .

These are extensions of ψk : ΓY → R to functions ψ̃k : Y∗ → R. We calculate with
cubes Sεk := ε(k+(0, 1)d−1)×(−ε, 0) and the strip Sε := Γ×(−ε, 0). The subsequent
calculation uses the following: (i) The definition of the H1/2-norm in (4.2), (ii) the
Poincaré inequality for functions with vanishing average on a part of the boundary,
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(iii) the chain rule for the evaluation of the gradient and a transformation formula
with a factor ε−d for the integral.∑

k∈Kε

εd−1‖ψk − ψk,0‖2
H1/2(ΓY ) ≤

∑
k∈Kε

εd−1‖ψ̃k − ψk,0‖2
H1(Y∗)

≤ C
∑
k∈Kε

εd−1

∫
Y∗

|∇yψ̃k|2 ≤ C
∑
k∈Kε

ε−1

∫
Sε
k

|ε∇xφ̃|2

≤ C ε

∫
Sε

|∇xφ̃|2 ≤ C ε‖φ̃‖2
H1(Ω1) ≤ C ε

(
‖φ‖2

H1/2(Γ) + η
)
.

Since η > 0 was arbitrary, this yields (4.7). �

The spaces H−1/2 are defined as the dual spaces of H1/2-spaces. The norms are
defined accordingly, e.g., by

(4.9) ‖W‖H−1/2(Γ) := sup
{
〈W,φ〉

∣∣ ‖φ‖H1/2(Γ) ≤ 1
}
.

When W ∈ H−1/2(Γ) is represented by a function W ∈ L2(Γ), the application to a
test-function φ ∈ H1/2(Γ) is given by an integral,

(4.10) 〈W,φ〉 =

∫
Γ

W φ .

Below, we will use a sloppy notation and write always integrals for the application
to test-functions. Similarly, we will write, e.g., y 7→ W (ε(k+y)) for the transformed
functional even when W is not given by a function.

Lemma 4.3 (Relation of two norms of H−1/2-type). Let W : Γ → R be of class
H−1/2(Γ) and let wk : ΓY → R be of class H−1/2(ΓY ) for every k ∈ Kε. We assume
that W satisfies W (ε(k+y)) = wk(y) for almost all y ∈ ΓY and W (ε(k+y)) = 0 for
almost all y ∈ (0, 1)d−q \ ΓY , for all k ∈ Kε. A concise description of this relation
is:

(4.11) 〈W,φ〉 =
∑
k∈Kε

εd−1 〈wk, φ(ε(k + .))〉 ∀φ ∈ H1/2(Γ) .

In this situation holds

(4.12) ‖W‖2
H−1/2(Γ) ≤

∑
k∈Kε

εd−1‖wk‖2
H−1/2(ΓY ) .

We note that inequality (4.12) can be regarded as being dual to (4.4).

Proof. The definition of the dual norm in (4.9) requires to consider an arbitrary
function φ : Γ→ R with ‖φ‖H1/2(Γ) ≤ 1. We define ψk as the rescaled versions of the

restrictions, ψk(y) = φ(ε(k + y)) for y ∈ (0, 1)d−1. The norm comparison of (4.4)
implies

∑
k∈Kε

εd−1‖ψk‖2
H1/2(ΓY )

≤ 1. This allows to calculate

〈W,φ〉Γ =
∑
k∈Kε

εd−1〈wk, ψk〉ΓY
≤
∑
k∈Kε

εd−1‖wk‖H−1/2(ΓY )‖ψk‖H1/2(ΓY )

≤

(∑
k∈Kε

εd−1‖wk‖2
H−1/2(ΓY )

)1/2(∑
k∈Kε

εd−1‖ψk‖2
H1/2(ΓY )

)1/2
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≤

(∑
k∈Kε

εd−1‖wk‖2
H−1/2(ΓY )

)1/2

.

This provides inequality (4.12). �

4.2. The combined map N ε. After these preparations regarding properties of
norms, we can now analyze operators N ε that are given by local operators N ε

Y .

Lemma 4.4 (Mapping properties of N ε). Let N ε
Y be a map for the domain ΓY as

in (1.10), we assume that it is Lipschitz continuous. Let N ε be the corresponding
map for the domain Γ as in (1.8), defined locally on every set Γεk by the operator
N ε
Y and extended by zero, compare (1.9). Then N ε Lipschitz continuous.

Proof. We consider an argument φ ∈ H1(0, T ;H1/2(Γ)) for the map N ε. We define
local functions ψk ∈ H1(0, T ;H1/2(ΓY )) by restriction and rescaling as in (4.3). The
local maps provide wk := N ε

Y (ψk). In the second line of the subsequent calculation
we use, for arbitrary t ∈ [0, T ], Lemma 4.3 for the function W = N ε(φ)(t), which is
given, locally, by wk. The third line exploits the mapping property of N ε

Y and the
fourth line uses the estimate of Lemma 4.1 for every t. The two equalities use only
the definition of the norm in the Bochner space.

‖N ε(φ)‖2
L2(0,T ;H−1/2(Γ)) =

∫ T

0

‖N ε(φ)(t)‖2
H−1/2(Γ)) dt

≤
∑
k∈Kε

εd−1

∫ T

0

‖wk(t)‖2
H−1/2(ΓY ) dt

≤ C
∑
k∈Kε

εd−1

(
1 +

∫ T

0

{
‖ψk(t)‖2

H1/2(ΓY ) + ‖∂tψk(t)‖2
H1/2(ΓY )

}
dt

)

≤ C + C

∫ T

0

{
‖φ(t)‖2

H1/2(Γ) + ‖∂tφ(t)‖2
H1/2(Γ)

}
dt

= C
(

1 + ‖φ‖2
H1(0,T ;H1/2(Γ))

)
.

This provides that N ε is bounded on bounded sets.
The calculation for Lipschitz continuity is similar. We have to show that, for a

constant C > 0 and arbitrary φj and φ,

(4.13) ‖N ε(φj)−N ε(φ)‖2
L2(0,T ;H−1/2(Γ)) ≤ C‖φj − φ‖2

H1(0,T ;H1/2(Γ)) .

This follows with a calculation that is completely analogous to the above. Obviously,
for linear maps N ε

Y , Lipschitz continuity follows already from boundedness. �

4.3. The limit ε→ 0 for the maps N ε. The following assumption makes precise
how we understand the convergence property (1.13).

Assumption 4.5. Let the maps N ε
Y of (1.10) be uniformly Lipschitz continuous.

We construct the averages N ε
∗ as in (1.12) and assume, for some limit operator

N0 : H1(0, T ;R)→ L2(0, T ;R), that the following holds:
1. The limit operator N0 is Lipschitz continuous and has the following weak

convergence property: For every weakly convergent sequence of arguments, ψε ⇀ ψ
in H1(0, T ;R), there holds N0(ψε) ⇀ N0(ψ) in L2(0, T ;R).
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2. The convergence N ε
∗ → N0 holds in the following sense: For every temporal

test-function ϕ ∈ L2(0, T ;R) there is a sequence of numbers ‖N ε
∗ − N0‖ϕ → 0 as

ε→ 0 such that, for every argument ψ ∈ H1(0, T ;R), there holds

(4.14)

∣∣∣∣∫ T

0

(N ε
∗ (ψ)−N0(ψ))(t)ϕ(t) dt

∣∣∣∣ ≤ ‖N ε
∗ −N0‖ϕ ‖ψ‖H1(0,T ;R) .

Remark 4.6 (Criterion for operator convergence). Let N ε
Y and N ε

∗ be as in (1.10)
and (1.12). Assumption 4.5 is satisfied when the following criterion holds:

The maps N ε
Y are linear and the family of operators N ε

Y : H1(0, T ;H1/2(ΓY )) →
L2(0, T ;H−1/2(ΓY )) is bounded. For some bounded and linear limit operator N0 :
H1(0, T ;R) → L2(0, T ;R) holds: For every weakly convergent sequence of argu-
ments, ψε ⇀ ψ in H1(0, T ;R), there holds

(4.15) N ε
∗ (ψ

ε) ⇀ N0(ψ) in L2(0, T ;R) .

Proof. Every bounded linear operator is Lipschitz continuous and the Lipschitz con-
stant is given by the norm. This shows that, in the situation of Remark 4.6, the
first sentence of Assumption 4.5 holds.

Item 1. of Assumption 4.5 follows from linearity. Indeed, for an arbitrary linear
functional λ : L2(0, T ;R) → C, the concatenation λ ◦ N0 is a linear functional on
H1(0, T ;R). The weak convergence ψε ⇀ ψ implies λ ◦ N0(ψε) → λ ◦ N0(ψ) and
thus the weak convergence N0(ψε) ⇀ N0(ψ).

By linearity, it is sufficient to show (4.14) for arguments ψ with norm 1. It is
therefore sufficient to show, for fixed ϕ, that

(4.16) sup
‖ψ‖=1

∣∣∣∣∫ T

0

(N ε
∗ (ψ)−N0(ψ))(t)ϕ(t) dt

∣∣∣∣→ 0 .

If (4.16) fails to hold, there exists a family of arguments ψε, bounded in H1(0, T ;R)
by 1, such that the integral with arguments ψε does not vanish in the limit. Since
the space is reflexive, we find a limit and a weakly convergent subsequence ψε ⇀ ψ
in H1(0, T ;R). In this situation, the weak convergence N0(ψε) ⇀ N0(ψ) and (4.15)
provide a contradiction. �

Proposition 4.7 (Zero order limit property of N ε). Let Assumption 4.5 hold. Then
N ε converges to the pointwise defined operator αN0. More precisely, for every se-
quence

(4.17) pε → p weakly in H1(0, T ;H1/2(Γ)) ,

there holds

(4.18) N ε(pε)→ αN0(p) weakly in L2(0, T ;H−1/2(Γ)) .

Proof. We study a sequence pε as in (4.17). Since it is bounded in H1(0, T ;H1/2(Γ)),
by Lemma 4.4, the corresponding flux functions wε := N ε(pε) are bounded in
L2(0, T ;H−1/2(Γ)). Since this latter space is reflexive, we can choose a weakly
convergent subsequence and find a limit function w ∈ L2(0, T ;H−1/2(Γ)) such that

(4.19) N ε(pε) = wε ⇀ w in L2(0, T ;H−1/2(Γ)) .

It remains to characterize the limit and to verify w
!

= W := αN0(p).

Given the pressure function pε, we extract the local pressure boundary data in the
active interfaces; after rescaling, we find pεk : ΓY × (0, T )→ R. To be precise: ψk =
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pεk(t) is related to φ = pε(t) through (4.3), for every t. We define the corresponding
averages as pεk,0 : (0, T )→ R as in (4.6). Lemma 4.2 provides with (4.7) the estimate

(4.20)
∑
k∈Kε

εd−1

∫ T

0

‖pεk(t)− pεk,0(t)‖2
H1/2(ΓY ) dt ≤ C ε

∫ T

0

‖pε(t)‖2
H1/2(Γ) dt ≤ C ε .

We can apply (4.7) also to the time derivative, since ∂tp
ε
k,0(t) is indeed the average

of the time derivative ∂tp
ε
k(t). An integration over [0, T ] yields

(4.21)∑
k∈Kε

εd−1

∫ T

0

‖∂tpεk(t)− ∂tpεk,0(t)‖2
H1/2(ΓY ) dt ≤ C ε

∫ T

0

‖∂tpε(t)‖2
H1/2(Γ) dt ≤ C ε .

The local fluxes are wεk = N ε
Y (pεk), they constitute wε. We recall that, here and

below, functions that are defined by some operator on all subsets Γεk, are extended
by zero to all of Γ. We define different approximations, locally defined as follows:

wε locally given by N ε
Y (pεk) (flux induced by local pressures) ,

W ε
I locally given by N ε

Y (pεk,0) (evaluation for piecewise constant pressures) ,

W ε
II locally given by N ε

∗ (p
ε
k,0) (replace by piecewise constant flux) ,

W ε
III locally given by N0(pεk,0) (use limit N0) ,

W ε
IV pointwise given by αN0(pε) (use limit N0 and the argument pε) .

The proof now consists of the analysis of the five corresponding differences.

First difference: wε −W ε
I . The subsequent calculation uses: (i) Squared norms

are estimated in (4.12) by local representations. (ii) The uniform (in ε) Lipschitz
continuity of N ε

Y . (iii) Estimates (4.20) and (4.21). Suppressing the argument
t ∈ [0, T ] of the functions everywhere, we find∫ T

0

‖wε −W ε
I ‖2

H−1/2(Γ) dt ≤
∑
k∈Kε

εd−1

∫ T

0

‖N ε
Y (pεk)−N ε

Y (pεk,0)‖2
H−1/2(ΓY ) dt

≤ C
∑
k∈Kε

εd−1

∫ T

0

{
‖pεk − pεk,0‖2

H1/2(ΓY ) + ‖∂tpεk − ∂tpεk,0‖2
H1/2(ΓY )

}
dt ≤ C ε .

In particular, wε −W ε
I → 0 in L2(0, T ;H−1/2(Γ)).

Second difference: W ε
I −W ε

II . For the next difference we use weak convergence
methods. By choosing an appropriate subsequence, we can assume W ε

I ⇀ WI and
W ε
II ⇀ WII in L2(0, T ;H−1/2(Γ)). Let θ be a smooth test-function in Ω1. We find

a sequence θε that is piecewise constant in each Γεk such that θε → θ in H1(Ω1); the
simple argument for the existence of such a function θε is sketched in Appendix C.
For an arbitrary test-function in the time domain, ϕ ∈ C0([0, T ],R), we consider the
space-time test functions θεϕ with the property θεϕ→ θϕ in L2(0, T ;H1(Ω1)). The
subsequent calculation uses the notation ΓT := Γ × (0, T ) and: (i) Re-writing the
integral. (ii) The definition of W ε

II which implies that W ε
I and W ε

II act identically
on functions that are constant in the interfaces. (iii) The strong convergence θε → θ
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and the weak convergence of W ε
I −W ε

II .∫
ΓT

(W ε
I −W ε

II) θϕ =

∫
ΓT

(W ε
I −W ε

II) θ
εϕ−

∫
ΓT

(W ε
I −W ε

II) (θε − θ)ϕ

= −
∫

ΓT

(W ε
I −W ε

II) (θε − θ)ϕ→ 0 .

Since θ and ϕ are arbitrary, the above shows that the weak limits coincide, W ε
I −

W ε
II ⇀WI −WII = 0 in L2(0, T ;H−1/2(Γ)).

Third difference: W ε
II −W ε

III . In this step we use test functions ϕ, θ and approx-
imations θε as above. The subsequent calculation of the third difference uses: (i)
The definitions of W ε

II and W ε
III , we write θεk for the constant value of θε in Γεk. (ii)

Inequality (4.14), which quantifies N ε
∗ ≈ N0, with ψ = pεk,0. (iii) α ≤ 1 and Young’s

inequality. (iv) Boundedness of ‖pε|Γ‖H1(0,T ;H1/2(Γ)) and of ‖θε|Γ‖L2(0,T ;H1/2(Γ)).∣∣∣∣∫
ΓT

(W ε
II −W ε

III) θ
εϕ

∣∣∣∣ ≤
∣∣∣∣∣∑
k∈Kε

εd−1

∫ T

0

∫
ΓY

(N ε
∗ (p

ε
k,0)−N0(pεk,0))(t) θεk ϕ(t) dt

∣∣∣∣∣
≤ α

∑
k∈Kε

εd−1 |θεk| ‖N ε
∗ −N0‖ϕ ‖pεk,0‖H1(0,T ;R)

≤ ‖N ε
∗ −N0‖ϕ

∑
k∈Kε

εd−1
[
‖pεk,0‖2

H1(0,T ;R)) + |θεk|2
]

≤ C‖N ε
∗ −N0‖ϕ → 0 .

The strong convergence θεϕ→ θϕ in L2(0, T ;H1(Ω1)) implies W ε
II −W ε

III ⇀WII −
WIII = 0 in L2(0, T ;H−1/2(Γ)).

Fourth difference: W ε
III −W ε

IV = W ε
III − αN0(pε). Again, ϕ, θ and θε are chosen

as above. We proceed by using: (i) The definition of W ε
III , it is N0(pεk,0) in the

boundary piece Γεk; after rescaling, the function is N0(pεk,0) in ΓY and it vanishes

in (0, 1)d−1 \ ΓY . We decompose the integral in a sum of, with a parametrization,
integrals over (0, 1)d−1 × {0} ≡ (0, 1)d−1. (ii) Fubini and triangle inequality. (iii)
Boundedness of ϕ. (iv) Lipschitz property of N0 in the function space. (v) Cauchy-
Schwarz inequality.∣∣∣∣∫ T

0

∫
Γ

(W ε
III − αN0(pε))(t) θε ϕ(t) dt

∣∣∣∣
≤
∑
k∈Kε

εd−1 |θεk|
∣∣∣∣∫ T

0

(
αN0(pεk,0)− α

∫
(0,1)d−1

N0(pε(ε(k + y), .)) dy

)
(t)ϕ(t) dt

∣∣∣∣
≤ α

∑
k∈Kε

εd−1 |θεk|
∫

(0,1)d−1

∣∣∣∣∫ T

0

[
N0(pεk,0(.))(t)−N0(pε(ε(k + y), .))(t)

]
ϕ(t) dt

∣∣∣∣ dy
≤ C

∑
k∈Kε

εd−1 |θεk|
∫

(0,1)d−1

∥∥N0(pεk,0(.))(t)−N0(pε(ε(k + y), .))(t)
∥∥
L2(0,T ;R)

dy

≤ C
∑
k∈Kε

εd−1 |θεk|
∫

(0,1)d−1

∥∥pεk,0(.)− pε(ε(k + y), .)
∥∥
H1(0,T ;R)

dy
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≤ C

∥∥∥∥∥∑
k∈Kε

1ε(k+(0,1)d−1) p
ε
k,0 − pε

∥∥∥∥∥
H1(0,T ;L2(Γ))

→ 0 .

The last convergence follows from boundedness of pε ∈ H1(0, T ;H1/2(Γ)). Bounded-
ness in this space implies that functions are well approximated by their local spatial
averages.

Fifth difference: W ε
IV − αN0(p) = αN0(pε) − αN0(p). We use once more weak

convergence methods with continuous test functions ϕ and θ as above. We claim
that ∫ T

0

∫
Γ

(αN0(pε)− αN0(p)) (t) θϕ(t) dt

= α

∫
Γ

θ(y)

[∫ T

0

(N0(pε(y, .))−N0(p(y, .))) (t)ϕ(t) dt

]
dy → 0 .

(4.22)

This convergence can be concluded from Assumption 4.5 as follows. We choose a
countable set of continuous functions, dense in H−1(0, T ;R). We fix one of these
functions and denote it as ϕ. We can now consider the family of maps Γ 3 y 7→
〈(pε − p)(y, .), ϕ〉H1,H−1 . This family is bounded in L2(Γ) and has the weak limit 0.
Moreover, because of the H1/2-regularity in space, the family is compact in L2(Γ).
We therefore find a set B ⊂ Γ with |B| = 0 and a subsequence ε → 0 such that
〈(pε−p)(y, .), ϕ〉 → 0 for every y ∈ G := Γ\B. Since ϕ is chosen from a countable set,
we find a single set B and a single subsequence ε→ 0 such that 〈(pε−p)(y, .), ϕ〉 → 0
for every ϕ and every y ∈ G := Γ \B. This implies (pε− p)(y, .) ⇀ 0 in H1(0, T ;R)
for every y ∈ G.

Item 1. of Assumption 4.5 implies a pointwise almost everywhere weak conver-
gence: N0(pε(y, .)) ⇀ N0(p(y, .)) in L2(0, T ;R) for every y ∈ G. This yields the
pointwise (a.e. y) convergence of the squared bracket in (4.22).

In order to apply Lebesgue dominated convergence, we additionally need an upper
bound for the sequence. The norms gε : Γ 3 y 7→ ‖pε(y, .)‖H1(0,T ;R) are bounded

in L2(Γ), but, because of the H1/2-regularity, they are even compact in L2(Γ). We
therefore find a strongly convergent subsequence gε → g in L2(Γ). Because of Lip-
schitz continuity of N0 in the function space, the integrands of (4.22) are dominated
by (a multiple of) the strongly convergent sequence gε. This allows to apply Lebesgue
dominated convergence and to conclude the convergence in (4.22).

Conclusion. All the differences converge weakly, we therefore have the weak con-
vergence wε −W = wε − αN0(p) ⇀ 0 and thus (4.18). �

4.4. First order convergence.

Assumption 4.8. Given N ε
Y as in (1.10), we assume that ε−1N ε

Y is bounded and
uniformly Lipschitz continuous. We construct the averages N ε

∗ as in (1.12) and
demand a first order convergence: For some Lipschitz continuous limit operator N1 :
H1(0, T ;R)→ L2(0, T ;R) with weak continuity property as in Item 1. of Assumption
4.5, we assume convergence ε−1N ε

∗ → N1 as in (4.14).

Proposition 4.7 has the following consequence.

Corollary 4.9 (First order limit property of N ε). Let Assumption 4.8 hold. Then
ε−1N ε converges to the pointwise defined operator αN1. More precisely, for every
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sequence

(4.23) pε → p weakly in H1(0, T ;H1/2(Γ)) ,

there holds

(4.24) ε−1N ε(pε)→ αN1(p) weakly in L2(0, T ;H−1/2(Γ)) .

Proof. It suffices to apply Proposition 4.7 to the sequence ε−1N ε. �

4.5. Homogenization of active interfaces. After these preparations, the proofs
for Theorem 1.1 and Theorem 1.2 are straightforward.

Proof of Theorem 1.1. We study a sequence of pressures pε as in Theorem 1.1. We
want to derive the effective wave equation (1.15)–(1.17).

Let ϕ : Ω̄× (0, T )→ R be a smooth function. Using ∂tϕ as a test-function in the
equations (1.1)–(1.2) for pε and vε provides∫

ΩT

∂tp ∂tϕ←
∫

ΩT

∂tp
ε ∂tϕ = −p̄

∫
ΩT

∇ · vε ∂tϕ

= p̄

∫
ΩT

vε · ∇∂tϕ− p̄
∫

Γ

ed · vε ∂tϕ− p̄
∫
∂Ω\Γ

g ∂tϕ

= −p̄
∫

ΩT

∂tv
ε · ∇ϕ− p̄

∫
Γ

N ε(pε) ∂tϕ− p̄
∫
∂Ω\Γ

g ∂tϕ

→ −p̄
∫

ΩT

∂tv · ∇ϕ− p̄ α
∫

Γ

N0(p) ∂tϕ− p̄
∫
∂Ω\Γ

g ∂tϕ .

In the last line, we used Proposition 4.7.
Because of µε → 0, the weak limits satisfy, in the sense of distributions (and

hence also strongly) the relation ρ̄∂tv = −∇p in ΩT . Writing this relation as p̄∂tv =
−c2∇p, we therefore obtain

(4.25) −
∫

ΩT

∂2
t pϕ = c2

∫
ΩT

∇p∇ϕ− p̄ α
∫

Γ

N0(p) ∂tϕ− p̄
∫
∂Ω\Γ

g ∂tϕ .

This relation encodes all equations. Considering ϕ with compact support in Ω ×
(0, T ), we find ∂2

t p = c2∆p. On the other hand, using p̄/ρ̄ = c2, we find along Γ the
boundary condition

(4.26) ∂νp = −ρ̄α ∂tN0(p) ,

and (1.17) along ∂Ω \ Γ. �

The proof of Theorem 1.2 can be performed similarly with Corollary 4.9.

Proof of Theorem 1.2. In the situation of Theorem 1.2, Theorem 1.1 can be applied;
we find that p0 satisfies the effective wave equation (1.15)–(1.17) with N0 = 0.

We define v0 through the equation ρ̄∂tv0 = −∇p0 and calculate for (v0, p0) the
relation ∂t[p̄∇ · v0] = −c2∆p0 = −∂2

t p0 = ∂t[−∂tp0]. This shows that (v0, p0) solves
the compressible Stokes equations (1.1)–(1.2) with viscosity µε = 0.

We define the first order corrector functions as

(4.27) (vε1, p
ε
1) :=

1

ε
[(vε, pε)− (v0, p0)] ⇀ (v1, p1) in H1(0, T ;H1(Ω,Rd+1)) .



22 Effective sound absorbing boundary conditions

By linearity of these equations, also (vε1, p
ε
1) satisfies (1.1)–(1.2), or, more precisely

ρ̄ ∂tv
ε
1 = −∇pε1 − ε−1µε∆v0 ,(4.28)

∂tp
ε
1 + p̄∇ · vε1 = 0 .(4.29)

Because of ν · v0 = 0 along Γ, the boundary condition reads

(4.30) ν · vε1|Γ = ε−1N ε(pε|Γ) .

On the other part of the boundary, we have the homogeneous condition ν · vε1 = 0,
since the prescribed normal velocity g is realized by v0.

The equations can be treated exactly as in the last proof, the proof of Theorem
1.1. We exploit the assumption ε−1µε → 0 and ε−1N ε(pε) ⇀ αN1(p0) in (4.24) of
Corollary 4.9 to conclude the equivalent of (4.25), namely

(4.31) −
∫

ΩT

∂2
t p1 ϕ = c2

∫
ΩT

∇p1∇ϕ− p̄ α
∫

Γ

N1(p0) ∂tϕ .

This is the weak formulation of the claimed system, namely the effective wave equa-
tion

∂2
t p1 = c2∆p1 in Ω ,(4.32)

∂νp1 = −ρ̄α ∂tN1(p0) along Γ ,(4.33)

together with ∂νp1 = 0 on ∂Ω \ Γ. �

5. Verification of the assumptions for Darcy chambers

We study the operators N ε
Y and N ε

∗ that are defined through the Darcy chamber
in the case Mεε → M∗ > 0. We claim that the operators satisfy Assumptions 4.5
and 4.8. We will use the criteria of Remark 4.6, which can be used also for the
operator family ε−1N ε

Y .

We start with the description of N ε
Y : H1(0, T ;H1/2(ΓY ))→ L2(0, T ;H−1/2(ΓY )).

As in (2.10), for a pressure evolution P ε ∈ H1(0, T ;H1/2(ΓY )), we are interested in
the solution pε ∈ L2(0, T ;H1(ΣY )) of

(5.1)
1

p̄
Mεε ∂tp

ε = ∆pε

with homogeneous Neumann boundary condition ∂νp
ε = 0 along ∂ΣY \ ΓY and the

Dirichlet boundary condition pε = P ε along ΓY , together with trivial initial values
pε|t=0 ≡ 0.

A priori estimates for this equation can be obtained as follows. We use the
harmonic extension of the Dirichlet boundary data to all of ΣY (with Neumann
boundary data), and denote this extension again by P ε ∈ H1(0, T ;H1(ΣY )). Testing
the evolution equation (5.1) with ϕ = pε − P ε, we find uniform bounds for pε ∈
L2(0, T ;H1(ΣY )). Testing equation (5.1) with ϕ = ∂t(p

ε − P ε) yields bounds for
pε ∈ H1(0, T ;L2(ΣY )).

The map N ε
∗ is obtained by using constant (in space) boundary data, i.e., instead

of P ε we use boundary data p∗ ∈ H1(0, T ;R). As in (2.4), the map N ε
∗ is given by

(5.2) N ε
∗ (p∗)(t) =

ε

p̄ |ΓY |

∫
ΣY

∂tp
ε(t) .
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The a priori estimates imply the boundedness of pε ∈ H1(0, T ;L2(ΣY )). In particu-
lar, both N ε

∗ and ε−1N ε
∗ are linear and bounded. Similarly, using general arguments

P ε, one obtains also that N ε
Y and ε−1N ε

Y are linear and bounded.
Let us now check the properties for convergent arguments. The boundedness of

the solution sequence pε ∈ L2(0, T ;H1(ΣY ))∩H1(0, T ;L2(ΣY )) implies that we find
a subsequence and a weak limit p in the same space, solving

(5.3)
1

p̄
M∗∂tp = ∆p ,

with the same boundary and initial conditions. The solution of this equation is
unique; in particular, the whole sequence converges to p.

By boundedness of the solution sequence, (5.2) yields N0 = 0 and the convergence
property. We turn to the corresponding calculation for N1, which is defined by

(5.4) N1(p∗)(t) =
1

p̄ |ΓY |

∫
ΣY

∂tp(t) .

We recall that this was already stated in (2.12).
We continue verifying the criteria of Remark 4.6. Regarding (4.15), it remains to

show that, for pε∗ ⇀ p∗ in H1(0, T ;R), there holds

1

ε
N ε
∗ (p

ε
∗) ⇀ N1(p∗) in L2(0, T ;R) .

This follows from the weak convergence ∂tp
ε ⇀ ∂tp in L2(0, T ;L2(ΣY )).

Appendix A. Elementary physics

Our aim in this section is to analyze which terms of the fundamental equations
(1.1)–(1.2) are relevant and what are the limit laws that we can expect for the
pressure. We collect typical orders of magnitude of the relevant quantities in Table
1. The quantities p̄, ρ̄, µ and c are physical constants for air around sea level, the
variation p is taken as the acoustic pressure of a car in 10 m distance, ρ is calculated
from the linearized gas-law. For the frequency we choose the typical test frequency
of 1000 Hertz, the wave-length is calculated from λ = c/ω. Finally, the typical speed
of particles in the sound wave, v, must be calculated from (1.1)–(1.2), we perform
the calculation below.

symbol units typical value meaning

p̄ Pa 105 pressure
ρ̄ kg/m3 1 density
µ kg/(m s) 2 · 10−5 dynamic viscosity
c m/s 3 · 102 speed of sound
p Pa 10−1 pressure variation
ρ kg/m3 10−6 density variation
ω 1/s 103 frequency
λ m 3 · 10−1 wave-length
v m/s 3 · 10−4 speed of air in sound wave

Table 1. Units and orders of magnitude of physical quantities.
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In this section, our convention is that all variables carry the corresponding unit,
e.g., c = 300 m/s. The unit of Pascal ist given as a force per area, 1 Pa = 1 N/m2 =
1 kg/(m s2). In particular, an equivalent unit of the dynamic viscosity µ is Pa s.

A.1. A limit equation away from boundaries. It is interesting to compare the
orders of magnitude of the three terms of (1.1) in air (by which we intend: far from
any walls or obstacles). The units of all quantities is kg/(m2 s2). We estimate the
effect of a time derivative by a multiplication with the frequency ω. With this rule,
the order of the first term is obtained by calculating ρ̄ v ω. With the data of our
table, we find the order to be 1 · 3 · 10−4 · 103 = 0.3. To estimate the order of the
pressure gradient, instead of taking the spatial derivative, we divide by λ. Evaluating
p/λ, we estimate the order of the second term to be 10−1/(3 · 10−1) = 1/3. In fact,
this calculation justifies the order of magnitude of the typical speed v. Regarding
the latter, we note that one can also use the specific acoustic impedance from a
table, it is about 400 Pa/(m/s), which means that a typical speed can be obtained
by dividing a typical pressure by this number, which yields 10−1/400 = 0.25 · 10−3

with units m/s and justifies our values. We recall that we provide the orders of
physical quantities in order to justify approximations, we are not interested in exact
numbers (which anyway depend on the specific problem).

Regarding approximations, let us now check the order of the third term in the
momentum equation, the effect of the viscosity: Replacing second spatial derivative
by 1/λ2, this term is of the order 2 · 10−5 · (1/3)2 · 102 · 3 · 10−4 = (2/3) · 10−7.
We conclude that this term is negligable in comparison with the other two terms of
(1.1), which are of order 1.

Accordingly, we will neglect the term containing µ in the following calculation.
We take the time derivative of (1.2) and find

(A.1) ∂2
t p = −p̄∇ · (∂tv) =

p̄

ρ̄
∆p = c2∆p .

This provides the wave equation. The speed of sound is given by c2 = p̄/ρ̄, which is
of the order 1 · 105 with units m2/s2 = (Pa m3)/kg.

A.2. Description of chambers. We next analyze the flow in chambers. Our in-
terest is to see which terms in the equations are of relevance. We use the typical
quantities of Table 2, which are taken from a typical sound absorbing wall, e.g.,
used in a lecture room. It also reflects the typical values of the commercial element
that is shown in Figure 1. The table contains ε, which is a parameter that can be
chosen freely. We use here the periodicity of the hole pattern and divide by one
meter, which is a typical length scale of Ω.

Viscosity in chambers. In order to have a feeling for typical velocities in the chamber,
let us perform the following calculation that should provide an upper bound j:
Assuming that the pressure in some part of the chamber is constant in time, pressure
differences in the chamber are in the order of p, i.e., in the order 10−1, the unit is
Pa. The pressure gradient is then of the order of p/D ≈ 10−1/(5 ·10−2) = 2, the unit
is Pa/m. We consider equation (1.1), replace the time derivative by a multiplication
with ω and conclude, on this basis, that typical velocities in the chamber are of
the order p/(Dωρ̄) ≈ 2 · 10−3, the unit is (Pa s m2)/kg = m/s. This rough estimate
shows that the upper bound j might be about a factor 10 larger than the outside
velocity v.
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symbol units typical value meaning

D m 5 · 10−2 periodicity of holes
(and typical diameter of chambers)

α 1 10−1 area fraction of holes
ε 1 5 · 10−2 Our choice of a small parameter
j m/s 2 · 10−3 bound for the velocity in chambers
Mε Pa s/m2 104 flow resistivity = Darcy coefficient

Table 2. Geometry and physical quantities related to holes and chambers.

We next assume that the order of second derivatives are dictated by the typical
dimensions; to be on the save side, we do not use D, but the reduced unit of
δ = 1 · 10−2 m, which might reflect diameters of channels. We find the following
upper bound for the order of the viscous term: µ∆v ∼ 2 ·10−5 ·104 ·2 ·10−3 = 4 ·10−4,
the unit is kg/(m2 s2) = Pa/m. Above, we have calculated for the other two terms
(one is the pressure gradient) in the Stokes equation the order 1. We can therefore
conclude that viscous terms are at least three or four orders of magnitude smaller
than the other terms. We can certainly neglect their effect for the considered data.

Darcy law in chambers. Regarding the Darcy law in the chambers, we find, for our
data, Mεεω/p̄ ≈ 104 · 5 · 10−2 · 103/105 = 5, the unit is 1/m2. We see that the two
sides of (2.10) are balanced.

The order of the pre-factor in (2.15) is ρ̄ ω2/p̄ ≈ 1 · 106/105 = 10, the unit is
kg/(m3s2Pa) = 1/m2. A pre-factor of the order 10 can imply that p1 is larger than
p0, and the correction with ε p1 can be relevant for ε = 0.05.

On the order of nonlinear terms. For completeness, we additionally estimate the
order of the inertia term ρ̄(v ·∇)v that was neglected in (1.1). Using once more that
j is of the order 2 · 10−3 and derivatives are of the order that is given by dividing by
δ = 10−2 m, we find that the order of ρ̄(v · ∇)v is 4 · 10−6/10−2 = 4 · 10−4. The unit
is, once more, kg/(m2 s2). This, again, has to be compared with values of order 1.
We conclude that it is justified to neglect the inertia term. In particular, a turbulent
effect as indicated in Figure 1 is certainly not relevant for the considered data.

Helmholtz resonator geometry. The chambers can also be constructed such that they
produce a resonance. Essentially, one has to connect the chambers with very thin
channels to the domain Ω. When the pressure in the chamber is q and the pressure
outside is p, then p − q is a driving force for the average upward velocity j and
we can expect a law such as ρ̄∂tj = L−1(p − q), where L stands for the length of
the channel. Mass conservation and gas law in the chamber require a law V ∂tq =
−p̄
∫
∇ · v = p̄ A j, where A is the opening area of the channel and V is the volume

of the chamber. Taking the time derivative and inserting the first law, we find
V ∂2

t q = p̄ A ∂tj = c2AL−1(p − q). This elementary calculation already shows that,
when c2A/(V L) is comparable to the squared frequency ω2, a resonance effect is
possible.

We make an estimate for the appropriate size of the channel cross-section using
V = D2·10−2 m, L = 10−2 m, and other data as collected in the table. We find for the
critical surface area A∗, defined as A∗ = ω2 V L/c2, the value 106·25·10−6·10−2/105 =
2.5 · 10−6, the unit is m2. The square root of this number is about 10−3 m and we
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conclude that the diameter of the channels must be in the order of a millimeter in
order to create the resonance: Very thin holes, so called “microperforations” are
necessary to create the effect in the considered situation. Indeed, among others,
holes with a diameter of 3 mm are considered in [12] in this context. In order
to perform a limit analysis of this effect, one usually has to use an ε-dependent
scaling of the holes. In [5, 13, 14] they are chosen as follows: Order ε3 in two space
dimensions and order ε2 in three space dimensions.

We note that a resonance effect needs even smaller opening cross sections A∗
when the frequency is smaller: Considering the frequency 100/Hz, we reduce the
frequency by a factor of 10 which lowers A∗ by a factor of 100 and hence the typical
channel diameter

√
A∗ by a factor of 10. For this frequency, one has to use hole

sizes well below a millimeter.

Appendix B. Comments on the formal effective system (1.21)–(1.22)

In order to justify the system of Remark 1.3, one would proceed as follows. The
aim is to compare the solution pε of the original system with the solution p̃ε of the
effective system (1.21)–(1.22). In Theorem 1.2 appear two solutions p0 and p1 from
which we can define p̂ε := p0 + εp1. The difference that we have to analyze can be
written as pε − p̃ε = (pε − p̂ε) + (p̂ε − p̃ε). Theorem 1.2 provides with (1.18) for the
first contribution

(B.1)
1

ε
(pε − p̂ε) ⇀ 0 .

Our wish is therefore to show

(B.2) qε :=
1

ε
(p̂ε − p̃ε) ⇀ 0 .

The quantity qε solves a simple system of equations: It satisfies the homogeneous
wave equation on Ω with trivial initial data and homogeneous Neumann conditions
on ∂Ω \ Γ. Along Γ holds

(B.3) ∂νq
ε = −ρ̄α [∂tN1(p0)− ∂tN1(p̃ε)] .

The two arguments on the right hand side are p0 and p̃ε, the latter can be written
as

(B.4) p̃ε = p̂ε − εqε = p0 + εp1 − εqε .

Hence, formally, the right hand side of (B.3) can be estimated by one term of order
ε and another term of order εqε. On that basis, one would expect that (B.3) (which
is the driving force in the wave equation for qε) leads to an estimate that qε is of
the order ε.

Unfortunately, we do not see how to make this argument rigorous. One of the
obstacles is the appearance of two time derivatives in (B.3), one of them being the
explicit time derivative, the other is hidden in the operator properties of N1.

Appendix C. An approximate sequence of test-functions

We want to sketch the construction of a sequence of functions that was used
repeatedly in Proposition 4.7. The aim is to find, for a given smooth test-function
θ in Ω1, a sequence θε that is piecewise constant in each Γεk such that θε → θ in
H1(Ω1).
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To verify the existence of θε, we use a decomposition and a rescaling as in Lemma
4.2: We work with cubes Sεk := ε(k+(0, 1)d−1)×(−ε, 0). The function θ|Sε

k
: Sεk → R

is modified to a function θε|Sε
k

: Sεk → R, which has the boundary values of θ on

∂Sεk \ ε(k + (0, 1)d−1) × {0}, but a constant value on Γεk. This is possible with
‖θε − θ‖∞ ≤ C and ‖∇θε −∇θ‖∞ ≤ C, where C depends on the C1-norm of θ.

This defines a function θε on the strip Sε := Γ× (−ε, 0), we set θε = θ on Ω1 \Sε.
The resulting function is continuous and there holds ‖θε − θ‖2

H1(Ω1) ≤ C |Sε| ≤ C ε.
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