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Abstract: We investigate the transmission properties of a metal-
lic layer with narrow slits. Recent measurements and numerical
calculations concerning the light transmission through metallic sub-
wavelength structures suggest that an unexpectedly high transmission
coefficient is possible. We analyze the time harmonic Maxwell’s
equations in the H-parallel case for a fixed incident wavelength.
Denoting by η > 0 the typical size of the complex structure, effective
equations describing the limit η → 0 are derived. For metallic
permittivities with negative real part, plasmonic waves can be excited
on the surfaces of the channels. When these waves are in resonance
with the thickness of the layer, the result can be perfect transmission
through the layer.
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1 Introduction

The interest to construct small scale optical devices for technical applications has
initiated much research in the fields of micro- and nano-optics. In structures of
sub-wavelength size, the behavior of electromagnetic waves is often counterintu-
itive and its mathematical understanding requires to develop new analytical tools.
One example is the behavior of metamaterials with a negative index [18].

In this contribution, we investigate another instance of the astonishing behav-
ior of light in sub-wavelength structures — the high transmission of light through
metallic layers with thin holes. As reported e.g. in [10], a metallic film with submi-
crometer cavities can display an highly unusual transmittivity. Since the openings
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are smaller than the wavelength of the incident photon, this high transmission is
astonishing and contradicts classical aperture theory.

Many theoretical and numerical investigations of the effect are already avail-
able. The analysis given in [19] already establishes the connection of the effect to
the excitation of surface plasmon polaritons. The photonic band structure of the
surface plasmons is evaluated numerically, the contribution contains additionally
two-dimensional calculations of typical electric fields in a neighborhood of the
gratings. A semi-analytical calculation of transmission coefficients for lamellar
grating is performed in [13], while the effect of surface plasmons on the upper and
lower boundary of the layer is analyzed in [8]. Based on these investigations, the
contribution [14] states that, in contrast to previously given explanations of the
effect, the presence of surface plasmons has a negative effect on the transmission
efficiency.

Further investigations focus on more specific topics. In [21], the effect of a
finite conductivity is addressed. A relation between the high transmission effect
and the negative index material obtained with a fishnet structure is made in [16].
An approach using homogenization theory is proposed in [11] where the authors
emphasize the connection between the skin depth of evanescent modes in the metal
and the period of the gratings.

The aim of the contribution at hand is to provide, through a mathematical
analysis of the scattering problem, a new rigorous approach to transmission prop-
erties of heterogeneous media, enlightening the role of plasmonic resonances. We
show that high transmission effects can survive in a metallic grating even in an
extreme sub-wavelength regime.

Our result is an effective scattering problem in which the metallic layer is
replaced by an effective material with frequency dependent permittivity εeff and
permeability µeff . The formulas for these effective parameters allow to evaluate
the transmission coefficient T = T (k, θ) of the total structure in terms of the
incident wave number k and the incidence angle θ. Formally, in the ideal case
of a lossless metal with real and negative permittivity εη, we obtain that perfect
transmission |T | = 1 occurs for every angle θ at an appropriate value of k. This
value of k is related to a resonance of the plasmonic wave with the height h of the
structure.

This article proceeds as follows. The problem is described in more detail in
Subsection 1.1. In Subsection 1.2 we describe the geometry and the scattering
problem in mathematical terms. The main result of this paper are effective equa-
tions for the structure, these are presented in Subsection 1.3. In that subsection,
we also present the formula for the transmission properties of the effective struc-
ture. In Section 2 we derive rigorously the effective equations, using the analysis
of the oscillatory behavior of solutions in the limit η → 0. Section 3 contains the
calculation of the transmission properties of the effective system.

The mathematical tools of this contribution are related to those of [2, 3, 5,
7, 15], where the Maxwell equations in other singular geometries have been in-
vestigated. Another application where the negative real part of the permittivity



G. Bouchitté and B. Schweizer 3

becomes relevant is cloaking by anomalous localized resonance, see [17] and the
rigorous results in [6, 12].

1.1 Problem description

We assume that the metallic obstacle is invariant in one direction (x3) and that
the magnetic field is parallel to that direction (H = (0, 0, u), magnetic transverse
polarization). Accordingly, we can work with a two dimensional model, solving for
u = u(x1, x2). We investigate time-harmonic solutions with a fixed wave number
k and the corresponding wavelength λ = 2π

k
.

The obstacle is described by a metallic slab of finite length and finite height in
R2, the slits (vacuum) are repeated periodically with a small period η > 0, com-
pare Figure 1. The period η will be infinitesimal with respect to the wavelength λ.
The relative permittivity of the metal is denoted by ε. Since the permittivity of
conductors has large absolute values, we allow it to depend on the small parameter
η and consider ε = εη. We obtain non-trivial effects due to plasmonic resonance
for |εη| ∼ η−2, the scaling is identical to that of [3, 4]. When Ση denotes the set
of points occupied by the metal, we assume that the permittivity εη is given by a
number εr ∈ C as

εη(x) =















εr
η2

for x ∈ Ση

1 for x 6∈ Ση .

(1.1)

When the real part of εη is negative, transverse evanescent modes are generated
in the metal and waves can penetrate only in a region that is determined by the
skin-depth, in our case of order η. On the other hand, this effect implies that
surface plasmons can exist along the vertical boundaries of the slits. For an
appropriate wave-number k, the surface plasmon solution has a wave-length that
is in resonance with the height h of the metallic layer. If this is the case, perfect
transmission for lossless materials occurs (εη real and negative). Our formula
for the effective transmission coefficient in (1.24) quantifies this effect for general
permittivities.

Due to ohmic losses in the metal, the imaginary part of the permittivity is
always positive; mathematically, we assume in the following always ℑεr ≥ 0 and
εr 6= 0. The relative permittivity of a lossless material with a negative real part
(allowing plasmon waves) corresponds to ℑεr = 0 and ℜεr < 0.

The H-parallel case in time-harmonic Maxwell equations. The time-
harmonic Maxwell equations read

curl Eη = iωµ0Hη, (1.2)

curl Hη = −iωεηε0Eη, (1.3)
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Figure 1: Sketch of the non-dimensionalized scattering problem. Left: A metal
layer with gratings is exposed to light at a fixed frequency. Because of the gratings,
in two dimensions the metal occupies a number N of disjoint rectangles. We
study the case that N ∼ 1/η is large and that, at the same time, the permittivity
|εη| ∼ 1/η2 is large in the metal. Right: Zoom with three of the small rectangles.
The single metal component is thin and long (width 2γη and height h = 1). The
number α = 1− 2γ ∈ (0, 1) is the aperture volume of the structure.

with fixed positive real constants ω, µ0 and ε0 that denote the frequency of the
incoming light and the permeability and permittivity of vacuum. The inclusion
of a material in a region Ση is described by a relative permittivity εη which is
different from 1.

We study a situation in which all quantities are x3-independent and with a
polarized magnetic field Hη = (0, 0, ūη); the overbar is introduced here to facilitate
the non-dimensionalization later on. In this setting, the electric field has no third
component, Eη = (Ex,η, Ey,η, 0). The Maxwell equations then simplify to the
two-dimensional system

∇⊥ · (Ex,η, Ey,η) = iωµ0ūη, (1.4)

−∇⊥ūη = −iωεηε0(Ex,η, Ey,η), (1.5)

where we used the two-dimensional orthogonal gradient, ∇⊥u = (−∂2u, ∂1u), and
the two-dimensional curl, ∇⊥ · (Ex, Ey) = −∂2Ex + ∂1Ey. The system can be
described equivalently by a scalar Helmholtz equation. We multiply the second
equation with the space dependent coefficient ε−1

η = ε−1
η (x) and apply the operator

∇⊥· to the result. Since the permittivity is scalar, we can use the identity ∇⊥ ·
(ε−1

η ∇⊥ūη) = ∇·(ε−1
η ∇ūη); setting k̄2 = ω2ε0µ0 we obtain the Helmholtz equation

∇ ·
(

1

εη
∇ūη

)

= −k̄2ūη. (1.6)

We will study the Helmholtz equation (1.6) in dimension-less quantities. We
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emphasize that the coefficient aη := ε−1
η can have a negative real part and that it

vanishes in the metal in the limit η → 0.

Non-dimensionalization. Our mathematical analysis uses the aspect ratio
η := d̄/h̄, where d̄ is the periodicity length of the gratings and h̄ is the thick-
ness of the layer. We derive asymptotic formulas for the transmission under the
assumption that the dimensionless parameter η > 0 is small. We derive the effect
of perfect transmission in the limiting case of small η, but we note that almost
perfect transmission is also reported in studies where η is almost 1.

We use the two length scales d̄ and h̄ to non-dimensionalize the problem. Using
the aspect ratio η = d̄/h̄ of the periodic structure as a non-dimensional variable,
we can eliminate the grating width ā < d̄ << h̄ and the physical wave-length λ̄
by setting

η =
d̄

h̄
, α =

ā

d̄
, γ =

1− α
2

, λ =
λ̄

h̄
k =

2π

λ
.

The physical spatial parameter x̄ ∈ Ω̄ is replaced by x = x̄/h̄ in the dimension-
less domain Ω := Ω̄/h̄ ⊂ R2. In the non-dimensional variables, the layer has the
height h = 1 and the periodicity length η, the relative aperture volume is α and
the relative metal volume in the layer is 2γ, the dimension-less wave-length is λ.
From now on, we work only with the dimension-less parameters. The relative
permittivity εη is dimension-less and remains unchanged.

Typical physical parameters. To illustrate typical choices for the various pa-
rameters we refer to [8]. Figure 3 (b) of that work was obtained for periodicity
length d̄ = 3.5µm, slit-width ā = 0.5µm, h̄ = 3.0µm, and wave-length λ̄ = 7.5µm.
The corresponding quantities in the non-dimensional Helmholtz equation are

η = 7/6, α = 1/7, γ = 3/7, λ = 15/6, k = 2π/λ ≈ 2.51. (1.7)

We use here the relative permittivity of silver as in [14], εη = (0.12 + 3.7i)2.
With the permittivity relation of (1.1), we choose εr = η2εη = −σ2 with σ =
η(3.7− 0.12i).

1.2 Mathematical description

Our interest is to study the Maxwell equations in a complex geometry and with
high contrast permittivities. With the dimensionless number η we indicate the
small length scale that is present in the geometry, given by a set Ση ⊂ R2. At
the same time, η is used as an index to indicate large absolute values of the
permittivity. We are led to the following problem.

We study the Helmholtz equation

∇ · (aη∇uη) = −k2uη (1.8)
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on a domain Ω ⊂ R2, where the coefficient aη is given as

aη := (εη)
−1 =

{

η2 ε−1
r in Ση

1 in Ω \ Ση .
(1.9)

The set Ση ⊂ Ω describes the complex geometry of the obstacle and is defined
next.

Description of the complex geometry. The two-dimensional metallic struc-
ture is contained in the closure of the open subset

R = (−l, l)× (−h, 0) ⊂ Ω.

We assume that the compact rectangle R contains 2N + 1 small rectangles of
width 2γη and height h. The collection of the small rectangles is the domain Ση

that is occupied by metal,

Ση :=
N
⋃

n=−N

(nη − γη, nη + γη)× (−h, 0). (1.10)

We always assume 0 < γ < 1/2 such that the single rectangles do not intersect.
The number l = Nη+ γη is the right end-point of the structure. In the following,
we keep the number l fixed. Sending the number N of rectangles to infinity is
then equivalent to sending η = l/(N + γ) to zero. Due to non-dimensionalization,
we are only interested in the height h = 1. The relative aperture volume is
α = 1 − 2γ. In x1-direction, we denote a corresponding collection of intervals by
Γη := ηZ+ η(−γ, γ) ⊂ R.

Scattering problem. We will analyze the effective behavior of solutions to (1.8)
in two cases. In the first case we investigate an arbitrary bounded sequence of
solutions on a bounded domain. In the second setting we investigate the scattering
problem. This means that we study the Helmholtz equation (1.8) on the whole
space R

2. For a prescribed incident wave ui, which solves the free space equation
∆ui = −k2ui on R2, we impose as a boundary condition that the scattered field
usη = uη − ui satisfies the Sommerfeld condition

∂ru
s
η − ikusη = o

(

r−1/2
)

(1.11)

for r = |x| → ∞, uniformly in the angle variable.

1.3 Main results

The coefficients of the effective system are determined by a scalar, one-dimensional
shape function Ψ. This function has a graph similar to the one sketched in Figure
2, just that on every second interval, the function Ψ is actually constant (with
value 1).
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The shape function Ψ. The function Ψ : R→ C is the continuous 1-periodic
function that satisfies

∂2zΨ(z) = −k2εrΨ(z) for z ∈ (−γ, γ),
Ψ(z) = 1 for z ∈ [−1/2, 1/2] \ (−γ, γ).

The function Ψ and its average β can be expressed with σ2 = −εr explicitely as

Ψ(z) =

{

cosh(kσz)
cosh(kσγ)

for |z| ≤ γ,

1 for γ < |z| ≤ 1/2,
β :=

∫ 1/2

−1/2

Ψ(z) dz =
2

kσ

sinh(kσγ)

cosh(kσγ)
+α.

(1.12)
Our particular interest is in the ideal case εr < 0, for which perfect plasmon waves
exist. In this case, σ and β are real and positive numbers (we always choose for
σ the square root with ℜ σ ≥ 0), accordingly, Ψ is a real and positive function.

The effective coefficients. With the help of the shape function Ψ we have
defined the average β = β(k, γ, εr) ∈ C, which depends on the wave number k,
the geometry parameter γ (and α = 1 − 2γ), and the permittivity parameter
εr through σ = −i√εr. The coefficient β ∈ C and the geometry parameter
α ∈ R provide the effective coefficients. We formulate the limit problem with the
x-dependent effective coefficients aeff : R2 → R2×2 and µeff : R2 → C,

aeff(x) =

(

1 0
0 1

)

and µeff(x) = 1 for x ∈ R
2 \R,

aeff(x) =

(

0 0
0 α

)

and µeff(x) = β for x ∈ R.
(1.13)

It turns out that the effective permittivity tensor (formally εeff = (aeff)
−1) is

infinite in the x1-direction inside the scattering structure, that is

εeff(x) =

(

+∞ 0
0 1/α

)

for x ∈ R.

As could be expected, the coefficient appearing in the x2-direction is large if the
aperture ratio α is small.

In the ideal case of a lossless metal of negative permittivity, the numbers β
and σ are real and positive. Moreover, the derivative ∂σβ(σ) is negative and real
for positive arguments σ. This implies that for slightly lossy material with small
positive imaginary part of the permittivity, the imaginary part of the effective
permeability in the homogenized medium satisfies ℑµeff = ℑβ > 0.

Main results. Let Ω ⊂ R2 be an open set with R ⊂⊂ Ω. We consider the
geometry of the gratings given by Ση ⊂ R ⊂ Ω of (1.10). Let the inverse permit-
tivity aη := ε−1

η be given by (1.9) with εr 6= 0. We study solutions uη ∈ H1
loc(Ω)

of (1.8),
∇ · (aη∇uη) = −k2uη in Ω. (1.14)
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In order to state our results, it is convenient to rewrite this equation as a system,

∇ · jη = −k2uη , (1.15)

jη = aη∇uη . (1.16)

Notice that here jη represents (up to a factor and a rotation) the horizontal
electric field Eη. Recalling that the magnetic field reads Hη = uη(x1, x2) e3, we
have simply chosen to write the system similar to its original form (1.4)–(1.5) of
a Maxwell system.

Theorem 1 (Homogenized system). Let the geometry be given by Ση of (1.10)
on a domain Ω ⊂ R2, and let the coefficient aη := ε−1

η be as in (1.9). We assume
that β of (1.12) satisfies β 6= 0. Let uη be a sequence of solutions to (1.14) such
that uη ⇀ u in L2(Ω) for η → 0. Define U ∈ L2(Ω) by setting

U(x) :=

{

u(x) for x ∈ Ω \R,
β−1u(x) for x ∈ R. (1.17)

Then ∂x2
U belongs to L2

loc(Ω) and ∂x1
U belongs to L2

loc(Ω \ R̄). Furthermore, the
field jη = aη∇uη converges weakly in L2

loc(Ω) to j given by

j =

{

(∂x1
U, ∂x2

U) in Ω \R,
(0, α ∂x2

U) in R.
(1.18)

In particular, the limit system associated to (1.15)–(1.16) as η → 0 reads

∇ · j = −k2 u in Ω, where j satisfies (1.17)–(1.18) . (1.19)

Let us emphasize that in the previous result, all derivatives for U and j are
taken in a distributional sense. With this in mind, we can re-write the relation
between j and U in the more standard form j(x) = aeff(x)∇U(x), where aeff(x)
is the effective (degenerate) tensor defined in (1.13). The limit system (1.19) can
then be written in the condensed form

∇ · (aeff∇U) + k2µeff U = 0 in Ω .

By applying Theorem 1 with Ω a ball of large radius, we are able to treat
the original scattering problem with an incoming wave generated at infinity. We
obtain the strong convergence of the scattered field outside the obstacle and we
identify the limit U(x) as the solution of an effective diffraction problem. In
the following we denote by Rext an exterior domain, the unbounded open set
Rext := R2 \R.

Theorem 2 (Effective scattering problem). Let the geometry of the gratings be
given by Ση of (1.10) with coefficient aη := ε−1

η of (1.9). Let ui be an incident
wave, solving the free space equation ∆ui = −k2ui on R2. Let uη be a sequence



G. Bouchitté and B. Schweizer 9

of solutions to (1.14) such that usη = (uη − ui) satisfies the outgoing wave con-
dition (1.11). We assume that the effective relative permeability coefficient β of
(1.12) satisfies ℑ β > 0, and that the solution sequence satisfies, in the diffractive
structure, the uniform bound

∫

R

|uη|2 ≤ C. (1.20)

Then, as η → 0, there holds uη → U strongly in L2
loc(R

ext) with uniform
convergence for all derivatives on any compact subset of Rext. Here, the effective
field U : R2 → C is determined as the unique solution of the homogenized equation

∇ · (aeff∇U) = −µeffk
2U in R

2 (1.21)

with the outgoing wave condition (1.11) for the scattered field (U − ui). The
effective parameters are given by (1.13).

Remark 1.1. (Interface conditions and regularity issues). As pointed out before,
the homogenized equation (1.21) has to be understood in the sense of distributions
over the whole space R2. The exterior magnetic field U(x) belongs toH1(Br(0)\R)
for every large radius r, hence its trace U+ on ∂R from the outside is well-defined
as an element of H1/2(∂R). In contrast, no regularity holds a priori for ∂x1

U
inside R. However, as ∂x2

U belongs to L2(Br), the function U(x1, ·) is an element
of H1

loc(R) for a.e. x1 ∈ (−l, l). This allows to define traces of U on the horizontal
boundary parts from the inside. Additionally, we have the information that the
distributional divergence of the vector field j = aeff∇U is of class L2

loc(R
2).

We decompose the boundary of R into horizontal and vertical parts, ∂R =
Γhor ∪ Γ̄ver, with

Γhor := (−l, l)× {0,−h} , Γver := {−l, l} × (−h, 0) .

Denoting with the superscript + (respectively −) traces from outside (respectively
inside), problem (1.21) can be re-written as:

∆U + k2 U = 0 in Rext, α ∂2x2
U + βk2U = 0 in R, (1.22)

with the interface conditions

U+ = U− on Γhor ,

∂x2
U+ = α ∂x2

U− on Γhor ,

∂x1
U+ = 0 on Γver .

(1.23)

It turns that, together with the radiation condition (1.11) at infinity, this
system (1.22)–(1.23) determines completely the effective scattered field U . We
observe that the regularity of the trace U+ on Γhor implies, through the second
equation of (1.22), some regularity of the solution in R. However, no continuity
of the functions U(·, x2) for x2 ∈ (−h, 0) can be expected at the points x1 = ±l.
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Remark 1.2. (Plasmonic resonance). The above theorems allow to calculate the
effective transmission properties of the structure. We perform this analysis in
Section 3, where we obtain with (3.5) a formula for the transmission coefficient
T ∈ C. In terms of wave number k, height h, aperture ratio α, incident angle θ,
and with τ :=

√

β/α, we derive

T =

(

cos(τkh)− i

2

[

ατ

cos(θ)
+

cos(θ)

ατ

]

sin(τkh)

)−1

. (1.24)

Perfect transmission |T | = 1 occurs for cos(τkh) = 1. In particular, perfect trans-
mission is possible when β is real and k is a resonant wave number, kh

√

β/α ∈ πN.
Let us discuss the ideal case εr < 0 in more detail. We recall that such a

lossless material allows for plasmon waves, we have σ > 0. We observe that the
number β of (1.12) is necessarily a positive real number in this case. Furthermore,
β has a limit for large values of k, namely α. The same is true for large values of
σ. The fact that β depends in such a non-critical way on k implies that also the
transmission coefficient T of (1.24) can be analyzed in more detail. Since β (and
therefore also τ) stabilizes for large values of k, we find that cos(τkh) = 1 occurs
for an infinite discrete set of wave numbers k.

Remark 1.3. (The case ℜεr > 0). Let us compare the above discussion with
the case of a lossless material with positive permittivity, εr > 0. In this case,
σ = −i√εr ∈ iR is purely imaginary. The average β of (1.12) is again real (as in
the case εr < 0), its formula reduces to

β = α +
2

k
√
εr

sin(kγ
√
εr)

cos(kγ
√
εr)

.

We see that the dependence on the wave number k is more critical than in the
case εr < 0: negative values of β can occur and even β = ±∞ is possible for
resonant wave-numbers. But in this situation, we do not find a resonance effect
with the height h, but a resonance with the horizontal structure.

The role of the sign ℜεr can be made even more apparent by expanding the
function Ψ in eigenfunctions corresponding to the cell-problem in y. In a similar
way as in [4], the effective coefficient β can be expressed in terms of the discrete
set of resonance frequencies of the metallic inclusions (square-roots of eigenvalues)
ωn = (n+ 1/2)π

γ
for n = 1, 2, . . ., which yields

β = β(k) = 1 +
∞
∑

n=1

4k2εr
(ω2

n − k2εr)ω2
n

.

In contrast to the “plasmonic” case, the dependence on k becomes highly singular
in case of small losses since the positive number k2ℜεr can be close to one of the
numbers ωn. In the case εr > 0, we can expect to observe perfect transmission
only for exceptional incident angles θ.
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Remark 1.4. (About the L2-bound). Although assumption (1.20) seems physically
reasonable, we have not been able to prove it as we did in [7]. The main difficulty is
that we cannot exclude a priori strong variations of uη between successive slits (the
geodesic distance between them is of order h). Technically, there is no uniformly
bounded sequence of extension operators from H1(R \ Ση) to H

1(R). This is in
contrast to the situation where the metallic inclusion is disposed as compactly
supported subsets of a standard periodicity cell Y .

2 Derivation of the effective system

We will derive the effective equations with the tool of two-scale convergence as
outlined in [1]. Inside the layer R, the function uη has oscillations in the horizontal
direction (x1-direction) the qualitative behavior is sketched in Figure 2. In the
void, uη is approximately constant, uη ≈ U , in the metal, it has the shape of the
function Ψ. This picture will be made precise in Lemma 2.2, where we show that
the two-scale limit u0(x1, x2, y1, y2) of the sequence uη does not depend on the fast
variable y2 = x2/η and coincides with U(x)Ψ(y1).

u

y

η

1

Figure 2: Sketch of the magnetic field in a horizontal cross-section (for positive
real σ). The field is almost constant in the slits, its value is approximately U(x).
The profile of uη is given by a cosh-function in y1 = x1/η in the metal part.

2.1 Preliminary results

In this subsection, we consider a sequence of solutions to (1.14) as in Theorem 1,
with the weak convergence uη ⇀ u in L2(Ω). We start by observing an improved
bound for the solution sequence.

Lemma 2.1 (Gradient estimate). Let (uη)η be an L2(Ω)-bounded sequence of
solutions to (1.14). Then, for every compactly contained subdomain Ω′ ⊂⊂ Ω,
there holds

∫

Ω′

|aη| |∇uη|2 ≤ C . (2.1)

The constant C depends on Ω′, but is independent of η > 0.
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Proof. We obtain (2.1) with a calculation as in the Cacciopoli inequality. Without
loss of generality we assume R ⊂ Ω′ and use a cut-off function Θ ∈ C∞

c (Ω, [0, 1]),
which is identical to 1 on Ω′. We multiply equation (1.14) with Θ2(x)ūη(x), where
ūη(x) is the complex conjugate of the solution. Integrating over Ω, we obtain

∫

Ω

aη|∇uη|2Θ2 =

∫

Ω

k2|uη|2Θ2 −
∫

Ω\Ω′

aη∇uη · uη 2Θ∇Θ .

We recall that the first integral on the right hand side is bounded by the L2(Ω)-
boundedness assumption on uη. In the second integral we estimate the integrand
by (

√

|aη| |∇uη|Θ) · (2
√

|aη| |uη| |∇Θ|) and apply the Cauchy-Schwarz inequality.
Regarding the second factor we observe that

∫

Ω
|aη||uη|2|∇Θ|2 is bounded by the

boundedness of |aη|. We can take the imaginary and the real part of the left hand
side, apply the Young inequality and obtain (2.1).

We will analyze the oscillatory behavior of uη with the tool of two-scale conver-
gence. Although the relevant oscillations turn out to be only in the x1-direction,
we use in the following the periodicity cell Y := (−1/2,+1/2)2. We note that the
geometry is, inside R, not only x1-periodic, but also Y -periodic. The metal part
in the single periodicity cell is given by Σ := (−γ, γ)× (−1/2,+1/2) ⊂ Y .

We recall that u ∈ L2(Ω) is given as the weak limit of the sequence uη. We
introduce the following function u0(x, y) ≡ u0(x1, x2, y1, y2) = u0(x1, x2, y1),

u0(x, y) :=

{

u(x) for x 6∈ R ,
β−1u(x) Ψ(y1) for x ∈ R ,

(2.2)

where Ψ is the continuous 1-periodic function defined in (1.12). Our definition of
u0 ensures that, for every point x ∈ Ω, there holds u(x) =

∫

Y
u0(x, y) dy. Our aim

is to show that uη converges to u0 in the sense of two-scales convergence.
We recall (see [1]) that a sequence (fη)η in L2(Ω) is said to converge weakly

two-scales to f0 ∈ L2(Ω× Y ) (this denoted fη 2
⇀ f0) if there holds

lim
η→0

∫

Ω

fη ϕ(x, x/η) dx =

∫

Ω

∫

Y

f0(x, y)ϕ(x, y) dx dy , (2.3)

for every smooth test function ϕ on Ω × Y such that ϕ(x, ·) is Y -periodic. A
classical compactness argument provides the existence of such a limit for subse-
quences, provided the initial sequence (fη)η is bounded in L2(Ω). In the following,
we will use characteristic functions 1M for various Borel subsets M ⊂ Y , and use
the following localization property:

fη(x)
2
⇀ f0(x, y) =⇒ fη(x) 1M(x/η)

2
⇀ f0(x, y) 1M(y) . (2.4)

Lemma 2.2 (Two-scale limit of uη). Let uη ⇀ u in L2(Ω) be a weakly convergent

sequence of solutions to (1.14). Then, with u0 given in (2.2), there holds uη
2
⇀ u0.

Outside R, we find the convergence uη → u0 = u. More precisely, uη together
with all derivatives converges uniformly on every compact subset Ω′ ⊂⊂ Ω \ R̄.
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Proof. Two-scale convergence. By our assumption on uη and estimate (2.1), the
sequences uη and η∇uη are bounded in L2(Ω). Therefore, possibly passing to a
subsequence, we may assume that, for suitable u0 and χ0 : Ω × Y 7→ C2, there
holds

uη
2
⇀ u0 , η∇uη 2

⇀ χ0

as η → 0. Our goal is to show that u0 agrees with the function defined in (2.2).
To that aim we use several test functions ϕ of the form ϕ(x, y) = Θ(x)ψ(y)

where Θ ∈ C∞
c (Ω; [0, 1]) is a smooth cut-off function. By taking first ψ : Y 7→ C2

smooth and compactly supported in Y , we obtain

∫

Ω

∫

Y

χ0(x, y) · ψ(y) Θ(x) dx dy = lim
η→0

∫

Ω

η∇uη · ψ(x/η) Θ(x) dx

= − lim
η→0

∫

Ω

uη (∇ · ψ)(x/η) Θ(x) dx = −
∫

Ω

∫

Y

u0(x, y)(∇ · ψ)(y) Θ(x) dx dy ,

where in the second line we performed an integration by parts on Ω. Since the
localization function Θ was arbitrary, we find the identity ∇yu0(x, y) = χ0(x, y)
in the distributional sense in y ∈ Y , for a.e. x ∈ Ω. In particular, as a Y -periodic
function, u0(x, ·) belongs to the Sobolev space H1

loc(R
2) and has a trace on ∂Σ.

That implies that u0(x, ·) does not jump across ∂Σ.
Next we exploit that, on the set Ω \ Ση, the coefficient is aη = 1. Taking into

account the upper bound (2.1), we conclude that large gradients are excluded
in this region. Formally, we argue as follows: η∇uη1Ω\Ση

→ 0 holds in L2(Ω),
hence, using the localization property (2.4), we infer that χ0 = ∇yu0 vanishes
a.e. on R× (Y \Σ) and on (Ω \R)× Y . Therefore, by the periodicity condition,
the function u0(x, ·) is constant on the strips {γ < |y1| ≤ 1} for x ∈ R, and it is
constant everywhere for x /∈ R̄. We use this independence of y to define a function
U ∈ L2(Ω;C),

u0(x, y) = U(x) for (x, y) ∈ R× (Y \ Σ) ∪ (Ω \R)× Y . (2.5)

We emphasize that, at this stage of the proof, u0 and U are defined as the two
scale limit of uη and by (2.5). We will show the characterizations (2.2) and (1.17)
in the next steps.

Characterization of the two-scale limit for x ∈ R. We claim that, for a.e. x ∈ R,
the function w(y) = u0(x, y), as an element w ∈ H1(Σ), solves the linear boundary
value problem

∆w + k2 εr w = 0 , w (±γ, ·) = U(x) , w

(

·,−1
2

)

= w

(

·, 1
2

)

, (2.6)

where the differential equation holds in the distributional sense on Σ = (−γ, γ)×
(−1/2, 1/2). In order to verify this fact, we use ϕ of the form ϕ(x, y) = Θ(x)ψ(y),
with Θ ∈ C∞

c (R; [0, 1]) and ψ ∈ C∞(Y ; [0, 1]) a periodic function on Σ, more
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precisely, with supp(ψ)∩ (Y \Σ) = ∅. Using ϕη(x) = ϕ(x, x/η) as a test-function
in equation (1.14) and inserting the coefficient aη = ε−1

r η2, we obtain for η → 0

k2
∫

R

∫

Y

u0(x, y)ψ(y) dyΘ(x) dx← k2
∫

R

uηϕη =

∫

R

aη∇uη∇ϕη

→ ε−1
r

∫

R

∫

Y

∇yu0(x, y) · ∇yψ(y) dyΘ(x) dx.

Since Θ was arbitrary, we conclude (2.6).

It is easy to check that, with Ψ given in (1.12), the y2-independent function
U(x) Ψ(y1) is a solution of (2.6). But the solution is also unique: We note that for
U(x) = 0, a solution w can be trivially extended to a periodic function w ∈ H1(Y ).
Multiplication with w̄ and an integration by parts yield

∫

Σ

|∇w|2 = k2 εr

∫

Σ

|w|2 .

Due to ℑ(εr) > 0, we find w = 0 by taking the imaginary part.

Summarizing, we find that the two-scale limit is u0(x, y) = U(x) Ψ(y) on Ω×Y .
As a consequence, the weak limit u satifies, for a.e. x ∈ R,

u(x) =

∫

Y

u0(x, y) dy = U(x)

∫

Y

Ψ(y) dy = β U(x) ,

and we obtain (1.17). The relation u0(x, y) = U(x) Ψ(y) then implies also (2.2).

Strong convergence outside R. We know already that u0(x, ·) = U(x) = u(x) holds
for a.e. x ∈ Ω \R. Moreover, the strong convergence uη → u in L2(Ω \R) holds,
since (2.1) implies the uniform boundedness inH1(Ω\R). In view of the properties
of hypoelliptic operators (see e.g. [20]), or using representation formulas (compare
Theorem 2.2 in [9]), the uniform convergence on compact subsets of uη and of all
its derivatives is a classical consequence of the fact that uη Helmholtz equation
∆uη + k2uη = 0 on the open set Ω \R.

With the above lemma, the two-scale limit of uη is completely determined in
Ω × Y once we know the function U(x). We are going now to characterize U(x)
as the solution of a non-isotropic equation, with no coupling in the x1-direction,
see (1.13). To that aim, we write the equation as a system for the pair (uη, jη),
see (1.15)–(1.16). The next lemma collects properties of jη, its weak limit j and
its two-scale limit j0. It turns out that, in the scatterer R, the field j must be
pointing in the vertical direction, and the two-scale limit j0(x, ·) vanishes in Σ.

Proposition 2.1 (Limits of jη). Let uη ⇀ u be as in Lemma 2.2, U given by
(1.17). For jη = aη∇uη we assume that jη ⇀ j = (j1, j2) in L2(Ω;R2). Then
limits are characterized as follows.
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(i) The first component satisfies j1(x) = 0 for a.e. x ∈ R. The sequence (jη)η
converges in two scales to the field j0(x, y) given by

j0(x, y) :=

{

α−1 j2(x) e2 1{|y1|>γ} for x ∈ R ,
j(x) for x ∈ Ω \R . (2.7)

(ii) The distributional derivatives of U satisfy ∂x1
U ∈ L2(Ω \ R) and ∂x2

U ∈
L2(Ω). Furthermore, the following relations hold a.e.:

j = (0, α ∂x2
U) in R ,

j = (∂x1
U, ∂x2

U) in Ω \R.
(2.8)

Proof. The gradient estimate (2.1) implies the boundedness of jη in L2
loc(Ω). Pos-

sibly passing to a subsequence we may assume that jη two-scales converges to
some field j0(x, y). The weak limit is then given by j(x) =

∫

Y
j0(x, y) dy.

The field outside R. On the subset Ω \ R, the field jη agrees with ∇un. As
observed in Lemma 2.2, there holds the uniform convergence ∇uη → ∇U on
compact subsets of Ω \R. This implies

j0(x, ·) = j(x) = ∇U(x) for a.e. x ∈ Ω \R . (2.9)

The field in the metal. Since |aη| ≤ C η2 holds in Ση, the gradient estimate
(2.1) implies

∫

Ση

|jη|2 =
∫

Ση

|aη|2|∇uη|2 ≤ C η2. It follows that j0 vanishes a.e. in

R× Σ.

Divergence of j0. The divergence of the fields jη is controlled by relation (1.15).
Indeed, for an arbitrary smooth periodic test function ψ : Y → R and arbitrary
Θ ∈ C∞

c (Ω), we find with an integration by parts

0 = lim
η→0

∫

Ω

η∇ · jη ψ(x/η) Θ(x) dx = −
∫

Ω

∫

Y

∇yψ(y) · j0(x, y) Θ(x) dx .

Since Θ is arbitrary, we conclude that for a.e. x ∈ Ω there holds
∫

Y
∇yψ(y) ·

j0(x, y) dy = 0. This expresses that, in the sense of distributions, j0(x, ·) is diver-
gence free, ∇y · j0 = 0.

First component of j. Let us now choose a particular periodic test function.
We set ψ(y) = ϑ(y1) where ϑ : R→ R is of period 1 and such that

ϑ(y1) =











−α/2− (y1 + γ) for −1/2 < y1 ≤ −γ ,
(α/(2γ)) y1 for −γ < y1 ≤ γ ,

α/2− (y1 − γ) for γ < y1 ≤ 1/2 .

This piecewise affine function is continous with ϑ(±γ) = ±α/2 and ϑ(1/2) =
α/2− (1/2−γ) = 0. Since j0 = 0 holds in Σ and since ϑ′ = −1 holds for |y1| > γ,
we obtain

0 =

∫

Y

∇yψ(y) · j0(x, y) dy = −
∫

Y

e1 · j0(x, y) dy = −j1(x) .



16 Plasmonic waves allow perfect transmission

This shows that the first component of j vanishes.

A relation between j0 and U . In this step we have to exploit the two-scale

convergence jη
2
⇀ j0 with test functions in the class

A :=
{

ψ ∈ L2
loc(R

2;C2) | ∇ · ψ = 0, ψ is Y -periodic, ψ = 0 in Σ
}

.

We claim that, for ψ ∈ A and arbitrary Θ ∈ C∞
c (Ω), there holds

∫

Ω

∫

Y

j0(x, y) · ψ(y) dyΘ(x) dx = −
∫

Ω

U(x)

∫

Y

ψ(y) dy · ∇Θ(x) dx . (2.10)

We set once more ϕ(x, y) = Θ(x)ψ(y), with Θ ∈ C∞
c (R; [0, 1]), and use ϕη(x) =

ϕ(x, x/η) as a test-function. We use that jη = ∇uη holds in Ω \ Ση, integrate by
parts, and exploit ∇ · (ψ(x/η)Θ(x)) = ψ(x/η) · ∇Θ(x) to obtain

∫

Ω

∫

Y

j0(x, y) · ψ(y) dyΘ(x) dx = lim
η→0

∫

Ω

jη(x) · ψ(x/η) Θ(x) dx

= lim
η→0

∫

Ω

∇uη(x) · ψ(x/η) Θ(x) dx = − lim
η→0

∫

Ω

uη(x)ψ(x/η) · ∇Θ(x) dx

= −
∫

Ω

∫

Y

u0(x, y)ψ(y) dy · ∇Θ(x) dx .

This implies (2.10). Regarding the integral on the right hand side we note that
ψ = 0 holds on Σ, such that, by (2.2), u0(x, y) = U(x) holds where ψ is not
vanishing.

Proof of (i). We define a function j̃0 by setting j̃0(x, ·) := α−1j2(x) e2 1{|y1|>γ}.
Item (i) is shown once we derive that, for a.e. x ∈ R, the two-scale limit j0(x, ·)
coincides with j̃0(x, ·).

To show this fact, we consider the difference ψ0(·) = j̃0(x, ·) − j0(x, ·). Since
both functions j0 and j̃0 are divergence-free, we find ∇ · ψ0 = 0. Furthermore,
since the Y -integral of both functions is j2(x)e2, we have

∫

Y
ψ0 = 0. Additionally,

ψ0 = 0 holds in Σ.
These properties imply that ψ0 and the complex conjugate ψ̄0 belong to the

class A. We can therefore use (2.10) with ψ = ψ̄0. The integral on the right hand
side vanishes, since ψ0 has a vanishing integral, and we obtain

∫

Y
j0(x, ·) ·ψ0 = 0.

On the other hand, by the explicit formula for j̃0, we can calculate
∫

Y
j̃0(x, ·)ψ0 =

∫

Y \Σ
{α−2|j2(x)|2 − α−1j2(x)e2 · j̄0(x, ·)} = α−1|j2(x)|2 − α−1|j2(x)|2 = 0. Taking

the difference of the two equations, we find
∫

Y
|ψ0|2 = 0, hence ψ0 = 0 a.e. in Y ,

and relation (2.7) is proved. The uniqueness of the limit implies the two-scale-
convergence of the whole sequence (jη)η, which concludes the proof of assertion
(i) of the Proposition.

Proof of (ii). Outside R̄, we have verified the claim already with (2.9). It
remains to show that ∂x2

U belongs to L2(Ω) and that j2 = α ∂x2
U holds in R.

We exploit once more the relation (2.10), choosing now ψ(y) := e2 1{|y1|>γ}(y) as
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a test function; indeed ψ ∈ A is satisfied. By (2.7) and since
∫

Y
ψ = α e2, we infer

that

−α
∫

Ω

U(x) e2 · ∇Θ(x) dx =

∫

Ω

∫

Y

j0(x, y) · e21{|y1|>γ}(y) Θ(x) dy dx

=

∫

Ω\R

α j2(x) Θ(x) dx+

∫

R

j2(x) Θ(x) dx ,

for every smooth Θ ∈ C∞
c (Ω). It follows that the distribution ∂x2

U can be
identified as an element of L2(Ω). Furthermore, we find the characterization
j2 = a(x) ∂x2

U , where a(x) = 1 for x ∈ Ω \ R and a(x) = α for x ∈ R. Taking
into account (2.9) and that the first component of j(x) vanishes, we have proved
relation (2.8).

Proof of Theorem 1

In the situation of Theorem 1, Lemmas 2.1 and 2.2 can be applied. From the
former, and the fact that |aη| is uniformly bounded, we infer that the sequence
jη = aη∇uη is bounded in L2(Ω′) for any open subset Ω′ with R̄ ⊂ Ω′ ⊂⊂ Ω.
Passing to a subsequence if necessary, we obtain jη ⇀ j weakly in L2(Ω′) for some
limit j, such that also Proposition 2.1 can be applied (on the smaller domain Ω′).

Proposition 2.1 provides with (2.8) the relation (1.18) between U and j. Since
the limit j is characterized, the whole sequence jη has this limit. The limit system
(1.19) is an immediate consequence of (1.15), taking the distributional limits. At
first, since we were applying Proposition 2.1 on Ω′, we obtain the relation only
on Ω′, but since this subdomain was arbitrary, the relations hold in the whole
domain Ω.

2.2 Proof of Theorem 2

The proof is performed in three Steps.

Uniqueness for the limit problem. For fixed incident field ui we want to
show that there exists at most one solution U of the limit problem (1.21) of
Theorem 2. To this end we consider the difference u of two solutions, satisfying

∇ · (aeff∇u) = −µeffk
2u in R

2 (2.11)

∂ru− iku = o
(

r−1/2
)

for r →∞ (2.12)

We claim that every solution u : R2 → C of (2.11)–(2.12) vanishes identically.
We will show this result exploiting two facts: (i) outside R, the coefficients are
aeff = id and µeff = 1, hence we consider a standard Helmholtz equation. (ii)
inside R, the coefficient matrix aeff is real and the coefficient µeff has a positive
imaginary part. We follow standard arguments that are outlined e.g. in [9].
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Denoting a sphere of radius r by Sr := ∂Br(0), we deduce from (2.12) that

lim
r→+∞

∫

Sr

[

|∂ru|2 + k2|u|2 + 2kℑ (u∂rū)
]

= lim
r→+∞

∫

Sr

|∂ru− iku|2 = 0. (2.13)

Here, the first equality is obtained simply by expanding the squared norm of the
second integrand.

To study this integral further, we observe that, outside R, the divergence ∇ ·
(u∇ū) = −k2|u|2+|∇u|2 is real. This implies that the surface integral

∫

Sr

ℑ (u ∂rū)
is independent of the radius r, provided that r is large enough to satisfy R ⊂ Br(0).
In view of (2.13), we obtain for any such r0 the inequality

∫

Sr0

ℑ (u ∂rū) ≤ 0. (2.14)

After these preparations, the idea is now to multiply equation (2.11) for u with
ū, to integrate over the ball Br0(0) and to integrate by parts. Since (2.11) holds
only in the sense of distributions, we can not argue directly: due to possible jumps
at the lateral sides of R, the function ū is not necessarily of class H1(R2). Never-
theless, approximating ū by smooth functions with large x1-derivatives inside R,
we find

∫

R

α|∂x2
u|2 +

∫

Br0
(0)\R

|∇u|2 −
∫

Br0
(0)

k2µeff |u|2 =
∫

Sr0

∂ru ū . (2.15)

Regarding the outer boundary we note that, as a solution of (∆ + k2)(u) = 0 on
R2 \ R, the function u is analytic on that domain. In particular, traces of u and
∂ru are well defined and smooth on Sr0.

We take the real part in (2.15). Since aeff is real, µeff is real outside R, and
µeff = β in R, we obtain (note that we performed a complex conjugation on the
right hand side)

k2ℑ(β)
∫

R

|u|2 =
∫

Sr0

ℑ (u ∂rū) . (2.16)

We combine the strict inequality ℑ(β) > 0 with (2.14) to conclude that the
expression in (2.16) vanishes; in particular, we find u = 0 on R. The fact that the
boundary integral in (2.14) vanishes for every r0, combined with (2.13), implies

lim
r→+∞

∫

Sr

|u|2 = 0 . (2.17)

A classical result, sometimes denoted as Rellich’s first lemma, states that solutions
u of the Helmholtz equation on an exterior domain, satisfying property (2.17),
vanish identically. We note that Rellich’s first lemma is shown with an expansion
of solutions in spherical harmonics, for a proof in three dimensions see Lemma
2.11 in [9].

Rellich’s first lemma provides u = 0 in all of R2 and concludes the proof of the
uniqueness property.
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Convergence to the limit problem assuming an L2
loc-bound. We analyze

a sequence uη as in Theorem 2. We choose a radius r0 > 0 such that R̄ ⊂ Br0(0),
and set Ω := Br0(0). In this step of the proof of Theorem 2, we assume that there
holds

tη :=

(
∫

Ω

|uη|2
)1/2

≤ C , (2.18)

uniformly in η. Based on the a priori estimate (2.18), we can construct a subse-
quence η → 0, such that, for some limit function u ∈ L2(Ω), there holds uη|Ω ⇀ u
weakly in L2(Ω). To this subsequence we may apply Theorem 1. It follows that
the function U := u 1Ω\R + β−1 u 1R solves the limit system (1.19) in Ω, relation
(1.21) is shown.

It remains to verify the radiation condition (1.11) for U − ui. We start by
noting that Lemma 2.2 provides uniform convergence uη → U and ∇uη → ∇U
on every compact subset of Ω \ R. In particular, let us choose r < r0 such that
R ⊂⊂ Br(0) ⊂⊂ Ω.

By the Sommerfeld radiation condition, the scattered field usη = uη − ui coin-
cides on R2 \Br(0) with its Helmholtz-representation through values and deriva-
tives of uη − ui on ∂Br(0) (see Theorem 2.4 of [9] in the three-dimensional case).
With the same representation formula, using the values and derivatives of U − ui
on ∂Br(0), we can extend U to all of R2 to a solution of the Helmholtz equa-
tion ∆U + k2 U = 0 in all Rext. By this construction, also U − ui satisfies the
Sommerfeld radiation condition.

The convergence of values and derivatives of uη on ∂Br(0) to values and deriva-
tives of U imply the uniform convergence uη → U (as well for derivatives) on all
compact subset of Rext, since both extensions are given by the same integral rep-
resentation.

Our uniqueness result for the limit system implies the convergence uη ⇀ u for
the entire sequence η → 0. This concludes the proof of Theorem 2.

Boundedness of tη. In the previous step we have shown Theorem 2 under
assumption (2.18) on tη. We will now derive (2.18) with a contradiction argument.
We assume that the solution sequence uη is such that tη →∞ along a subsequence
η → 0. We then consider this subsequence, normalize uη, and consider in the
following

vη :=
1

tη
uη , such that ‖vη‖L2(Ω) = 1 . (2.19)

By linearity, vη solves the the original diffraction problem with the incident field
viη := ui/tη → 0. Applying the previous step of the proof (which remains valid
for sequences of incident fields), we deduce that vη converges weakly in L2

loc(R
2)

to the function v, which is determined by: the function V := v 1Ω\R + β−1 v 1R is
the unique solution to (1.21) satisfying the outgoing wave condition (1.11) with
vanishing incident field. As shown in the first step of the proof, we obtain V = 0
and therefore vη ⇀ 0 weakly in L2(Ω).
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Outside R, we can apply the gradient estimate (2.1) to the sequence (vη)η,
and obtain that vη|Ω\R remains in a bounded subset of H1(Ω \ R). The Rellich
compact embedding theorem implies limη→0

∫

Ω\R
|vη|2 = 0.

Inside R, we exploit the boundedness assumption (1.20) on the sequence (uη)η.
Because of tη →∞, we find limη→0

∫

R
|vη|2 = 0. Together with the convergence in

the exterior, we find a contradiction to (2.19). This contradiction provides (2.18)
and concludes the proof of Theorem 2.

3 Transmission properties of the effective layer

Theorems 1 and 2 provide the effective Helmholtz equation that describes the
optical properties of the grated metallic structure. In this section we want to
calculate the corresponding effective reflection and transmission properties of the
structure.

In the following, we restrict ourselves to an effective structure that extends to
infinity, i.e. R = R× (−h, 0). Our aim is to study a planar front of waves that ar-
rives from the upper part (x2 > 0), hits the structure x2 ∈ (−h, 0), and is partially
reflected and partially transmitted. With the incident angle θ ∈ (−π/2, π/2) we
write the incoming wave in the form eik(sin(θ)x1−cos(θ)x2). We write U for the effec-
tive field, which must solve the effective equation (1.21). We use an incident wave
of unit amplitude, write T ∈ C for the complex amplitude (expressing amplitude
and phase shift) of the transmitted wave, A for the complex amplitude in the
structure, and R ∈ C for the complex amplitude of the reflected wave (we will
not use R for the rectangular slab structure in the following). For a sketch of the
reflection and transmission problem see Figure 3.

Our solution ansatz is therefore

U(x1, x2) =











eik(sin(θ)x1−cos(θ)x2) +Reik(sin(θ)x1+cos(θ)x2) for x2 > 0,

(A1 cos(τkx2) + A2 sin(τkx2)) e
ik(sin(θ)x1 for 0 > x2 > −h,

Teik(sin(θ)x1−cos(θ)(x2+h)) for − h > x2.

(3.1)
The parameter τ :=

√

β/α appears in this ansatz since the effective equation
(1.21) provides ∂2x2

U = −k2τ 2U in the structure. In particular, the ansatz (3.1)
yields a solution U of (1.21) in the three subdomains.

It remains to determine from the non-standard interface conditions at x2 = 0
and at x2 = −h the complex constants R, A, and T . Our main interest is the real
amplitude |T | of the transmitted wave, since |T | ≈ 1 relates to a high transmission
of the effective structure.

The transfer matrix M . In the transfer matrix formalism one regards the slab
R×(−h, 0) as an object that induces a relation between the solution characteristics
on the upper boundary x2 = 0 and the solution characteristics on the lower
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Figure 3: Illustration of the solution ansatz in the transmission problem. An
incoming wave (from top) results in a reflected wave and a transmitted wave.
The coupling across the slab occurs only in vertical direction.

boundary x2 = −h. More precisely, we define a matrix M ∈ C2×2 by

M :

(

U(0)
∂x2

U(0)

)

7→
(

U(−h)
∂x2

U(−h)

)

. (3.2)

Formula (3.2) should be read as follows: Let U be a smooth solution of (1.21)
in x2 > 0. Let x1 ∈ R be arbitrary. The two complex numbers U(x1, 0+) and
∂x2

U(x1, 0+) are evaluated (as traces from x2 > 0), and translated with the
interface condition to the values U(x1, 0−) = U(x1, 0+) and ∂x2

U(x1, 0−) =
α−1∂x2

U(x1, 0+) (the normal component of aeff∇U is continuous). With these
data, the ordinary differential equation ∂2x2

U = −k2τ 2U on (−h, 0) has a unique
solution (x1 is only a parameter). The solution provides us U(x1,−h+) and
∂x2

U(x1,−h+), from which the value U(x1,−h−) = U(x1,−h+) and the deriva-
tive ∂x2

U(x1,−h−) = α∂x2
U(x1,−h+) can be obtained. It is this map of the

values (U(x1, 0+), ∂x2
U(x1, 0+)) to (U(x1,−h−), ∂x2

U(x1,−h−)), that is meant
by M in (3.2). Since the map is independent of x1 ∈ R, we suppress this parame-
ter. Furthermore, we observe that the map is indeed linear, hence M can in fact
be expressed as a complex 2× 2-matrix.

Calculation of M . Our next step is to provide the explicit calculation of the
transfer matrix. The calculation is simplified by using only the arguments (1, 0)T

and (0, 1)T ; the first column of M is obtain as M · (1, 0)T , the second column as
M · (0, 1)T .

First column of M . To calculate the first column of M , we investigate a
solution U : Ω → C of the effective system with the properties that U |x2=0+ =
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1 and ∂x2
U |x2=0+ = 0. We write U in the interval x2 ∈ (−h, 0) as U(x2) =

a1 cos(τkx2) + a2 sin(τkx2). The transmission conditions imply

1 = a1 cos(τk 0) + a2 sin(τk 0) = a1,

0 = α∂x2
[a1 cos(τkx2) + a2 sin(τkx2)]|x2=0 = ατka2 .

We find a1 = 1 and a2 = 0, and hence for the solution U at −h− 0 the value and
the derivative

U |x2=−h− = U |x2=−h+ = a1 cos(−τkh) + a2 sin(−τkh) = cos(τkh),

∂x2
U |x2=−h− = α∂x2

U |x2=−h+ = ατk sin(τkh).

These two values provide the first column of M .
Second column of M . The calculation of the second column follows the same

lines. The corresponding solution for x2 ∈ (−h, 0) reads U(x2) = (ατk)−1 sin(τkx2).
As a result, we find the following explicit expression for the transfer matrix

M ,

M =

(

cos(τkh) −(ατk)−1 sin(τkh)
ατk sin(τkh) cos(τkh)

)

. (3.3)

We recall that the parameter α = 1 − 2γ ∈ R of the effective system stands for
the relative slit width and that τ :=

√

β/α depends on the ratio of the effective
parameters µeff and aeff .

The transmission coefficient. The calculation of the transfer matrix was in-
dependent of the solution ansatz in the domain x2 > 0. Our next aim is to
calculate the transmission coefficient T , which will be obtained from the ansatz
in (3.1) with the help of the transfer matrix M .

We study the ansatz (3.1) in the spirit of the transfer matrix formalism: at the
line x2 = 0+, the value-derivative-vector of the ansatz is (1 + R, ik cos(θ)(−1 +
R))eik(sin(θ)x1 . The matrixM maps these two data onto the corresponding values at
x2 = −h−, and, referring to (3.1), we want them to be (T,−ik cos(θ)T )eik(sin(θ)x1 .
The dependence on x1 is identical on both sides by our ansatz. It remains to
solve, with the abbreviation kθ := k cos(θ), the linear system

M ·
(

1 +R
ikθ(−1 +R)

)

= T

(

1
−ikθ

)

. (3.4)

In this relation, the wave number k of the incident field and the angle θ are known,
hence we regard kθ ∈ R as given. Furthermore, the matrixM is known from (3.3).
We can use (3.4) to determine R and T .

Since we are mainly interested in the number T ∈ C, we will eliminate R. To
this end, we introduce two vectors v ∈ C2 and w ∈ C2 as

v =

(

v1
v2

)

:=M ·
(

1
ikθ

)

=

(

cos(τkh)− i(ατ)−1 cos(θ) sin(τkh)
ατk sin(τkh) + ikθ cos(τkh)

)

w =

(

w1

w2

)

:= v⊥ =

(

−v2
v1

)

=

(

−ατk sin(τkh)− ikθ cos(τkh)
cos(τkh)− i(ατ)−1 cos(θ) sin(τkh)

)

.
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Since on the left hand side of (3.4) appears the vector Rv, the scalar product of
(3.4) with the vector w eliminates R. We obtain

w ·M
(

1
−ikθ

)

= T w ·
(

1
−ikθ

)

= T (−2ikθ cos(τkh)− [ατk + (ατ)−1kθ cos(θ)] sin(τkh))

= −ikθT
(

2 cos(τkh)− i[ατ/ cos(θ) + (ατ/ cos(θ))−1] sin(τkh)
)

.

With the help of the expression (3.3) for M , we can evaluate the left hand side to

w ·M
(

1
−ikθ

)

=

(

−ατk sin(τkh)− ikθ cos(τkh)
cos(τkh)− i(ατ)−1 cos(θ) sin(τkh)

)

·
(

cos(τkh) + i(ατ)−1 cos(θ) sin(τkh)
ατk sin(τkh)− ikθ cos(τkh)

)

= −2ikθ cos2(τkh)− 2ikθ sin
2(τkh) = −2ikθ.

Equating the two expressions provides the following expression for T ∈ C,

T =

(

cos(τkh)− i

2

[

ατ

cos(θ)
+

cos(θ)

ατ

]

sin(τkh)

)−1

. (3.5)

With equation (3.5), we have determined the transmission coefficient T =
T (k, h, τ, θ) in dependence of the wave number k, the layer height h, the relative
slit size α, the effective material index τ :=

√

β/α, and the angle θ. We recall
that β is the average magnetic field across the metal part, when the magnetic field
in the void part is 1, see (1.12) for the explicit expression. We emphasize that
T depends on k also implicitly through β = β(k). The graph of |T |2 against the
wave number k can be evaluated from the explicit relations (1.12) and (3.5), see
Figure 4.

Let us discuss once more the case of a material that permits perfect plasmon
waves, i.e. of a lossless material with negative permittivity, εr < 0. For such a
material, σ and β are positive real numbers by (1.12). In this case, the number
in squared brackets of (3.5) is real and greater or equal to 2. Correspondingly,
we find |T | ≤ 1. The value |T | = 1 is attained if and only if cos(τkh) = 1. This
corresponds to a resonance of the plasmon waves in the slab (solving ∂2x2

U =
−k2τ 2U for x2 ∈ (−h, 0)) with the height h of the slab.

We note that the effect can also be deduced from the transfer matrix M of
(3.3), since for cos(τkh) = 1, we find the transfer matrix M = id, corresponding
to perfect transmission.

Figure 4 shows transmission coefficient |T |2 for physical parameter values. In
dependence of the wave-number k, we observe pronounced peaks. Variations of the
incident angle θ can lead to large variations, but we do not observe an oscillatory
dependence. For normal incidence, the first local maximum |T |2 ≈ 0.87 is achieved
for k ≈ 1.92. The numerical experiments of [8] observed resonance at k = 2.51.
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Figure 4: Numerical evaluation of the transmission coefficient |T |2. Left: in
dependence of the non-dimensional wave-number k for normal incidence, θ =
0. Right: in dependence of the angle θ for wave-number k = 0.8. In both
figures, we used the non-dimensional geometrical quantities η = 7/6, α = 1/7,
and γ = (1−α)/2 = 3/7 as mentioned in (1.7), the frequency independent relative
permittivity εη = (0.12 + 3.7i)2 is obtained by setting σ = 4.32− 0.14i.

We recall at this point that our theory investigates the thin-slit limit η → 0,
such that even a qualitative agreement is remarkable for the above experimental
parameters.
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