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Abstract: Solutions to the wave equation with constant coefficients
in Rd can be represented explicitly in Fourier space. We investigate a
reconstruction formula, which provides an approximation of solutions
u(., t) to initial data u0(.) for large times. The reconstruction consists of
three steps: 1) Given u0, initial data for a profile equation are extracted.
2) A profile evolution equation determines the shape of the profile at
time τ = ε2t. 3) A shell reconstruction operator transforms the profile
to a function on Rd. The sketched construction simplifies the wave
equation, since only a one-dimensional problem in an O(1) time span
has to be solved. We prove that the construction provides a good
approximation to the wave evolution operator for times t of order ε−2.
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1 Introduction

In many applications, one observes solutions of a wave equation that have the shape
of a ring. This can be understood as an effect of large times: the initial data of the
problem are concentrated in a bounded domain and send waves in every direction.
Each of the different waves travels at the same speed c and after a large time t,
the perturbance of the medium is visible mainly at the distance ct. We observe a
ring-like structure (shell-like in three dimensions).

In more mathematical terms, we are interested (in the simplest setting) in the
long time behavior of solutions u to the linear wave equation

∂2t u(x, t)− c2∆u(x, t) = 0 . (1.1)

In this equation, x ∈ Rd is the spatial variable and t ∈ [0,∞) is the time vari-
able, the operator ∆ =

∑d
j=1 ∂

2
xj

acts only on the spatial variables, and c > 0 is
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a prescribed velocity parameter. The equation is complemented with the initial
conditions u(x, 0) = u0(x) and ∂tu(x, 0) = u1(x).

Our aim is to characterize the shape of solutions in the limit of large times.
We write τ = ε2t for a rescaled time variable. Our result gives an approximate
formula for the function x 7→ u(x, ε−2τ). The approximate formula is given by a
sequential execution of three operators: An operatorR extracts from the initial data
u0 initial data for a profile evolution equation. An evolution operator Jb describes
the evolution of the profile. Finally, a shell operator S reconstructs, from a profile
V , a shell like solution u; the operator S maps the profile V to a function u which
looks like V along every ray through 0, whereby the profile is centered in the point
ct.

We present a mathematical proof that the described reconstruction operator
provides, in the large time limit ε → 0, an approximation of the solution u. The
result is based on a stationary phase method.

The equation (1.1) is a partial differential equation with constant coefficients on
the full space Rd. This allows to write the solution explicitely in terms of its Fourier
transform. One solution of the wave equation is given by

û(k, t) = e−ic|k|tû0(k) , (1.2)

another by the same formula upon replacing −ic|k|t by +ic|k|t. In this work, we
always assume that the initial data u1 are such that the solution u is given by (1.2).
This is not a restriction. General initial data can be treated by an appropriate
decomposition, see [9] for details.

x1

x2

{|x| = ct}

{x = zq}

Figure 1: Left: The solution to a wave equation. The initial data are essentially
supported in a unit ball around x = 0. The wave speed of the equation is c = 1.
After time t = 25, the disturbance of the medium is concentrated in a neighborhood
of the ring {x ∈ R2 : |x| = ct}. The figure shows one quadrant and was calculated
by T. Dohnal. Right: Sketch for the construction of the shell operator S. A profile
z 7→ V (z; q) with a direction parameter q ∈ Sd−1 is used along the ray x = zq; the
profile is centered in order to have the main pulse near {x ∈ R2 : |x| = ct}.
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A simplified version of our main result can be stated as follows. We define a
reconstruction operator in Definition 2.6. Essentially, the operator extracts profile
information from û0 and maps the profiles to a shell-like solution. The shell solution
is obtained by using the profiles, in each direction, and centering them at the distance
cτ/ε2 from the origin.

Theorem 1.1 (Simplified version of the main theorem). Let û0 : Rd → C be smooth
initial data with compact support with d ∈ {1, 2, 3}. For arbitrary ρ > 0, let Q̂ρ0
be the reconstruction operator of Definition 2.6. Then, for every τ > 0 and every
k ∈ Rd in Fourier space with |k| > ρ, the reconstruction is similar to the solution of
the wave equation: As ε→ 0,

Q̂ρ0û0(k, τ/ε2)− e−ic|k|τ/ε
2

û0(k)→ 0 . (1.3)

Our main result is stated in Theorem 2.7 below, and it treats a much more general
situation. It allows to treat weakly dispersive wave equations such as, e.g., ∂2t u(x, t)−
c2∆u(x, t) + ε2B∆2u = 0. We only assume that the solution can be represented in
Fourier-space as û(k, t) = e−ic|k|te−ib(|k|)ε

2tû0(k) for some dispersion function b =
b(|k|). Our theorem yields that the solution u can be obtained as described above
with a shell-like reconstruction from profiles. In the case of weakly dispersive wave
equations, the profile equation becomes nontrivial: In the leading order case b(|k|) =
b3|k|3, we obtain a linearized KdV equation ∂τV (z, q, τ) = b3∂

3
zV (z, q, τ) for the

evolution of the profile V (., q, τ) in the direction q ∈ Sd−1. We note that the factor
in the equation is ε2, since the equation appears as an effective equation for a problem
with micro-structure with length scale ε, see [4].

Let us discuss briefly the complexity of the two problems under consideration.
In order to solve a dispersive wave equation on a time interval of order ε−2, one has
to use a computational spatial domain of order (ε−2)d, the complexity is of the order
(ε−2)d+1. To calculate the approximation by the shell reconstruction operator, one
has to extract, for every direction q ∈ Sd−1, a profile function (which is concentrated
on a domain of order 1. One has to solve (again, for every q) a profile evolution
equation on a time interval of order 1. In the third step, the profiles are combined
to a shell like solution. In particular, the complexity of the reconstruction process
is independent of ε.

Literature

It is a classical problem to investigate the long time behavior of solutions to a
wave equation. In fact, most research treats more difficult problem classes than we
treat here. We recall that only linear wave equations with constant coefficients are
investigated here; we assume that the solution can be described in Fourier space by
a multiplication operator that uses the dispersion relation of the equation.

One of the more difficult problem classes regards homogenization. In this con-
text, one is interested in a medium that has a periodic microstructure and asks for
the behavior of solutions after long times. An important contribution in this area is
[8]; essentially, the second order wave equation in a heterogeneous medium can be
replaced by a weakly dispersive wave equation in a homogeneous medium. Rigorous
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results have been obtained in [4] and [5], numerical approaches are discussed in [1].
The same question in a stochastic medium was addressed in [3].

Our analysis can be understood as a continuation and improvement of [9], where
the authors studied the long time behavior for a lattice wave equation. They derived,
on the one hand, that a weakly dispersive wave equation in a homogeneous medium is
a valid replacement for the lattice wave equation. On the other hand, [9] introduced
the shell reconstruction operator; one result regards the approximate reconstruction
of the solution from profiles that are obtained as solutions of a linearized KdV
equation.

The work at hand studies the shell reconstruction operator on a more abstract
level. We do not apply the results to the discrete wave equation (even though this
is possible); we merely investigate an arbitrary evolution of initial data in Fourier
space, where the evolution is given by harmonic functions through some dispersion
relation. For very general equations, we show that the shell reconstruction operator
provides an approximation of the solution.

We improve the results of [9] in two ways. On the one hand, we can now treat
the dimension d = 3. On the other hand, we can decouple the effect of dispersion
from the analysis of the shell operator. This makes the analysis more flexible.

An important tool for our method is a stationary phase method. We show the
necessary result in Section 4. It regards the convergence of an oscillatory integral
on the sphere. For other stationary phase results we refer to the book [10].

In [2], dispersive limit equations are derived for a linear wave equation in the
context of homogenization. For the long time behavior of waves in a nonlinear
system we mention [6]. The monograph [7] contains many representation formulas
for solutions of equations related to the wave equation.

2 The reconstruction operator

We now introduce the three operators that were announced in the introduction.
The concatenation of these operators provides the reconstruction operator Q. In
the construction, we have to switch several times between the physical space and
the Fourier space.

On the space X := L2(Rd;C) we use the standard d-dimensional Fourier trans-
form Fd : X → X,

(Fdu0)(k) := û0(k) :=

∫
Rd
u0(x)e−ik·x dx . (2.1)

The inverse Fourier transform is F−1d : X → X,

(F−1d û0)(x) :=
1

(2π)d

∫
Rd
eix·kû0(k) dk .

By Parseval’s identity, 1
(2π)d/2

‖Fdu0‖L2(Rd) = ‖u0‖L2(Rd).

The first operator of our construction has the character of a restriction: functions
on Rd are mapped to a family of functions on R (parametrized by a directional
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variable q). We use the space

XS := L2(R× Sd−1;C) , (2.2)

where Sd−1 ⊂ Rd denotes the (d− 1)-dimensional sphere.

Definition 2.1 (The operator R). The linear operator R maps functions on Rd to
one-dimensional profiles. We define R : X → XS through

Rû0(ξ, q) :=

(
|ξ|
2πi

)(d−1)/2

1{ξ>0} û0(|ξ|q) . (2.3)

It is straightforward to see that

‖Rû0‖XS = (2π)−(d−1)/2‖û0‖X . (2.4)

Indeed,

‖Rû0(ξ, q)‖2XS =

∫
R

∫
Sd−1

|Rû0(ξ, q)|2 dS(q)dξ

=
1

(2π)(d−1)

∫ ∞
0

∫
Sd−1

|ξ|d−1 |û0(|ξ|q)|2 dS(q)dξ

=
1

(2π)(d−1)

∫
Rd
|û0(x)|2 dx =

1

(2π)(d−1)
‖û0‖2X .

In order to obtain our results we have to regularize the function

W (ξ) := |ξ|(d−1)/21{ξ>0} .

For a small parameter ρ > 0 and d ∈ {1, 2, 3} we consider functions Wρ with the
following properties: Wρ ∈ Cd−1(R;R) and

Wρ(ξ) = 0 ∀ξ ≤ 0, Wρ(ξ) = |ξ|(d−1)/2 ∀ξ ≥ ρ, 0 ≤ Wρ(ξ) ≤ |ξ|(d−1)/2 ∀ξ ≥ 0 .
(2.5)

We use the smooth functions Wρ to define regularized versions of the operator R.

Definition 2.2 (The operator Rρ). Let ρ > 0 and let Wρ be as in (2.5). The linear
operator Rρ : X → XS is defined through

Rρû0(ξ, q) :=

(
1

2πi

)(d−1)/2

Wρ(ξ)û0(|ξ|q) . (2.6)

As in (2.4), by 0 ≤ Wρ(ξ) ≤ |ξ|(d−1)/2, the regularized operators satisfy the
estimate ‖Rρû0‖XS ≤ (2π)−(d−1)/2‖û0‖X .

The next operator associates to an initial profile (in Fourier space) an evolution
of profiles (in Fourier space).

Definition 2.3 (The operator Jb). Let b : R→ R be a function. The linear operator
Jb maps the (Fourier transform of) a profile to an evolution of profiles. We define
the linear operator Jb : XS → L∞(0,∞;XS) through

(JbV̂0)(ξ, q, τ) := e−ib(ξ)τ V̂0(ξ, q) . (2.7)
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We emphasize that the time variable is τ and not t, which means that the
evolution of profiles is studied in a new time scale. We will use τ = ε2t, where ε > 0
is a small scaling variable. In the following, two choices of b will be relevant.

1) For b(ξ) = 0 one has JbV̂0(ξ, q, τ) = J0V̂0(ξ, q, τ) = V̂0(ξ, q). In this case, the
time evolution of the profile is trivial, the profile remains unchanged. In physical
space, this operator describes the trivial evolution equation ∂τV (z, q, τ) = 0 with
initial datum V (z, q, 0) = (F−11 V̂0(·, q))(z).

2) For b(ξ) = b3ξ
3 with b3 ∈ R one has (JbV̂0)(ξ, q, τ) = e−ib3ξ

3τ V̂0(ξ, q). With
this choice, the profile evolution in physical space is given by the linearized KdV-
equation ∂τV (z, q, τ) = b3∂

3
zV (z, q, τ) with initial data V (z, q, 0) = (F−11 V̂0(·, q))(z).

We note that, independently of the choice of the function b, for every time
instance τ , the operator Jb|τ is an isometry because of |e−ib(ξ)τ | = 1.

We finally introduce the shell reconstruction operator. The reconstruction was
also used in [9]; it maps a family of profiles to a ring-like (d = 2) or shell like (d = 3)
function on Rd. An important ingredient is the rescaling factor (ct)−(d−1)/2, which
has the effect that L2-norms of reconstructed functions are bounded.

Definition 2.4 (The operator S). We introduce an operator S that maps profiles
to functions on Rd. For a small parameter ε > 0 we define the linear operator
S : L∞(0,∞;XS)→ L∞(0,∞;X) through

(SV )(x, t) :=
1

(ct)(d−1)/2
1{|x|<2ct} V

(
|x| − ct, x

|x|
, ε2t

)
. (2.8)

The operator S constructs, starting from a slowly varying function V , a shell-like
solution. The main pulse of the shell-like solution is near |x| = ct and moves with
constant speed c; its profile is given by V . The construction depends on the small
parameter ε, which we suppress in most calculations for the sake of readability.

Lemma 2.5. The operator S : L∞(0,∞;XS) → L∞(0,∞;X) is bounded. It satis-
fies, for every V ∈ L∞(0,∞;XS)

‖SV ‖L∞(0,∞;X) ≤ 2(d−1)/2 ‖V ‖L∞(0,∞;XS) .

Proof. For every t ∈ (0,∞) one has

‖SV (·, t)‖2X =

∫
Rd

1

(ct)d−1

∣∣∣∣V (|x| − ct, x|x| , ε2t
)∣∣∣∣2 1{|x|<2ct} dx

=

∫ 2ct

0

∫
Sd−1

rd−1

(ct)d−1
∣∣V (r − ct, q, ε2t)∣∣2 dS(q) dr

≤ 2d−1
∫ 2ct

0

∫
Sd−1

∣∣V (r − ct, q, ε2t)∣∣2 dS(q) dr

≤ 2d−1‖V (·, ·, ε2t)‖2XS ≤ 2d−1‖V ‖2L∞(0,∞;XS)
,

which provides the claim.
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With the above operators at hand we are now in the position to introduce our
main object of interest, the reconstruction operator Qb. It can be described in words
as the following concatenation: From a Fourier transform û0 of initial values, profile
initial data are extracted with the operatorR, then the profile evolution Jb is applied
and the profile is interpreted in physical space with the inverse Fourier transform
F−11 . Finally, the shell operator S is applied in order to reconstruct an evolution of
functions on Rd.

Definition 2.6 (The reconstruction operator Qb). We define the linear reconstruc-
tion operator Qb : X → L∞(0,∞;X) through

Qb = S ◦ F−11 ◦ Jb ◦ R . (2.9)

The operator in Fourier space is denoted as Q̂b := Fd ◦Qb. For ρ > 0 we define the
regularized operators Qρb and Q̂ρb by replacing R with Rρ.

We can now state our main result, which compares two objects. On the one hand,
the solution of a (dispersive) wave equation, which is given by a multiplication with

e−i(c|k|/ε
2+b(|k|))τ in Fourier space. On the other hand, the reconstruction Q̂bû0. The

result is that the two operators coincide in the limit ε→ 0.

Theorem 2.7 (Approximation result for reconstructions). Let û0 ∈ X be continuous
initial data with compact support, let the dimension be d ∈ {1, 2, 3}, and let b : R→
R be a dispersion function. Let ρ and Wρ be as in (2.5). We assume that the
regularized profile evolution V ρ := (F−11 ◦ Jb ◦ Rρ)û0 satisfies the smoothness and
decay properties of Assumption 3.1. Then, for every τ > 0 and every k ∈ Rd with
|k| > ρ, there holds

(Q̂ρb û0)(k, τ/ε
2)eic|k|τ/ε

2 → e−ib(|k|)τ û0(k) . (2.10)

Moreover, for every τ > 0, there holds weak convergence for the non-regularized
reconstruction operators,

(Q̂bû0)(k, τ/ε2)eic|k|τ/ε
2

⇀ e−ib(|k|)τ û0(k) (2.11)

weakly in L2(Rd) as functions in k ∈ Rd as ε→ 0.

As outlined in Remark 3.2 below, the assumptions of Theorem 2.7 are satisfied
as soon as û0 and b are sufficiently smooth.

The fundamental approximation result of this article is presented in the next
section as Theorem 3.3. Our main theorem, Theorem 2.7 above, can be regarded as
a corollary thereof. We present its proof here, using Theorem 3.3.

Proof of Theorem 2.7. We have to show a pointwise and a weak convergence.

Step 1: Pointwise convergence of regularized profiles. We set V̂ ρ := (Jb ◦Rρ)(û0)

and apply Theorem 3.3 to these regularized profile evolutions V̂ ρ = V̂ ρ(ξ, q, τ). The
function V ρ := F−11 V̂ ρ satisfies Assumption 3.1 by the assumptions of Theorem 2.7.
Theorem 3.3 provides, for fixed k 6= 0,

(Fd ◦ S)(V ρ)(k, τ/ε2)eic|k|τ/ε
2 →

(
|k|
2πi

)−(d−1)/2
V̂ ρ

(
|k|, k
|k|
, τ

)
(2.12)
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as ε→ 0. It remains to calculate the two sides of this relation.
The term (Fd ◦S)(V ρ) on the left hand side of (2.12) is (Fd ◦S)(V ρ) = (Fd ◦S ◦

F−11 ◦ Jb ◦ Rρ)(û0) = Q̂ρb û0. We see that the left hand side in (2.12) coincides with
the left hand side in (2.10).

For k 6= 0, we calculate for the right hand side of (2.12), using V̂ ρ
0 := Rρû0,(

|k|
2πi

)−(d−1)/2
V̂ ρ

(
ξ = |k|, q =

k

|k|
, τ

)
=

(
|k|
2πi

)−(d−1)/2
e−ib(|k|)τ V̂ ρ

0

(
ξ = |k|, q =

k

|k|

)
=

{
e−ib(|k|)τ |k|−(d−1)/2Wρ(|k|)û0(k) for |k| < ρ

e−ib(|k|)τ û0(k) for |k| ≥ ρ .

We have used that Wρ(|k|) = |k|(d−1)/2 for |k| > ρ. For |k| ≥ ρ the right hand side
of (2.12) coincides with the right hand side of (2.10). This provides the pointwise
convergence.

Step 2: Weak convergence. The operators Q̂b are bounded, uniformly in ε > 0.
Therefore, the left hand side of (2.11) is bounded in L2(Rd), for every τ > 0. Upon
choosing a subsequence ε → 0, for some limit function Lτ : Rd → C, Lτ = Lτ (k),
we can assume

(Q̂bû0)(·, τ/ε2)eic|·|τ/ε
2

⇀ Lτ (2.13)

weakly in L2(Rd). It remains to identify the limit Lτ as e−ib(|·|)τ û0. The pointwise
convergence of Step 1 implies that, for every ρ > 0 and every τ > 0,[

Q̂ρb û0(k, τ/ε
2)eic|k|τ/ε

2 − e−ib(|k|)τ û0(k)
]

1{|k|≥ρ} ⇀ 0 . (2.14)

Identification of Lτ . Let f ∈ C∞c (Rd) be a smooth test function. We calculate∫
Rd

[
(Q̂bû0)(k, τ/ε2)eic|k|τ/ε

2 − e−ib(|k|)τ û0(k)
]
f(k) dk

=

∫
Rd

((
Q̂b − Q̂ρb

)
û0

)
(k, τ/ε2)eic|k|τ/ε

2

f(k) dk

+

∫
Rd

(Q̂ρb û0)(k, τ/ε
2)(1− 1{|k|≥ρ})e

ic|k|τ/ε2f(k) dk

+

∫
Rd

[(
Q̂ρb û0

)
(k, τ/ε2)eic|k|τ/ε

2 − e−ib(|k|)τ û0(k)
]

1{|k|≥ρ}f(k) dk

+

∫
Rd
e−ib(|k|)τ û0(k)(1{|k|≥ρ} − 1)f(k) dk

=: Iε,ρ + IIε,ρ + IIIε,ρ + IVε,ρ .

Regarding the error term Iε,ρ, we use the fact that the operator S ◦ F−11 ◦ Jb is
bounded: ∥∥∥((Q̂b − Q̂ρb) û0) (·, τ/ε2)eic|·|τ/ε2

∥∥∥
L2(Rd)

= ‖
((
S ◦ F−11 ◦ Jb ◦ (R−Rρ)

)
û0
)

(·, τ/ε2)‖L2(Rd)

≤ C‖(R−Rρ)û0‖XS ≤ C̃‖W −Wρ‖L2(R) → 0
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as ρ→ 0. In the last step we have used that û0 is bounded. This allows to calculate
Iε,ρ in the limit ρ→ 0,

|Iε,ρ| ≤
∥∥∥((Q̂b − Q̂ρb) û0) (·, τ/ε2)eic|·|τ/ε2

∥∥∥
L2(Rd)

‖f‖L2(Rd)

≤ C̃‖W −Wρ‖L2(R)‖f‖L2(Rd) → 0 .

For the second error term we calculate

|IIε,ρ| ≤
∫
Rd

∣∣∣(Q̂ρb û0)(k, τ/ε2)∣∣∣ 1{|k|<ρ}|f(k)| dk

≤ ‖f‖∞‖(Q̂ρb û0)(·, τ/ε
2)‖L2(Rd) |{|k| < ρ}|1/2

≤ C‖f‖∞‖û0‖L2(Rd)ρ
d/2 ,

where we have used that the linear operators Q̂ρb are bounded, independent of ρ.
For the third error term IIIε,ρ we exploit, for ρ > 0 fixed, the weak convergence

(2.14). Finally, IVε,ρ is estimated by

|IVε,ρ| ≤
∫
Rd
|û0(k)|1{|k|<ρ}|f(k)| dk ≤ C‖û0‖L2(Rd) ρ

d/2‖f‖∞ .

In order to conclude the identification of the weak limit Lτ , we first choose ρ > 0
small such that Iε,ρ, IIε,ρ and IVε,ρ are small. Afterwards, we choose ε > 0 to achieve
smallness in IIIε,ρ. We find∫

Rd
(Q̂bû0)(k, τ/ε2)eic|k|τ/ε

2

f(k) dk →
∫
Rd
e−ib(|k|)τ û0(k)f(k) dk

as ε→ 0. Since f ∈ C∞c (Rd) was arbitrary, we conclude

Lτ (k) = e−ib(|k|)τ û0(k) .

This shows (2.11) and concludes the proof.

Interpretation. Two choices of the function b are of particular interest.

1) b(ξ) = 0 for all ξ ∈ R. We recall that, by our assumption on the initial data,
the solution of the linear wave equation is given in Fourier space by

û(k, τ/ε2) = e−ic|k|τ/ε
2

û0(k) . (2.15)

Theorem 2.7 implies that, in the limit ε→ 0, the solution û is close to the function
Q̂bû0. This means that the ring solution with profile function V = F−11 ◦ Jb ◦Rû0 is
a good approximation of u. The pointwise convergence (2.10) implies Theorem 1.1.

2) b(ξ) = b3ξ
3 for all ξ ∈ R. The weakly dispersive equation

∂2t u(x, t)− c2∆xu(x, t) + ε2d0∆
2
xu(x, t) = 0 (2.16)

with d0 > 0 is an effective model to describe waves in heterogeneous media or in
discrete media, see [4] and [9]. The Fourier transform of u satisfies

∂2t û(k, t) + c2|k|2û(k, t) + ε2d0|k|4û(k, t) = 0 . (2.17)
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With appropriate initial data, the solution to (2.16) is given in Fourier space by

û(k, t) = e−i
√
c2|k|2+ε2d0|k|4 tû0(k) . (2.18)

Expanding the square route in a Taylor series and considering large times t = τ/ε2

we find that√
c2|k|2 + ε2d0|k|4τ/ε2 =

(√
c2|k|2 +

ε2d0|k|4

2
√
c2|k|2

)
τ/ε2 +O(ε2)

= c|k|τ/ε2 +
d0|k|3

2c
τ +O(ε2) .

We set b3 := d0
2c

and use Theorem 2.7. We conclude that, in the limit ε → 0, the
solution u is well approximated by Qbû0: The profile function V = F−11 ◦ Jb ◦ Rû0
provides a good approximation of the solution of the weakly dispersive equation
(2.16). The profile V satisfies the linearized KdV-equation

∂τV (z, q, τ) = b3∂
3
zV (z, q, τ) .

With this result we recover the profile analysis of [9] in dimension d = 1 and d = 2,
and extend it to dimension d = 3.

3 Analysis of the reconstruction operator

Our main result Theorem 2.7 states that solutions to a (dispersive) wave equation
can be recovered approximately by the reconstruction operator Qb. This requires
a study of the expression Q̂bû0 = Fd ◦ S ◦ F−11 ◦ Jb ◦ R(û0). As we have already
seen, the core result regards the outer part, the expression (Fd ◦ S)V . This part is
analyzed in Theorem 3.3 below.

Assumption 3.1. Let the dimension be d ∈ {1, 2, 3}. On V ∈ L∞(0,∞;XS) we
assume the following.

(i) There exist C, α > 0 such that for every τ ∈ (0,∞) and q ∈ Sd−1

|V (z, q, τ)| ≤ C(1 + |z|)−d−α . (3.1)

(ii) The Fourier transform V̂ := F1V has the property that, for every τ ∈ (0,∞),
the function

R× Sd−1 3 (ξ, q) 7→ V̂ (ξ, q, τ) ∈ C
is of class Cd−1(R× Sd−1;C).

In Theorems 2.7 and 3.3, we demand that V ρ := (F−11 ◦ Jb ◦ Rρ)û0 satisfies
Assumption 3.1. Actually, this is not too restrictive.

Remark 3.2. Let û0 be a smooth function with compact support. Then V̂ ρ :=
(Jb ◦Rρ)û0 has also compact support. Moreover, since Rρ uses the regularization of

|ξ|(d−1)/21{ξ>0}, the smoothness of û0 is inherited by V̂ ρ. Smoothness of V̂ ρ implies

the decay property (3.1) of V ρ = F−11 V̂ ρ in z. We conclude that Assumption 3.1 is
satisfied.
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We are now in the position to prove our core result.

Theorem 3.3 (The shell operator in Fourier space). In dimension d ∈ {1, 2, 3} let
V̂ ∈ L∞(0,∞;Xs) satisfy V̂ (ξ, q, τ) = 0 for every ξ < 0 and let V := F−11 V̂ ρ ∈
L∞(0,∞;Xs) satisfy Assumption 3.1. Consider the ring-like solution SV and its
Fourier transform Fd ◦ S(V ). For every k ∈ Rd \ {0} and every τ > 0 holds

(Fd ◦ S)(V )(k, τ/ε2)eic|k|τ/ε
2 →

(
|k|
2πi

)−(d−1)/2
V̂

(
|k|, q =

k

|k|
, τ

)
(3.2)

as ε→ 0. Moreover, the convergence holds as weak convergence in L2(Rd).

Proof of Theorem 3.3. It suffices to prove, for k 6= 0,

Qε(k, τ) := eic|k|τ/ε
2

(Fd ◦ S)(V )(k, τ/ε2)→
(
|k|
2πi

)−(d−1)/2
V̂

(
|k|, q =

k

|k|
, τ

)
.

(3.3)
Indeed, since the operator Fd ◦ S is bounded and since |eic|k|τ/ε2| = 1, for every
τ > 0, the sequence Qε(·, τ) is uniformly bounded in L2(Rd). Therefore there exists,
up to a subsequence, a weak limit in L2(Rd). Since weak and pointwise limits always
coincide, we conclude the weak convergence of Qε(·, τ) to the right hand side of (3.3).

We show the pointwise convergence in five steps.

Step 1: Calculation of the quantity of interest. We calculate the left hand side
of (3.3). Definition 2.4 of the shell operator S provides

SV (x, t) =
1

(ct)(d−1)/2
V

(
|x| − ct, x

|x|
, ε2t

)
1{|x|<2ct} .

We calculate the Fourier transform in polar coordinates, x = rq with r > 0 and
q ∈ Sd−1,

(Fd ◦ S)(V )(k, t) =

∫
Rd
e−ix·k(SV )(x, t) dx

=

∫ ∞
0

∫
Sd−1

rd−1e−irq·k(SV )(rq, t) dS(q) dr .

We insert SV from above. Evaluating in t = τ/ε2 we find

Qε(k, τ) = eic|k|τ/ε
2

∫ 2cτ/ε2

0

∫
Sd−1

rd−1e−irq·k

(cτ/ε2)(d−1)/2
V
(
r − c τ

ε2
, q, τ

)
dS(q) dr . (3.4)

To simplify, we write r = cτ/ε2 + z with a new variable z ∈ R; the integration over
r is replaced by an integration over z. We find

Qε(k, τ) = eic|k|τ/ε
2

∫ cτ/ε2

−cτ/ε2

∫
Sd−1

(cτ/ε2 + z)d−1

(cτ/ε2)(d−1)/2
e−iq·k cτ/ε

2

e−izq·k V (z, q, τ) dS(q) dz .

Step 2: Approximation. We treat the cases d ∈ {1, 2} and d = 3 differently.
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Case d ∈ {1, 2}. We use the approximations
∫ cτ/ε2
−cτ/ε2 ≈

∫
R and (cτ/ε+z)d−1

(cτ/ε2)(d−1)/2 ≈
(cτ/ε2)(d−1)/2 and write

Qε(k, τ) = Aε0(k, τ) +Gε
0(k, τ) (3.5)

with

Aε0(k, τ) = eic|k|τ/ε
2

∫
R

∫
Sd−1

(cτ/ε2)(d−1)/2e−iq·k cτ/ε
2

e−izq·k V (z, q, τ) dS(q) dz ,

Gε
0(k, τ) = eic|k|τ/ε

2

∫
R

∫
Sd−1

e−iq·k(cτ/ε
2+z)V (z, q, τ)×

×
[

(cτ/ε2 + z)d−1

(cτ/ε2)(d−1)/2
1{|z|<cτ/ε2} − (cτ/ε2)(d−1)/2

]
dS(q) dz .

Case d=3: In three dimensions, we use higher order approximations:
∫ cτ/ε2
−cτ/ε2 ≈

∫
R

and (cτ/ε2+z)2

(cτ/ε2)
≈ cτ/ε2 + 2z. This allows to write

Qε(k, τ) = Aε1(k, τ) +Gε
1(k, τ) (3.6)

with

Aε1(k, τ) = eic|k|τ/ε
2

∫
R

∫
Sd−1

(cτ/ε2 + 2z)e−iq·k cτ/ε
2

e−izq·k V (z, q, τ) dS(q) dz ,

Gε
1(k, τ) = eic|k|τ/ε

2

∫
R

∫
Sd−1

e−iq·k(cτ/ε
2+z)V (z, q, τ)×

×
[

(cτ/ε2 + z)2

(cτ/ε2)
1{|z|<cτ/ε2} − (cτ/ε2 + 2z)

]
dS(q) dz .

Step 3: Simplifying the expression for Aε0, A
ε
1. One of the integrals in the formulas

for Aεi can be evaluated. Indeed, in Aε0 and in one of the two terms of Aε1, we recognize∫
R
V (z, q, τ)e−izq·k dz = V̂ (q · k, q, τ) .

In dimension d = 3, we find∫
R
z V (z, q, τ)e−izq·k dz = i∂ξV̂ (ξ = q · k, q, τ) ,

where integrability of all terms is assured by Assumption 3.1.
The formula for Aε0 simplifies to

Aε0(k, τ) =

∫
Sd−1

(cτ/ε2)(d−1)/2 ei(|k|−q·k) cτ/ε
2

V̂ (q · k, q, τ) dS(q)

=

∫
Sd−1

(
|k|
2πi

cτ/ε2
)(d−1)/2

ei(1−q·k/|k|) |k|cτ/ε
2

[(
|k|
2πi

)−(d−1)/2
V̂ (q · k, q, τ)

]
dS(q) .

(3.7)
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The formula for Aε1 simplifies to

Aε1(k, τ) =

∫
S2

ei(|k|−q·k) cτ/ε
2
(
cτ/ε2V̂ (q · k, q, τ) + 2i∂ξV̂ (q · k, q, τ)

)
dS(q)

=

∫
S2

(
|k|
2πi

cτ/ε2
)
ei(1−q·k/|k|) |k|cτ/ε

2

[(
|k|
2πi

)−1
V̂ (q · k, q, τ)

]
dS(q)

+
2ε2

cτ
i

∫
S2

(
|k|
2πi

cτ/ε2
)
ei(1−q·k/|k|) |k|cτ/ε

2

[(
|k|
2πi

)−1
∂ξV̂ (q · k, q, τ)

]
dS(q) .

(3.8)

Step 4: Application of a stationary phase limit. We consider the terms in squared
brackets in (3.7) and (3.8) as test-functions. Denoting them as φ = φ(q), we exploit
Lemma 4.1 to calculate the limit ε→ 0. The lemma provides∫

Sd−1

(
|k|
2πi

cτ/ε2
)(d−1)/2

ei(1−q·k/|k|) |k|cτ/ε
2

φ(q) dS(q)→ φ(k/|k|) . (3.9)

Indeed, since k ∈ Rd \ {0} is held fixed, we can use Lemma 4.1 with κ := k/|k| and
the sequence of numbers N := |k|cτ/ε2, which tends to +∞.

Let us check if the assumptions of Lemma 4.1 are satisfied. The lemma requires
that φ : Sd−1 → C is supported on the half sphere defined by κ. This requirement
is satisfied since we demanded V̂ (ξ, q, τ) = 0 for every ξ < 0. Moreover, Lemma
4.1 requires that φ : Sd−1 → C is of class C1. In dimension d = 1, this is no
further requirement. In dimension d = 2, we need that q 7→ V̂ (q · k, q, τ) is of class
C1; this follows from Assumption 3.1, (ii). In dimension d = 3, we need that both
q 7→ V̂ (q · k, q, τ) and q 7→ ∂ξV̂ (q · k, q, τ) are of class C1; also this follows from
Assumption 3.1, (ii).

The second term in (3.8) vanishes in the limit as ε → 0 due to (3.9) and the
factor ε2 in front of the integral. The limits of the remaining terms are determined

by evaluating V̂ (q · k, q, τ) in the point q = κ = k/|k|. We find V̂
(
k
|k| · k,

k
|k| , τ

)
=

V̂
(
|k|, k|k| , τ

)
. This yields, for k 6= 0,

lim
ε→0

Aε0(k, τ) = lim
ε→0

Aε1(k, τ) =

(
|k|
2πi

)−(d−1)/2
V̂

(
|k|, k
|k|
, τ

)
.

This is the desired limit in (3.3). Once we show that the error terms Gε
0 and Gε

1 are
small, we have shown (3.3) and hence the Theorem.

Step 5: Calculation of the error terms Gε
0 and Gε

1. We show the result for the
three dimensions separately.

Dimension d = 1. In the case d = 1 we have

Gε
0(k, τ) = eic|k|τ/ε

2
∑
q=±1

∫
R
e−iq·k(cτ/ε

2+z)V (z, q, τ)1{|z|≥cτ/ε2} dz .
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Exploiting
∣∣∣eic|k|τ/ε2e−iq·k(cτ/ε2+z)∣∣∣ = 1 we find

|Gε
0(k, τ)| ≤

∑
q=±1

∫
R
|V (z, q, τ)|1{|z|≥cτ/ε2} dz → 0

as ε → 0; here we exploit that Assumption 3.1 provides a decay rate that assures
V (·, q, τ) ∈ L1(R) uniformly in q and τ .

Dimension d = 2. In the case d = 2 we find

|Gε
0(k, τ)| ≤

∫
R

∫
S1

|V (z, q, τ)|
∣∣∣∣ cτ/ε2 + z

(cτ/ε2)1/2
1{|z|<cτ/ε2} − (cτ/ε2)1/2

∣∣∣∣ dS(q) dz .

Since S1 has the finite measure 2π, it suffices to show the convergence∫
R
|V (z, q, τ)|

∣∣∣∣ cτ/ε2 + z

(cτ/ε2)1/2
1{|z|<cτ/ε2} − (cτ/ε2)1/2

∣∣∣∣ dz → 0

as ε→ 0, uniformly in q ∈ S1. We decompose the integral into two parts, |z| ≤ δ/ε
and |z| > δ/ε with δ > 0 to be chosen below. We only consider ε-values with
cτ/ε > δ, such that∫

|z|≤δ/ε
|V (z, q, τ)|

∣∣∣∣ cτ/ε2 + z

(cτ/ε2)1/2
1{|z|<cτ/ε2} − (cτ/ε2)1/2

∣∣∣∣ dz
=

∫
|z|≤δ/ε

|V (z, q, τ)|
∣∣∣∣ cτ/ε2 + z

(cτ/ε2)1/2
− (cτ/ε2)1/2

∣∣∣∣ dz .
Using ∣∣∣∣ cτ/ε2 + z

(cτ/ε2)1/2
− (cτ/ε2)1/2

∣∣∣∣ =

∣∣∣∣ z

(cτ/ε2)1/2

∣∣∣∣ = ε
z

(cτ)1/2
≤ δ

(cτ)1/2
(3.10)

for |z| ≤ δ/ε, we obtain∫
|z|≤δ/ε

|V (z, q, τ)|
∣∣∣∣ cτ/ε2 + z

(cτ/ε2)1/2
− (cτ/ε2)1/2

∣∣∣∣ dz ≤ δ

(cτ)1/2

∫
|z|≤δ/ε

|V (z, q, τ)| dz

≤ δ

(cτ)1/2

∫
R
|V (z, q, τ)| dz ≤ Cδ

with C = C(τ), where we have used that V (·, q, τ) ∈ L1(R) uniformly in q and τ .
The integral over |z| > δ/ε is estimated exploiting∣∣∣∣ cτ/ε2 + z

(cτ/ε2)1/2
1{|z|<cτ/ε2} − (cτ/ε2)1/2

∣∣∣∣ ≤ ∣∣∣∣ cτ/ε2 + z

(cτ/ε2)1/2

∣∣∣∣+ (cτ/ε2)1/2

≤ 2(cτ/ε2)1/2 +

∣∣∣∣ z

(cτ/ε2)1/2

∣∣∣∣ =
2

ε
(cτ)1/2 + ε

|z|
(cτ)1/2

.

We find ∫
|z|>δ/ε

|V (z, q, τ)|
∣∣∣∣ cτ/ε2 + z

(cτ/ε2)1/2
1{|z|<cτ/ε2} − (cτ/ε2)1/2

∣∣∣∣ dz
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≤
∫
|z|>δ/ε

|V (z, q, τ)|
(

2

ε
(cτ)1/2 + ε

|z|
(cτ)1/2

)
dz

≤ C

∫
|z|>δ/ε

|z|−2−α
(

2

ε
(cτ)1/2 + ε

|z|
(cτ)1/2

)
dz

≤ C
(
ε−1(ε/δ)1+α + ε(ε/δ)α

)
.

In the last step we have exploited the assumption on V , namely |V (z, q, τ)| ≤
C(1 + |z|)−2−α. Choosing first δ > 0 to have smallness in the first integral and then
ε > 0 small to make the second integral small, we conclude

|Gε
0(k, τ)| → 0 for ε→ 0 .

Dimension d = 3. The case d = 3 is analogous to the case d = 2. For the integral
over |z| ≤ δ/ε we use

(cτ/ε2 + z)2

(cτ/ε2)
− (cτ/ε2 + 2z) =

1

ε2

(
(cτ + ε2z)2

cτ
− cτ

)
− 2z

=
1

ε2cτ

(
(cτ + ε2z)2 − (cτ)2

)
− 2z =

1

ε2cτ

(
2cτε2z + ε4z2

)
− 2z =

ε2z2

cτ
≤ δ2

cτ

and the fact that V (·, q, τ) ∈ L1(R) uniformly in q. Concerning the integral over
|z| > δ/ε we calculate∣∣∣∣(cτ/ε2 + z)2

(cτ/ε2)
1{|z|<cτ/ε2} − (cτ/ε2 + 2z)

∣∣∣∣ ≤ 3cτ/ε2 +
2|z|2

cτ/ε2
+ 2|z|

and thus ∫
|z|>δ/ε

|V (z, q, τ)|
∣∣∣∣ cτ/ε2 + z

(cτ/ε2)1/2
1{|z|<cτ/ε2} − (cτ/ε2)1/2

∣∣∣∣ dz
≤
∫
|z|>δ/ε

|V (z, q, τ)|
(

3cτ/ε2 +
2|z|2

cτ/ε2
+ 2|z|

)
dz

≤ C

∫
|z|>δ/ε

|z|−3−α
(

3cτ/ε2 +
2|z|2

cτ/ε2
+ 2|z|

)
dz

≤ C
(
ε−2(ε/δ)2+α + ε2(ε/δ)α + (ε/δ)1+α

)
.

In the last step we have exploited Assumption 3.1 on V , namely |V (z, q, τ)| ≤
C(1 + |z|)−3−α uniformly in q and τ .

Once more, we choose first δ > 0 small to have the integral over |z| ≤ δ/ε small.
We then choose ε > 0 small to have the other integral small. We obtain that the
error terms Gε

0 and Gε
1 vanish in the limit ε → 0. Up to the claim in (3.9), where

we used the subsequent Lemma 4.1, the theorem is shown.

4 A stationary phase convergence result

In the last section, the relevant small parameter was ε > 0; in this section, we work
with the large parameter N := |k|cτ/ε2. We applied in Section 3 the subsequent
Lemma 4.1 with the vector κ := k/|k|.
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In the following, for arbitrary dimension d ∈ {1, 2, 3}, we will demand that the
test-function φ : Sd−1 → R is of class C1(Sd−1) and that it is supported on the
half-sphere {q ∈ Sd−1 | q · κ ≥ 0}.

Regarding the case d = 1 we note that Sd−1 = {+1,−1} and that, for κ = e1 ≡ 1,
a function φ ∈ C1(Sd−1) with support in the half-sphere {q ∈ Sd−1 | q ·κ ≥ 0} = {1}
is a function φ : {+1,−1} → R with φ(−1) = 0.

Lemma 4.1. Let the dimension be d ∈ {1, 2, 3}. Let κ ∈ Sd−1 be a point on the
sphere and let φ ∈ C1(Sd−1;R) be supported in {q ∈ Sd−1 | q · κ ≥ 0}. Then there
holds

ANφ := (2πi)−(d−1)/2
∫
Sd−1

N (d−1)/2 ei(1−q·κ)N φ(q) dS(q)→ φ(κ) (4.1)

as N →∞.

Proof. By radial symmetry it is sufficient to consider the case κ := e1. We show the
result for the three dimensions separately.

Step 1: Dimension d = 1. In the case d = 1, the integral in (4.1) is a sum of two
terms,

ANφ =
∑

q∈{±1}

ei(1−q·1)N φ(q) = φ(1) + e2iN φ(−1) = φ(1) . (4.2)

This shows (4.1).

Step 2: Dimension d = 3. We use spherical coordinates

q(θ, ϑ) :=

 cos(θ)
sin(θ) cos(ϑ)
sin(θ) sin(ϑ)


with angles θ ∈ (0, π) and ϑ ∈ (0, 2π) and surface element J :=

√
det(DqTDq) =

sin(θ). We calculate the expression of (4.1) for d = 3 with spherical coordinates as

ANφ = (2πi)−1
∫
S2

N ei(1−q·e1)N φ(q) dS(q)

= (2πi)−1
∫ π

0

∫ 2π

0

N ei(1−cos(θ))N φ(q(θ, ϑ)) dϑ sin(θ) dθ

= −
∫ π

0

iN ei(1−cos(θ))N sin(θ)

(
1

2π

∫ 2π

0

φ(q(θ, ϑ)) dϑ

)
︸ ︷︷ ︸

=:φ̃(θ)

dθ

= −
∫ π

0

d

dθ

[
ei(1−cos(θ))N

]
φ̃(θ) dθ

= −
[
ei(1−cos(θ))N φ̃(θ)

]π
θ=0

+

∫ π

0

ei(1−cos(θ))N
d

dθ
φ̃(θ) dθ

= φ̃(0) +

∫ π/2

0

ei(1−cos(θ))N
d

dθ
φ̃(θ) dθ ,
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where integration by parts is allowed because of φ̃ ∈ C1([0, π]). In the last line we
also exploited φ̃(θ) = 0 for θ ∈ (π/2, π). For φ̃(0) we obtain

φ̃(0) =
1

2π

∫ 2π

0

φ(q(0, ϑ)) dϑ =
1

2π

∫ 2π

0

φ(e1) dϑ = φ(e1) .

We turn now to the treatment of the integral. We use the substitution z =
1− cos(θ) with dz

dθ
= sin(θ) =

√
1− cos2(θ) =

√
1− (1− z)2 =

√
z
√

2− z to obtain∫ π/2

0

ei(1−cos(θ))N
d

dθ
φ̃(θ) dθ =

∫ 1

0

eizN
d

dθ
φ̃(arccos(1− z))

1
√
z
√

2− z
dz .

The factor z 7→ eizN is a sequence of highly oscillatory functions; it converges to the
mean value 1

2π

∫ 2π

0
eiy dy = 0 weakly in Lp(0, 1) for every p ∈ (1,∞). Since d

dθ
φ̃ is

bounded and 1√
2−z ≤ 1 for z ∈ (0, 1), we find that

z 7→ d

dθ
φ̃(arccos(1− z))

1
√
z
√

2− z

is in Lq(0, 1) for q ∈ (1, 2); it is thus an admissible test function for the weak
convergence property. We obtain∫ π/2

0

ei(1−cos(θ))N
d

dθ
φ̃(θ) dθ → 0

as N →∞, which provides the claim (4.1) for d = 3.

Step 3: Dimension d = 2. We use the coordinates q(θ) := (cos(θ), sin(θ)) with
θ ∈ (−π, π), the line element is J = 1. The expression of (4.1) is

ANφ = (2πi)−1/2
∫
S1

N1/2 ei(1−q·e1)N φ(q) dS(q)

= (2πi)−1/2
∫ π

−π
N1/2 ei(1−cos(θ))N φ(q(θ)) dθ

= (2πi)−1/2
∫ π/2

0

N1/2 ei(1−cos(θ))N φ̃(θ) dθ ,

where φ̃(θ) := φ(q(θ)) + φ(q(−θ)) denotes a symmetrized version of φ. We split the
integral into two parts, θ ∈ (0, δ) and θ ∈ (δ, π), where the small parameter δ is
chosen N -dependent, δ := N−β with β = 3/10. We calculate∫ π/2

N−3/10

N1/2 ei(1−cos(θ))N φ̃(θ) dθ

=
1√
N

∫ π/2

N−3/10

sin(θ)iN ei(1−cos(θ))N
φ̃(θ)

i sin(θ)
dθ

=
1√
N

[
ei(1−cos(θ))N

φ̃(θ)

i sin(θ)

]π/2
θ=N−3/10

− 1√
N

∫ π/2

N−3/10

ei(1−cos(θ))N
d
dθ
φ̃(θ)

i sin(θ)
dθ
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+
1√
N

∫ π/2

N−3/10

ei(1−cos(θ))N
φ̃(θ) cos(θ)

i sin2(θ)
dθ

=: IN + IIN + IIIN .

The terms IN , IIN vanish in the limit as N →∞. Indeed, for N sufficiently large

|IN | =
1

sin(N−3/10)
√
N
|φ̃(N−3/10)| ≤ C

N3/10

√
N

= CN3/10−1/2 N→∞→ 0

and, since sine is monotonically increasing in (0, π/2),

|IIN | ≤
1√
N

∫ π/2

N−3/10

∣∣∣∣∣ ddθ φ̃(θ)

sin(θ)

∣∣∣∣∣ dθ ≤ C
N3/10

√
N

∫ π/2

N−3/10

∣∣∣∣ ddθ φ̃(θ)

∣∣∣∣ dθ
≤ C̃N3/10−1/2 N→∞→ 0 ,

where we have used φ̃ ∈ C1([0, π]).
To treat IIIN , we integrate by parts once more:

IIIN = −N−3/2
∫ π/2

N−3/10

iNei(1−cos(θ))N sin(θ)
φ̃(θ) cos(θ)

sin3(θ)
dθ

= −N−3/2
[
ei(1−cos(θ))N

φ̃(θ) cos(θ)

sin3(θ)

]π/2
θ=N−3/10

+N−3/2
∫ π/2

N−3/10

ei(1−cos(θ))N
d
dθ
φ̃(θ) cos(θ)− φ̃(θ) sin(θ)

sin3(θ)
dθ

−N−3/2
∫ π/2

N−3/10

ei(1−cos(θ))N
3 cos2(θ)φ̃(θ)

sin4(θ)
dθ .

Since 1/ sin3(N−3/10) ≤ CN9/10, the term in square brackets is of orderN−3/2N9/10 =
N−3/5 → 0 as N →∞. For the integral expressions we note that 1/ sin4(N−3/10) ≤
CN6/5 and by assumption φ̃ ∈ C1([0, π]). We conclude that the last integral scales
as N−3/2N6/5 = N−3/10 → 0 as N →∞. The second integral is of lower order. This
proves that IIIN → 0.

We now treat the other part of ANφ , the integral over the interval (0, N−3/10).

We first note that, since φ̃ is Lipschitz-continuous, for θ ∈ (0, N−3/10) one has
|φ̃(θ)− φ̃(0)| ≤ Cθ ≤ CN−3/10 and thus∣∣∣∣∣
∫ N−3/10

0

N1/2 ei(1−cos(θ))N φ̃(θ) dθ −
∫ N−3/10

0

N1/2 ei(1−cos(θ))N φ̃(0) dθ

∣∣∣∣∣ ≤ CN1/2−3/5 ,

which vanishes in the limit as N → ∞. In view of this smallness, it remains to
investigate the integral

φ̃(0) (2πi)−1/2
∫ N−3/10

0

N1/2 ei(1−cos(θ))N dθ . (4.3)
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As a result we find, using Lemma A.1 in the appendix and recalling that φ̃(0) =
2φ(e1), as N →∞,

φ̃(0)(2πi)−1/2
∫ N−3/10

0

N1/2 ei(1−cos(θ))N dθ

→ φ̃(0)(2πi)−1/2
1

2
(2πi)1/2 = φ(e1) .

This shows the claim (4.1) in dimension d = 2.

A An oscillatory integral

We want to evaluate the limit of the integral (4.3).

Lemma A.1. Let β ∈ (1/6, 1/2). Then, as N →∞,

IN :=

∫ N−β

0

N1/2 ei(1−cos(θ))N dθ → 1

2

√
π(1 + i) =

1

2
(2πi)1/2 . (A.1)

Proof. The integral in (A.1) can be written with the substitution z = (1−cos(θ))N ,
leading to dθ = dz/(N sin(θ)). We find

IN =

∫ (1−cos(N−β))N

0

eiz
1

N1/2 sin(θ)
dz . (A.2)

Next we use the approximation 1
N1/2 sin(θ)

≈ 1√
2z

and (1− cos(N−β))N ≈ ∞. Indeed,

CN1−2β ≤ (1− cos(N−β))N ≤ C̃N1−2β .

Since β < 1/2 one finds (1 − cos(N−β))N → ∞ for N → ∞. Regarding the
approximation of 1

N1/2 sin(θ)
we obtain

sin(θ) =
√

1− cos2(θ) =
√

1− (1− z/N)2

=

√
2z

N

√
1− z

2N
=

√
2z

N
+O

(
(z/N)3/2

)
and thus, expanding the fraction,

1

N1/2 sin(θ)
=

1
√

2z +O
(√

N(z/N)3/2
) =

1√
2z

+O
(
z1/2N−1

)
.

Since in the domain of integration z ≤ C̃N1−2β, we finally find∣∣∣∣∣
∫ (1−cos(N−β))N

0

eiz
(

1

N1/2 sin(θ)
− 1√

2z

)
dz

∣∣∣∣∣
≤ C

(
N1−2β)1/2N−1N1−2β = CN1/2−3β → 0
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as N →∞, since β > 1/6. To sum up, we obtain

IN =

∫ (1−cos(N−β))N

0

eiz
1

N1/2 sin(θ)
dz

→
∫ ∞
0

eiz
1√
2z
dz =

√
2

∫ ∞
0

eip
2

dp =
1

2

√
π(1 + i) =

1

2
(2πi)1/2 .

In the last line we used the substitution z = p2 and Fresnel integrals: For real
and imaginary part there holds

∫∞
0

sin(x2) dx =
∫∞
0

cos(x2) dx =
√
π/(2
√

2). This
provides the claim of (A.1).
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