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Abstract: We analyze periodic operators on Rn and small perturbations
of these operators. The perturbation is periodic in n − 1 directions and
has bounded support in the remaining direction. We show that, when the
perturbation has a sign, every spectral gap for the unperturbed operator
is reduced by the perturbation. We develop a general theory that can be
applied to elliptic operators, to systems such as that of linear elasticity, and
to Maxwell’s equations.
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1 Introduction

In a periodic medium, a self-adjoint differential operator has a spectrum that typi-
cally consists of bands and band gaps. This qualitative structure can be understood
with a Floquet-Bloch transform: One can show that the spectrum in the periodic
medium is given as the union of the spectra of differential operators in a periodicity
cell. The spectra in the periodicity cell are discrete, the union is taken over the
Floquet parameter; this leads to a spectrum that consists of intervals.

We ask: What happens to band-gaps when the periodic medium in n dimensions
is perturbed in a non-periodic fashion? We restrict ourselfs to perturbations that
are periodic in the first n − 1 directions and that are confined to xn ∈ (0, 2π).
The differential operators in this text are quite general. The two basic examples
are (a) elliptic systems, the spectrum then describes the behavior of waves in the
medium, and (b) Maxwell’s equations, the spectrum then describes the propagating
electro-magnetic modes in the medium. Our main result states, loosely speaking:
A non-periodic perturbation with a sign reduces the spectral gap, no matter how
small the perturbation is chosen.

To be more specific in the description of our main result, let us present the
motivating example for our theory. The example is a scalar elliptic equation and
our results are (under additional assumptions) already known in this problem, see
[4, 5, 6, 7]. Our aim is to develop methods that are more general, the operator M
below can also be the Maxwell operator or the elliptic operator of linear elasticity.
Nonetheless, let us describe the simplest case here: For coefficients a, b : Rn → R,
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Figure 1: Sketch of a perturbed periodic medium in dimension n = 2. The medium
is characterized by the coefficients of a differential operator. The underlying co-
efficients, a and b in the guiding example, are periodic in every direction. The
perturbation, in the example given by the coefficient q, is confined to a strip
Rn−1 × W = R × (0, 2π). Our result is that the perturbation reduces spectral
gaps of the underlying medium.

both 2π-periodic in each direction in Rn and both positive, we study the family of
operators

Mλu := −∇ · (a∇u)− λ b u .

Solutions are always functions u : Rn → Cm, in this guiding example with m = 1,
the parameter λ ∈ R is the spectral parameter.

We now treat the case that the coefficient b is perturbed, more precisely, it is
replaced by the coefficient b + δq2, where q : Rn → R is a bounded function with
support in Rn−1×(0, 2π), periodic in n−1 directions, and δ > 0 is a small parameter
that measures the strength of the perturbation. We emphasize that q is localized in
direction xn and hence, in particular, not periodic in this direction. The family of
perturbed operators is therefore

Mλ,δu := −∇ · (a∇u)− λ (b+ δq2)u .

The choice to write q2 for the perturbation indicates that the sign of the perturbation
is relevant.

In applications, one is interested in spectral gaps of operator families as above;
essentially, a number λ ∈ R is in a spectral gap when the operatorMλ,δ is invertible.
For the application, this means that there are no propagating wave solutions for
the system, for the frequency corresponding to λ. Since the perturbation modifies
the properties of the periodic background medium along a hyperplane, one may
expect that there are propagating wave solutions that are concentrated along this
hyperplane. With this interpretation in mind, one may expect that spectral gaps
are getting smaller when δ is increased. Our main result is that, indeed, the upper
end of the spectral gap is pushed down by the small perturbation.

Mathematically, we define spectral gaps as maximal intervals (a−, a+) ⊂ R such
that, for every λ ∈ (a−, a+), the operator Mλ,δ is invertible. Let (a−, a+) be a
spectral gap for the unperturbed problem (δ = 0). Our main result is that, for
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every δ > 0, there exists λ ∈ (a−, a+) near a+ such that Mλ,δ is not invertible. In
particular, the interval (a−, a+) is not a spectral gap for the operator family Mλ,δ

for δ > 0.
The precise statement is formulated as Theorem 3.2. It treats a general situation

with an unperturbed operator M (the above example uses M : u 7→ −∇ · (a∇u),
in the case of the Maxwell system, essentially M : u 7→ curl curl u) a mass-matrix
operator E (in the above example E : u 7→ b u), and a perturbation δQ2 (in the
above example the operator u 7→ δq2 u). We investigate the spectral gaps of the
family M − λ(E + δQ2) in dependence of δ.

1.1 The heart of the argument

We provide a rough sketch of the main argument for the theorem, this idea was al-
ready used in [4, 5, 6, 7]. The entire argument is based on Floquet-Bloch transforms;
we assume that the underlying operators are periodic with the periodicity cell W n

for W = (0, 2π). On the one hand, we can transform in all variables x1, ..., xn; we
write k ∈ In with I = [−1/2, 1/2] for the dual variable. This transformation is
only useful for the operators M and E. On the other hand, we can transform the
system in the first n − 1 variables x1, ..., xn−1; the dual variable is then denoted as
m ∈ In−1. This transformation can be performed for the periodic operator M − λE
and also for the perturbed operator M − λ(E + δQ2). For a parameter m◦ ∈ In−1

we write, e.g., (M−λE)m◦ to indicate the differential operator in the Floquet-Bloch
representation for the parameter m◦ (Section 2 is, to a large extend, concerned with
making the corresponding construction precise).

Step 1, made precise in Lemma 3.4: We show that a certain scalar product
becomes large in absolute values in the limit λ ↗ a+. For an appropriately chosen
function r ∈ L2(W n), its trivial extension R∗r ∈ L2(W n−1 × R), and for a critical
dual parameter m◦ ∈ In−1, there holds

lim sup
λ→a+

∣∣⟨(M − λE)−1
m◦R∗r, R∗r⟩L2(Wn−1×R)

∣∣ = ∞ , (1.1)

compare relation (3.4). The relation coincides with our intuition: The fact that a+
is a boundary point of the spectral gap implies that the inverse of M − λE must be
large in some way.

Step 2, made precise in Lemma 3.5: We introduce, compare (3.14), an operator
A as follows:

A := λδ QR(M − λE)−1
m◦R∗Q : L2(W n) → L2(W n) . (1.2)

This operator is self-adjoint. Since it contains the inverse of M − λE, the operator
has a large norm for λ close to a+ by (1.1). This implies that, for fixed δ > 0, there
is λ < a+ such that A has the norm 1. To sketch loosely the rest of the argument,
we might say: 1 is an eigenvalue of A, hence there is an eigenfunction w ∈ L2(W n)
with Aw = w. Let us consider v := λ

√
δ (M − λE)−1

m◦R∗Qw. Then there holds, on
the one hand, (M − λE)m◦v = λ

√
δ R∗Qw by definition of v. On the other hand,√

δQRv = Aw = w. Together, these two facts imply λδR∗QQRv = λ
√
δR∗Qw =

(M − λE)m◦v. This shows

(M − λE − λδR∗QQR)m◦(v) = 0 . (1.3)
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In particular, (M − λE − λδR∗QQR)m◦ has no bounded inverse, which is actually
the conclusion of Lemma 3.5 for some λ < a+, see (3.12). This implies the theorem
since there exists λ < a+ which is not in a spectral gap of the familyM−λ(E+δQ2).

Let us include a more technical remark concerning our methods. It is tempting to
work with operators that have a compact resolvent and to exploit spectral theorems
for compact self-adjoint operators. This is what we tried first, but we did not succeed
to fit the Maxwell system in this framework; the operator curl curl has a compact
resolvent only in the space of divergence-free functions, but this space does not
behave well under the Floquet-Bloch transform. We solved the problem by working
only with Fredholm operators.

1.2 References

Our results are inspired by the work of Brown et al., [4, 5, 6, 7], where the above
statement was derived for the elliptic operatorM of the introduction. Let us describe
the newest of these publications, [6], which generalizes older results. Starting from
Maxwell’s equations and considering TE-modes, the underlying problem regards
a scalar field H : R2 → C in two dimensions and the relevant coefficient is the
strictly positive permittivity ε : R2 → R. The operator acting on the unknown
H is the elliptic operator −∇ · (ε−1∇). The authors consider perturbations of the
coefficient ε, the perturbation must be non-negative, non-trivial and periodic in the
first direction.

In comparison with our result we may say: We treat more general equations and
arbitrary dimensions, our approach does not require Floquet-Bloch theory in H−1

and we do not have to make assumptions on the band functions λs (see Assump-
tion 3 in [6] where a quadratic lower bound is assumed for the band functions).
Nevertheless, as described above, we use the same underlying ideas, compare the
description in Section 2.2 of [4].

We emphasize that our goal is not to show the creation of isolated eigenvalues
by the perturbation, which is the topic, e.g., in [9, 15] and many other publications.
Another topic of interest, also different from the questions asked here, regards the
formation of gaps as in [3]. For the periodic Maxwell operator in three dimensions,
the existence of band gaps is the topic of [10].

The book [11] gives an overview about many aspects of photonic crystals, ex-
plains the appearance of band gaps in periodic crystals and the corresponding wave
phenomena, it covers defects in periodic media and provides many examples of how
waves can travel along defects. At this point, let us emphasize that the contribution
at hand is not about the creation of band gaps by a defect, but it is about how a
band gap changes when a small defect is introduced. A more mathematical overview
on photonic band gap optical materials is [14].

In [2], perturbations of a one-dimensional self-adjoint periodic Sturm–Liouville
problem are studied. Under integrability assumptions on the perturbation, it is
shown that the essential spectrum and the absolutely continuous spectrum remain
unchanged, and that at most finitely many eigenvalues appear in the spectral gaps.
In [8], a localized perturbation of a periodic Schrödinger operator is treated.

The aim of [1] is in a different direction: The authors use the method of Floquet-
Bloch transforms in order to homogenize periodic equations and in order to study
the limit of spectral values in the homogenization limit.
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2 The functional analytic setting

We are interested in partial differential equations, the unknowns are functions u :
Rn → Cm. We write x ∈ Rn for the independent variable so that u : x 7→ u(x).
Since we will work below with the Floquet-Bloch transform, we will seek for solutions
always in the underlying space u ∈ L2(Rn,Cm). We will suppress the image space
Cm when it is clear from the context.

Notation. For normed linear spaces X and Y we write L(X, Y ) for the space of
linear and bounded maps T : X → Y , and set L(X) := L(X,X). The kernel of an
operator T is denoted as N (T ). For a Banach-space Y , for convenience of notation,
we consider its anti-dual space Y ′: For elements u ∈ Y ′, v ∈ Y and λ ∈ C holds
⟨u, λv⟩Y ′,Y = λ̄⟨u, v⟩Y ′,Y . This definition allows to write the dual pairing as ⟨·, ·⟩Y ′,Y :
Y ′ × Y → C and we have for both, the scalar product ⟨·, ·⟩X in a Hilbert space X
and the dual pairing the following property regarding complex conjugation: For
λ, µ ∈ C and admissible elements u, v, there holds ⟨λu, µv⟩ = λµ⟨u, v⟩. Accordingly,
we define the symbol ⟨·, ·⟩Y,Y ′ as ⟨u, v⟩Y,Y ′ := ⟨v, u⟩Y ′,Y for u ∈ Y and v ∈ Y ′. A
bounded linear operator T : Y → Y ′ is self-adjoint when, for all admissible u, v,
there holds ⟨Tu, v⟩Y ′,Y = ⟨u, Tv⟩Y,Y ′ for all u, v ∈ Y . For Hilbert spaces X the dual
pairing is the inner product.

We will consider the situation that X is a Hilbert space and that Y ⊂ X is
a linear subspace. In this situation, we denote the embedding by ι : Y → X,
but we oftentimes suppress the embedding and identify u ∈ Y with u ∈ X. An
element u ∈ X is accordingly identified with the element ι∗u ∈ Y ′, which acts as
⟨ι∗u, v⟩Y ′,Y = ⟨u, ιv⟩X . Also here, we oftentimes suppress the embedding and write
u instead of ι∗u. Accordingly, an element u ∈ Y is identified with ι∗ιu ∈ Y ′.

Two real intervals are of particular importance throughout this text: We use

W := (0, 2π) and I := [−1/2, 1/2] . (2.1)

2.1 Function spaces and differential operators

In order to define operators on functions u ∈ X = L2(Rn) = L2(Rn,Cm), we assume
that we are given a reflexive Banach space Y ⊂ X which is dense in X. In our
examples, Y is a subspace of functions with additional regularity.

The operator M . With the anti-dual space Y ′ of Y , we have the Gelfand triple
Y ⊂ X ≡ X ′ ⊂ Y ′. The differential operatorM of interest is given byM ∈ L(Y, Y ′).

The operator E and the family Mλ. We consider a second operator E :
X → X. In many applications, E is the identity. We will later demand that E is
bounded, self-adjoint and coercive. With a parameter λ ∈ C we define a family of
operators Mλ as

Mλ := M − λE . (2.2)

In this setting, we identify E with the map ι∗ ◦ E ◦ ι : Y → Y ′. Suppressing
embeddings, the map can also be described by the formula ⟨Eu, v⟩Y ′,Y = ⟨Eu, v⟩X
for all u, v ∈ Y . With this interpretation, (2.2) defines Mλ ∈ L(Y, Y ′) for every
λ ∈ R.

The restriction R. We are interested in perturbations of the family Mλ. We
want to study perturbations that are supported in the unbounded strip Rn−1 ×W
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with W = (0, 2π). For a precise definition we use the restriction operator R :
L2(Rn) ∋ u 7→ u|Rn−1×W ∈ L2(Rn−1 ×W ), which is a bounded linear operator. We
also use the adjoint operator R∗ : L2(Rn−1 ×W ) → L2(Rn); this operator extends
a function on Rn−1 ×W trivially to Rn (extension of the function by zero). By our
convention regarding embeddings, we do not distinguish between R and the operator
R ◦ ι : Y → L2(Rn−1 ×W ).

The operators Sδ. Indexed by a further real parameter δ ≥ 0, we assume that
we are given a family of bounded linear operators Sδ ∈ L(L2(Rn−1 ×W,Cm)). We
assume that δ is a measure for the size of Sδ in the sense that, for some C > 0, there
holds ∥Sδ∥ ≤ Cδ for every δ ≥ 0. We restrict ourselfs to the effect of a multiplication
with a non-negative function and assume Sδ = δQQ, where the self-adjoint operator
Q is given by the multiplication with a bounded non-negative function q, hence
Q : u 7→ q u.

We can now define the object of our investigations. We consider the family of
bounded linear operators Y → Y ′, parametrized by the parameters λ ∈ C and δ ≥ 0,

Mλ,δ := M − λ (E +R∗SδR) . (2.3)

2.2 Examples

Our main applications are elliptic systems and Maxwell’s equations.

Perturbed elliptic problem

The most elementary example for our theory is the scalar elliptic equation that was
already sketched in the introduction. We want to clearify how this example is cast
in the abstract language of our main result.

Definition 2.1 (Perturbed elliptic scalar problem). Let n ∈ N be arbitrary and
let m = 1. Coefficients are a, b : Rn → R, both bounded and 2π-periodic in each
direction, both a and b with a positive lower bound. Let a perturbation be given
by 0 ̸= q ∈ L∞(Rn) which is bounded, non-negative, supported in Rn−1 × W and
2π-periodic in the first n − 1 directions. The spaces are X := L2(Rn,Cm) and
Y := H1(Rn,Cm), the operators are

Mu := −∇ · (a∇u) , i.e. ⟨Mu,φ⟩Y ′,Y =

∫
Rn

a∇u · ∇φ̄ , (2.4)

Eu := bu , i.e. ⟨Eu, φ⟩Y ′,Y =

∫
Rn

b u φ̄ , (2.5)

Sδv := δ q2v , i.e. ⟨R∗SδRu, φ⟩Y ′,Y =

∫
Rn

δ q2 u φ̄ . (2.6)

Systems are actually described by the same formulas (2.4)–(2.6), but they are
interpreted in a more general way: In the case of systems one considers arbitrary
m ∈ N, the symbol ∇u stands for the Jacobi matrix of u, the coefficient a is such
that a(x) is a fourth order tensor for every x ∈ Rn, the coefficients b(x) and q(x)
are second order tensors for every x, see Section 4.1.
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Perturbed Maxwell system

Our second application is the perturbed Maxwell operator. The two unknowns are
a magnetic and an electric field, H⃗, E⃗ : R3 → C3. The system can be written as

curl H⃗ + iωεE⃗ = −iωδε1E⃗ , curl E⃗ − iωµH⃗ = 0 .

We eliminate H⃗ by inserting the second relation into the first, set u = E⃗ and use
λ = ω2. We obtain an equivalent description with an operator family Mλ,δ,

Mλ,δu := curl
(
µ−1 curlu

)
− λ(ε+ δε1)u = 0 . (2.7)

The Maxwell system can be described with our abstract framework as follows.

Definition 2.2 (Perturbed Maxwell system). Let the coefficient functions µ, ε ∈
L∞(R3,R) have positive lower bounds and let them be 2π-periodic in every direction.
Let a perturbation be given by a non-negative function 0 ̸= ε1 ∈ L∞(R3,R) that is
2π-periodic in the first two directions and satisfies ε1(x) = 0 for x = (x1, x2, x3) with
x3 /∈ W .

The Maxwell system is encoded with the choices X := L2(R3,C3) and Y :=
H(curl,R3) = {u ∈ L2(R3,C3) | curlu ∈ L2(R3,C3)} and the operators

Mu := curl(µ−1 curlu) , i.e. ⟨Mu,ψ⟩Y ′,Y =

∫
R3

µ−1 curlu · curl ψ̄ ,

Eu := ε u , i.e. ⟨Eu, ψ⟩Y ′,Y =

∫
R3

ε u ψ̄ ,

Sδv := δ ε1 v , i.e. ⟨R∗SδRu, ψ⟩Y ′,Y =

∫
R3

δ ε1 u ψ̄ .

We apply our theory to this system of equations in Section 4.2.

2.3 The Floquet-Bloch transform

Domains for spatial variables are introduced as products of the one-dimensional sets
R and W = (0, 2π). We use W n = (0, 2π)n as a periodicity cell in dimension n
and L2(W n) for functions on this unit cell. For the dual variable of the Floquet-
Bloch transform we use the unit interval I = [−1/2, 1/2] and products thereof, in
particular, In = [−1/2, 1/2]n.

Transformation in all variables

The n-dimensional Floquet-Bloch transform is a map

F{1,...,n} : L
2(Rn) → L2(W n × In) = L2(In, L2(W n)) . (2.8)

This transformation is defined as the extension of the following map, which associates
to a smooth function u with compact support the function û:

û(x, k) :=
∑
ℓ∈Zn

u(x+ 2πℓ) e−i(x+2πℓ)·k . (2.9)

The independent variables for û are x ∈ W n and k ∈ In. We note that, for smooth
u and for arbitrary k, the map û(·, k) = (F{1,...,n}u)(·, k) is 2π-periodic in every
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direction. We work here with this periodic form of the Floquet-Bloch transform
instead of the classicical one, given by eik·xF{1,...,n}, which provides quasi-periodic
images.

The map F{1,...,n} of (2.8) is an isomorphism from L2(Rn) onto L2(W n×In). For
almost every x ∈ W n, the inverse is given by

(F−1
{1,...,n}v)(x) =

∫
In
v(x, k) eik·x dk for all v ∈ L2(W n × In) . (2.10)

The transform F := F{1,...,n} is unitary in L2-spaces,∫
In

〈
(Fv)(·, k), (Fϕ)(·, k)

〉
L2(Wn)

dk = ⟨v, ϕ⟩L2(Rn) for all v, ϕ ∈ L2(Rn) . (2.11)

In contrast to the more standard transform to quasi-periodic functions, the periodic
Floquet-Bloch transform does not commute with gradients. Instead, one has the
formula ∇(eik·xFu) = eik·xF(∇u), which leads to∫

In

〈
∇(eik·xFv)(·, k),∇(eik·xFϕ)(·, k)

〉
L2(Wn)

dk = ⟨∇v,∇ϕ⟩L2(Rn) (2.12)

for all v, ϕ ∈ H1(Rn).

Transformation in less than n variables

It is also possible to perform the Floquet-Bloch transform only in some of the n
directions. Let us derive formulas for the transformation in xn, writing the variables
as x = (x1, x2, . . . , xn) =: (x̃, xn). The transform in the last variable is a map
F{n} : L

2(Rn) → L2
(
(Rn−1 ×W )× I

)
. On smooth functions with compact support,

it is defined, for x = (x̃, xn) ∈ Rn−1 ×W and kn ∈ I, by

(F{n}u)(x, kn) :=
∑
ℓ∈Z

u(x̃, xn + 2πℓ) e−i(xn+2πℓ)kn .

It defines a unitary isomorphism.
The partial Floquet-Bloch transform in the first n − 1 variables is defined ac-

cordingly as a map F{1,...,n−1} : L2(Rn) → L2
(
(W n−1 × R) × In−1

)
. For smooth

arguments u, it is defined, for x = (x̃, xn) ∈ W n−1 × R and m ∈ In−1, by

(F{1,...,n−1}u)(x,m) :=
∑

ℓ∈Zn−1

u(x̃+ 2πℓ, xn) e
−i(x̃+2πℓ)·m .

The transformation F{1,...,n−1} is a unitary isomorphism, for all v, ϕ ∈ L2(Rn) holds

⟨v, ϕ⟩L2(Rn) =

∫
In−1

〈
(F{1,...,n−1}v)(·,m), (F{1,...,n−1}ϕ)(·,m)

〉
L2(Wn−1×R) dm .

2.4 Floquet-Bloch representation of operators

The Floquet-Bloch transformation relates a function u to a transformed function û.
The transformation can therefore also be used to express operators M that act on
u with operators that act on û.
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Transformation in all variables

Let us start with a loose description of the Floquet-Bloch transformation of an
equation. When we write the equation as Mu = f , we seek for a function u : x 7→
u(x) in the space Y so that Mu = f holds as an equality in Y ′. When we apply a
Floquet-Bloch transformation, we seek, for almost every k ∈ In = [−1/2, 1/2]n, a
periodic solution û(·, k) : W n ∋ x 7→ û(x, k) of an equation Mkû(·, k) = f̂(·, k).

We note that we may identify a function û(·, k) onW n with its periodic extension,

û(x+ 2π ℓ, k) := û(x, k) ∀x ∈ W n , ℓ ∈ Zn . (2.13)

We must demand that the periodic extension of û is locally in Y ; this property is
expressed with û(·, k) ∈ Yper for a reflexive Banach space Yper ⊂ L2(W n). We can
then define

L2(In, Yper) :=
{
û ∈ L2(In, L2(W n))

∣∣û(·, k) ∈ Yper for all k , ∥û∥L2(In,Yper) <∞
}
,

where the norm is defined by

∥û∥2L2(In,Yper)
:=

∫
In
∥û(·, k)∥2Yper dk . (2.14)

The space L2(In, Yper) is a linear subspace of L2(In, L2(W n)) and (2.14) defines a
norm on this subspace, L2(In, Yper) is a Banach space.

Definition 2.3 (Admissible subspace Yper). We need a compatibility of Yper with Y .
We say that Yper ⊂ L2(W n) is admissible when the restriction of the Floquet-Bloch
transform defines an isomorphism

F{1,...,n} : Y → L2(In, Yper) . (2.15)

The next definition introduces a representation of an operator M : Y → Y ′

with the Floquet-Bloch transformation. Loosely speaking, we demand that, for the
transformed operator, the variables x and k are decoupled. This is possible when
M is a differential operator with periodic coefficients.

Definition 2.4 (Floquet-Bloch representation). We say that an operator M : Y →
Y ′ possesses a continuous Floquet-Bloch representation in n directions when, for an
admissible space Yper, there exists a family of bounded operators Mk : Yper → Y ′

per,
indexed by k ∈ In, depending continuously on k, such that M is represented by the
family (Mk)k in the following Floquet-Bloch sense: For arbitrary u, v ∈ Y and their
transformations û = F{1,...,n} u and v̂ = F{1,...,n} v holds

⟨Mu, v⟩Y ′,Y =

∫
In

〈
Mkû(·, k), v̂(·, k)

〉
Y ′
per,Yper

dk . (2.16)

We note that this definition carries over to the operator E : L2(Rn) → L2(Rn)
when we consider this map as as operator from Y into Y ′. Continuity of In ∋ k 7→ Ek
from In into L(Yper, Y ′

per) is satisfied if k 7→ Ek : L
2(W n) → L2(W n) is continuous.

Remark 2.5. We demand that the family Mk is continuous on the compact set
k ∈ In. This ensures that the family Mk is uniformly bounded in L(Yper, Y ′

per). In
particular, the right hand side of (2.16) is well defined since the maps k 7→ û(·, k)
and k 7→ v̂(·, k) are of class L2(In, Yper).
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Transformation in n − 1 variables

We write again x = (x1, x2, ..., xn) = (x̃, xn) for the independent coordinates. The
dual variable will always be decomposed as k = (m,κ) with m ∈ In−1 and κ ∈ R.
In the next definition, we always think of Ỹper as being a subspace of functions in
L2(W n−1 × R) that are periodic in the first n − 1 directions and that have some
additional smoothness such that the periodic extension is locally in Y .

Definition 2.6 (Admissible subspace Ỹper). Let Yper ⊂ L2(W n) be admissible for
Y . We say that a subspace Ỹper ⊂ L2(W n−1 × R) is admissible when the following
holds:

(a) The (n− 1)-variables Floquet-Bloch transform on Y defines an isomorphism

F{1,...,n−1} : Y → L2(In−1, Ỹper) . (2.17)

(b) The 1-variable Floquet-Bloch transform on Ỹper defines an isomorphism

F{n} : Ỹper → L2(I, Yper) , (2.18)

We note that a consequence of (2.18) is that also

F{n} : L
2(In−1, Ỹper) → L2(In, Yper) (2.19)

is an isomorphism. Indeed, the map is independent of the parameter m ∈ In−1.
The next definition can be interpreted as: We demand that the operator S is

periodic in the first n− 1 directions.

Definition 2.7 (Floquet-Bloch representation in n − 1 directions). We say that
an operator S : Y → Y ′ possesses a continuous Floquet-Bloch representation in
the first n − 1 directions when, for spaces Yper and Ỹper as in Definition 2.6, there
exists a family of bounded operators Sm : Ỹper → Ỹ ′

per, depending continuously on m,
such that S is represented by the family (Sm)m in the Floquet-Bloch sense: For all
u, v ∈ Y there holds, with û = F{1,...,n−1} u and v̂ = F{1,...,n−1} v:

⟨Su, v⟩Y ′,Y =

∫
In−1

〈
Smû(·,m), v̂(·,m)

〉
Ỹ ′
per,Ỹper

dm . (2.20)

2.5 Implications of Floquet-Bloch representations

Lemma 2.8 (Relation between two Floquet-Bloch representations). Let the spaces
Yper and Ỹper be admissible in the sense of Definitions 2.3 and 2.6 and let M possess
a Floquet-Bloch representation (Mk)k in n directions in the sense of (2.16). We
define Mm : Ỹper → Ỹ ′

per through

⟨Mmũ, ṽ⟩Ỹ ′
per,Ỹper

:=

∫
I

〈
M(m,κ)(F{n}ũ)(·, κ) , (F{n}ṽ)(·, κ)

〉
Y ′
per,Yper

dκ (2.21)

for ũ, ṽ ∈ Ỹper and m ∈ In−1. Then the family Mm is a Floquet-Bloch representation
of M in the first n− 1 directions as described in Definition 2.7.
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Proof. We have to check property (2.20) forM , i.e., we have to verify that, for u, v ∈
Y , the expression ⟨Mu, v⟩Y ′,Y coincides, for û = F{1,...,n−1} u and v̂ = F{1,...,n−1} v,
with∫

In−1

〈
Mmû(·,m), v̂(·,m)

〉
Ỹ ′
per,Ỹper

dm

(2.21)
=

∫
In−1

∫
I

〈
M(m,κ)(F{n}û(·,m))(·, κ) , (F{n}v̂(·,m))(·, κ)

〉
Y ′
per,Yper

dκ dm

=

∫
In

〈
Mk(F{1,...,n}u)(·, k) , (F{1,...,n}v)(·, k)

〉
Y ′
per,Yper

dk .

The desired equality holds by (2.16).

With the following assumption we clearify the situation of interest. Item 3
demands the periodicity of M and E in all directions and the periodicity of the
operators Sδ in n − 1 directions. As we will show in Section 4, the examples of
Definition 2.1 (both in the scalar and in the vectorial case) and the Maxwell system
of Definition 2.2 fit in this framework.

Assumption 2.9. We assume that the following holds.

1. Space Y and operators M , E, and Sδ. For a reflexive Banach space
Y ⊂ L2(Rn) we are given an operator M ∈ L(Y, Y ′). Additionally, we are
given E ∈ L(L2(Rn)) and a family of operators Sδ ∈ L(L2(Rn−1 ×W )).

2. Spaces Yper and Ỹper. Two reflexive Banach spaces Yper and Ỹper are admis-
sible for Y in the sense of Definitions 2.3 and 2.6.

3. Operators Mk, Ek, and Sδ
m. The operators M and E possess continuous

Floquet-Bloch representations (Mk)k and (Ek)k in n directions in the sense of
Definition 2.4. The operators Sδ possess Floquet-Bloch representations (Sδm)m
in n− 1 directions in the sense of Definition 2.7.

4. Properties of Ek. For every k ∈ In, the operator Ek : L2(W n) → L2(W n)
is a self-adjoint coercive isomorphism. The mapping k 7→ Ek is continuously
differentiable from In into L(L2(W n)).

5. Properties of Mk. For every k ∈ In the following holds: The operator Mk

is self-adjoint, i.e. ⟨Mku, v⟩Y ′
per,Yper = ⟨u,Mkv⟩Yper,Y ′

per
for all u, v ∈ Yper. The

operator Mk+Ek is uniformly coercive, i.e. ⟨(Mk+Ek)u, u⟩Y ′
per,Yper ≥ c∥u∥2Yper

for some c > 0 and all u ∈ Yper. The operators Mk − λEk : Yper → Y ′
per are

Fredholm operators with index 0 for all 0 ̸= λ ∈ C. The set of all λ ∈ C
such that Mk − λEk has a non-trivial kernel has no accumulation point except
(possibly) λ = 0. The mapping k 7→Mk is continuously differentiable from In

into L(Yper, Y ′
per).

6. Properties of Sδ
m. For every m ∈ In−1 the operator Sδm : L2(W n) → L2(W n)

is linear, bounded, self-adjoint. We assume Sδm = δQQ, where Q ̸= 0 is a
multiplication operator that multiplies the argument with a fixed non-negative
function q ∈ L∞(W n). Accordingly, for some C > 0, there holds ∥Sδm∥ ≤ C δ.
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Our proof shows that the Fredholm property and the accumulation point prop-
erty of Item 5 is needed actually only in a neighborhood of the critical point, later
on denoted as a+.

Remark 2.10 (Inherited properties). Formulas (2.16) and (2.21) allow to transfer
the properties of Ek and Mk+Ek from Items 4 and 5 to E and Em, and M +E and
Mm+Em, respectively. In particular, also E and Em are self-adjoint and coercive on
L2(W n) and L2(W n−1 ×R), respectively, and M +E and Mm+Em are self-adjoint
and coercive as mappings from Y to Y ′ and Ỹper to Ỹ

′
per, respectively.

To indicate the required calculations, we show how to obtain coercivity of Mm +
Em. From (2.21) for Mm and Em we obtain, for ũ ∈ Ỹper

⟨(Mm + Em)ũ, ũ⟩Ỹ ′
per,Ỹper

=

∫
I

〈(
(Mk + Ek) ◦ F{n}

)
ũ,F{n}ũ

〉
Y ′
per,Yper

dκ

≥ c

∫
I

∥F{n}ũ∥2Yper dκ ≥ c ∥ũ∥2
Ỹper

,

where we used the isomorphism (2.18) in the last inequality. We recall that constants
c and C may change from one line to the next.

Notation regarding restrictions. We recall that Ỹper is a subspace of L2(W n−1 ×R).
Strictly speaking, in Item 6, we should not write Sδm, but we should write R1S

δ
mR

∗
1 :

L2(W n) → L2(W n) with the restriction operator R1 : L
2(W n−1 ×R) ∋ u 7→ u|Wn ∈

L2(W n) and its dual, the trivial extension R∗
1. In the following, we do not distinguish

between R and R1 and write R for both restriction operators. When the action of
the operator is clear from the context, we suppress the restriction operator entirely.

Invertibility properties

When an operator Mλ can be represented in the Floquet-Bloch sense with a family
(Mλ

k )k∈In , then properties of Mλ imply properties of (Mλ
k )k∈In and vice versa. We

now investigate how invertibility properties carry over from one representation to
the other.

Lemma 2.11 (Invertibility of Mλ when all Mλ
k are invertible). Let Assumption 2.9

hold and let λ ∈ R be fixed. We assume that, for every k ∈ In, the map Mλ
k =

Mk − λEk : Yper → Y ′
per is invertible. In this situation, also Mλ : Y → Y ′ is

invertible.

Proof. Let f ∈ Y ′ be arbitrary. The map F{1,...,n} : Y → L2(In, Yper) is an isomor-

phism by (2.15). We introduce f̃ := f◦F−1
{1,...,n} : L2(In, Yper) → C. As an anti-linear

functional on L2(In, Yper), the map f̃ has a representation f̂ ∈ L2(In, Y ′
per). We use

this representation and define, for almost every k ∈ In,

û(k) := (Mλ
k )

−1(f̂(k)) ∈ Yper .

The continuity of k 7→ Mλ
k required in Definition 2.4 implies uniform boundedness

of the operator family (Mλ
k )

−1 : Y ′
per → Yper and thus û ∈ L2(In, Yper). The inverse
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transform yields u := F−1
{1,...,n}û ∈ Y . The fact that M and E are represented by the

families Mk and Ek allows to calculate with (2.16), for a test-function φ ∈ Y ,

〈
Mλu, φ

〉
Y ′,Y

=

∫
In

〈
Mλ

k û(·, k), φ̂(·, k)
〉
Y ′
per,Yper

dk

=

∫
In

〈
f̂(·, k), φ̂(·, k)

〉
Y ′
per,Yper

dk =
〈
f̂ , φ̂

〉
L2(In,Yper)′,L2(In,Yper)

= f̃(φ̂) = (f ◦ F−1
{1,...,n})(φ̂) = f(φ) .

This shows Mλu = f and we have found the inverse element u ∈ Y .

We have shown surjectivity of Mλ. Since the operator is selfadjoint, this implies
also the injectivity of Mλ.

Lemma 2.12 (Invertibility of all Mλ
k when Mλ is invertible). Let Assumption 2.9

hold and let 0 ̸= λ ∈ C be fixed. When Mλ : Y → Y ′ is invertible, then, for every
k ∈ In, the map Mλ

k = Mk − λEk : Yper → Y ′
per is invertible. Furthermore, the

mapping k 7→ (Mλ
k )

−1 : Y ′
per → Yper is continuous.

Proof. For a contradiction argument we assume that, for some k = k◦ ∈ In, the
map Mλ

k = Mk − λEk : Yper → Y ′
per is not invertible. Our aim is to conclude that

Mλ : Y → Y ′ is not invertible, which yields the desired contradiction.

The operatorMλ
k◦ is a Fredholm operator with index 0 by Assumption 2.9, Item 5.

Since we assumed that the operator is not invertible, it has a kernel; we find u◦ ∈ Yper
with ∥u◦∥Yper = 1 and Mλ

k◦u
◦ = 0. Starting from the element u◦ ∈ Yper, it is our

aim to construct a bounded family ûε ∈ L2(In, Yper) and the corresponding family
uε := F−1

{1,...,n}ûε ∈ Y with uε ̸→ 0 in Y and Mλuε → 0 in Y ′ as ε → 0. This shows

the non-invertibility of Mλ and concludes the proof.
We now construct ûε; for notational simplicity we assume here that k◦ is an inner

point of In, the same construction with minor modifications can be used also for
boundary points. For arbitrary (small) ε > 0 we construct a localization function
as a normalized characteristic function on a small cube: We set pε(k) := ε−n/2 if
|kj−k◦j | < ε/2 for all j = 1, . . . , n, and pε(k) := 0 for other arguments k = (k1, ..., kn).
With the characteristic function pε we define

ûε(·, k) := u◦(·) pε(k) , ûε ∈ L2(In, Yper) .

Because of ∥u◦∥Yper = 1 we have constructed a function with

∥ûε∥2L2(In,Yper)
=

∫
In
∥u◦∥2Yper |pε(k)|

2 dk =

∫
In
|pε(k)|2 dk = 1 .

The norm of the family uε = F−1
{1,...,n}ûε ∈ Y is bounded from below by a positive

constant, since F−1
{1,...,n} is an isomorphism.

For the family uε we now calculate Mλuε with the help of the Floquet-Bloch
representation of Mλ, see (2.16). For arbitrary v ∈ Y and the transformed function
v̂ = F{1,...,n}v holds

∣∣⟨Mλuε, v⟩Y ′,Y

∣∣ = ∣∣∣∣∫
In

〈
Mλ

k ûε(·, k), v̂(·, k)
〉
Y ′
per,Yper

dk

∣∣∣∣
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=

∣∣∣∣∫
In

〈
pε(k)M

λ
k u

◦, v̂(·, k)
〉
Y ′
per,Yper

dk

∣∣∣∣
≤

∣∣∣∣∫
In
pε(k)

〈
(Mλ

k −Mλ
k◦)u

◦, v̂(·, k)
〉
Y ′
per,Yper

dk

∣∣∣∣ ,
where we used Mλ

k◦u
◦ = 0.

We now exploit that Mλ
k is continuous in k by Definition 2.4. The difference

Mλ
k − Mλ

k◦ is small in L(Yper, Y ′
per) on the support of pε for small ε > 0, which

provides, as ε→ 0: ∣∣⟨Mλuε, v⟩Y ′,Y

∣∣ ≤ o(1) ∥v∥Y ,
where the quantity o(1) is independent of v. This shows Mλuε → 0 in Y ′ as ε→ 0,
which is the desired result.

We have obtained that Mλ
k = Mk − λEk is an isomorphism from Yper onto Y

′
per

for every k ∈ In. Since these operators depend continuously on k, their inverses are
continuous. This implies the second claim of the lemma.

3 Spectral gaps

Definition 3.1 (Spectral gap). We consider a family of operators Mλ,δ, indexed by
λ ∈ C, for a fixed value δ ≥ 0. We say that a nontrivial interval (a−, a+) ⊂ R is
contained in a spectral gap for the operator family Mλ,δ : Y → Y ′ when

Mλ,δ : Y → Y ′ is invertible for all λ ∈ (a−, a+) . (3.1)

We say that (a−, a+) ⊂ R is a spectral gap, when (a−, a+) is contained in a
spectral gap and when it is maximal with this property, i.e.: For every η > 0, neither
(a− − η, a+) nor (a−, a+ + η) is contained in a spectral gap.

Our main result is the following theorem. We show that the upper end of the
spectral gap is pushed down or eigenvalues are created inside the gap. Let us
emphasize that it is not excluded that the spectral gap is shifted towards 0; in this
sense, the spectral gap of the perturbed system need not be smaller in length.

The assumption that is formulated in the theorem is satisfied for every system
with a unique continuation property.

Theorem 3.2 (A spectral gap is reduced by a perturbation). Let Assumption 2.9
hold and let (a−, a+) be a spectral gap of the family Mλ = M − λE. We use
a0 := (a− + a+)/2, the mid-point of the spectral gap. We assume that, for every
k ∈ In with N (M

a+
k ) ̸= {0}, there exists an eigenfunction ϕ ∈ N (M

a+
k ) such that

⟨Qϕ, ϕ⟩ =
∫
Wn q |ϕ|2 ̸= 0.

Then there exists δ0 > 0 such that, for every δ ∈ (0, δ0), the interval (a0, a+) is
not contained in a spectral gap of the family Mλ,δ =M − λ(E +R∗SδR).

The theorem is a consequence of the subsequent three lemmas. The first lemma
provides a value k◦ ∈ In for which invertibility fails.

Lemma 3.3 (Critical k). Let Assumption 2.9 hold and let (a−, a+) be a spectral gap
of the family Mλ with a+ > 0. Then there exists k◦ ∈ In such that

M
a+
k◦ =Mk◦ − a+Ek◦ : Yper → Y ′

per (3.2)

is not invertible.
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In view of Lemmas 2.11 and 2.12, the conclusion of the lemma is essentially
equivalent to: Ma+ is not invertible.

Proof. Step 1: A closed set Σ of spectral values. We introduce σ(Mk) := {λ ∈ R |
Mk − λEk : Yper → Y ′

per is not invertible} and consider the bounded set

Σ :=
⋃
k∈In

σ(Mk) ∩ [a+, a+ + 1] ⊂ R .

We claim that Σ is closed. To show this, let λj → λ ∈ R be a convergent sequence
with λj ∈ Σ. By definition of Σ there holds λj ∈ σ(Mkj) ∩ [a+, a+ + 1] for some
kj ∈ In. By compactness of In, we find a subsequence kj → k for some k ∈ In. The
operator Mk − λEk cannot be invertible since otherwise also Mkj − λjEkj had to be
invertible for sufficiently large j. We exploit here that In ∋ k 7→ Mk ∈ L(Yper, Y ′

per)
and k 7→ Ek are continuous. We therefore find λ ∈ σ(Mk) and hence λ ∈ Σ. Since
λj was arbitrary, this shows that Σ is closed.

Step 2: Conclusion. For a contradiction argument, we assume the following
property: For every k ∈ In, the operator M

a+
k = Mk − a+Ek : Yper → Y ′

per is
invertible. This property implies a+ ̸∈ Σ. Since Σ is closed, we find η > 0 such that
λ ̸∈ Σ for every λ ∈ [a+, a++η]. With this parameter η > 0, for every λ ∈ [a+, a++η]
and every k ∈ In, the operator Mλ

k is invertible. We can apply Lemma 2.11 to
conclude that Mλ is invertible. We therefore find that also (a−, a++ η) is contained
in a spectral gap. This is in contradiction to the maximality of (a−, a+).

The second lemma is treating the unperturbed operator after a Floquet-Bloch
transform in n − 1 coordinates. We are therefore treating the underlying spatial
domain W n−1 × R.

Lemma 3.4 (Large inverse for the unperturbed operator). Let the situation be as
in Theorem 3.2. Let k◦ = (m◦, κ◦) with m◦ ∈ In−1 and κ◦ ∈ I be such that M

a+
k◦

has a non-trivial kernel. Let 0 ̸= ϕ ∈ N (M
a+
k◦ ) be an element of the kernel and let

r ∈ L2(W n) be a function with

⟨re−iκ◦xn , ϕ⟩L2(Wn) ̸= 0 . (3.3)

Then there holds, for every sequence (λi)i with λi < a+ and λi → a+:

lim sup
λ→a+

∣∣⟨(M − λE)−1
m◦R∗r, R∗r⟩L2(Wn−1×R)

∣∣ = ∞ . (3.4)

Proof. Step 1: Reformulation of the task. The scalar product in (3.4) has the entry
v := (M − λE)−1

m◦R∗r ∈ Ỹper. In this proof, we must analyze v, the solution of the
problem (M − λE)m◦v = R∗r, with respect to its dependence on λ. We transform
this equation with the one-dimensional Floquet-Bloch transform in the last variable.
We write vκ(·) = (F{n}v)(·, (m◦, κ)) ∈ L2(W n) and rκ ∈ L2(W n) for the transformed
functions in the point κ. We recall that m◦ is fixed in this proof, κ varies and we
use k = (m◦, κ).

Since the function R∗r vanishes for xn ̸∈ W , the Floquet-Bloch transform of
R∗r in the variable xn is the function rκ(x) = r(x)e−iκxn . The transformed solution
vκ ∈ Yper solves

(Mk − λEk)vκ = rκ , (3.5)
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compare Lemma 2.8. The essential task of this proof is to find a lower bound for
the expression

⟨vκ, rκ⟩L2(Wn) = ⟨(M − λE)−1
k rκ, rκ⟩L2(Wn) .

We claim that, for every κ̂ ∈ I, there exist constants c > 0 and η > 0 such that, for
all |κ− κ̂| < η and all λ ∈ (a+ − η, a+):

⟨vκ, rκ⟩L2(Wn) ≥ −c∥rκ∥2L2(Wn) . (3.6)

Let us note that (3.6) follows directly when κ̂ has the property that (M−a+E)(m◦,κ̂)

is invertible. Indeed, in this case, there exists η = η(κ̂) and c = c(κ̂) > 0 such that
∥(Mk − λEk)

−1∥ ≤ c for all |κ− κ̂| < η and λ ∈ (a+ − η, a+). This provides (3.6).

Step 2: Description with eigenfunctions. We now consider κ̂ such that (M −
a+E)(m◦,κ̂) is not invertible. We apply Theorem A.4 with X := L2(W n) and Y :=
Yper ⊂ X and the operator families M(κ) := M(m◦,κ) and E(κ) := E(m◦,κ). All
assumptions of Theorem A.4 are satisfied, its application yields the existence of
η = η(κ̂) > 0 and a finite number N of mappings κ 7→ µj,κ for j = 1, . . . , N
and |κ − κ̂| < η such that µj,κ are eigenvalues of Mk with mass matrix Ek for
j = 1, . . . , N , satisfying µj,κ̂ = a+, the mappings κ 7→ µj,κ are Lipschitz continuous
for all j = 1, . . . , N . We denote by ϕj,κ ∈ Yper corresponding eigenfunctions,

Mkϕj,κ = µj,κEkϕj,κ ,

normalized as ⟨ϕj,κ, Ekϕℓ,κ⟩L2(Wn) = δj,ℓ. Theorem A.4 provides also the continuity
of the eigenprojections Pκ (orthogonal with respect to ⟨u, v⟩Ek

= ⟨u,Ekv⟩L2(Wn))
from L2(W n) onto the N -dimensional space

Mk :=
{
ϕ ∈ Yper | (Mk − µj,κEk)ϕ = 0 for some j ∈ {1, . . . , N}

}
⊂ L2(W n) .

The projection is given, for arbitrary ψ ∈ L2(W n), by

Pκψ =
N∑
j=1

⟨ψ, ϕj,κ⟩Ek
ϕj,κ . (3.7)

We recall that we consider λ < a+ and that (a−, a+) is a spectral gap. The eigen-
values therefore satisfy λ < a+ ≤ µj,κ.

Step 3: Verification of (3.6) and an improvement thereof when (M − a+E)(m◦,κ̂)

is not invertible. We write the solution of (3.5) in the form

vκ =
N∑
j=1

⟨rκ, ϕj,κ⟩L2

µj,κ − λ
ϕj,κ + v⊥κ . (3.8)

The equation for v⊥κ is then

(Mk − λEk)v
⊥
κ = rκ −

N∑
j=1

⟨rκ, ϕj,κ⟩L2

µj,κ − λ
(Mk − λEk)ϕj,κ

= rκ −
N∑
j=1

⟨rκ, ϕj,κ⟩L2(Wn)Ekϕj,κ . (3.9)
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Claim 3a: With the projection Pk of (3.7), we claim that there holds Pkv
⊥
κ = 0.

Indeed, multiplying (3.9) with ϕℓ,κ, using that Mk−λEk is self-adjoint and that the
ϕj,κ are Ek-orthogonal, we find

(µℓ,κ − λ)⟨v⊥κ , Ekϕℓ,κ⟩L2(Wn) = ⟨rκ, ϕℓ,κ⟩L2(Wn) −
N∑
j=1

⟨rκ, ϕj,κ⟩L2 δj,ℓ = 0 .

This provides ⟨v⊥κ , Ekϕℓ,κ⟩L2(Wn) = 0 for all ℓ and thus Pkv
⊥
κ = 0. Claim 3a is shown.

Using Claim 3a, we can replace equation (3.9) by the equivalent equation

(Mk − λEk + EkPκ)v
⊥
κ = rκ −

N∑
j=1

⟨rκ, ϕj,κ⟩L2 Ekϕj,κ . (3.10)

Claim 3b: The operator Mk−λEk+EkPκ is an isomorphism. The claim regards
κ close to κ̂ and λ close to a+. Since only small perturbations are treated, it is
actually sufficient to show that Mk − λEk + EkPκ is an isomorphism for κ = κ̂ and
λ = a+.

Let us consider injectivity. For k = (m◦, κ̂) we study the relation (Mk − a+Ek +
EkPκ̂)u = 0. Multiplication with Pκ̂u yields, because of µj,κ̂ = a+ for all j,

0 = ⟨(Mk − a+Ek + EkPκ̂)u, Pκ̂u⟩L2 = ⟨EkPκ̂u, Pκ̂u⟩L2 ,

and thus Pκ̂u = 0. The original equation for u simplifies to (Mk − a+Ek)u = 0 and
we conclude the u is in the eigenspace, u ∈ Mk. In this situation, the projection
acts trivially and we obtain 0 = Pκ̂u = u. This provides the injectivity.

The operator Mk−λEk+EkPκ is a finite-dimensional perturbation and hence a
compact perturbation of a Fredholm operator with index 0. We therefore conclude
that the entire operator is again Fredholm with index 0 and thus, by injectivity, an
isomorphism for all |κ− κ̂| ≤ η and λ ∈ (a+ − η, a+). Claim 3b is shown.

Claim 3b implies ∥(Mk−λEk+EkPκ)−1∥ ≤ c and hence, since v⊥κ satisfies (3.10),

∥v⊥κ ∥Yper ≤ c∥rκ∥L2 for all |κ− κ̂| ≤ η and λ ∈ (a+ − η, a+) .

We insert our findings into (3.8) to obtain

⟨vκ, rκ⟩L2(Wn) =
N∑
j=1

|⟨rκ, ϕj,κ⟩L2|2

µj,κ − λ
+ ⟨v⊥κ , rκ⟩L2(Wn)

≥
N∑
j=1

|⟨rκ, ϕj,κ⟩L2|2

µj,κ − λ
− c∥rκ∥2L2(Wn) . (3.11)

This holds for |κ− κ̂| < η and λ ∈ (a+ − η, a+). We note that (3.11) also provides
(3.6) for κ̂ since µj,κ ≥ a+ > λ holds for all j and κ.

Step 4: Conclusion. From the compactness of I we conclude that we can choose
η and c independent of κ̂, which means that (3.6) holds for some constant c for
all κ ∈ I and all λ ∈ (a+ − η, a+), and the stronger estimate (3.11) holds for all
κ ∈ (κ̂− η, κ̂+ η) with κ̂ such that (M − a+E)(m◦,κ̂) is not invertible.
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When we integrate the lower bounds with respect to κ ∈ I, we use the stronger
estimate (3.11) in the interval (κ◦ − η, κ◦ + η) and the weaker estimate (3.6) in the
remaining part of I. The one-dimensional Floquet-Bloch transform is an unitary
isomorphism and we can calculate

⟨(M − λE)−1
m◦R∗r, R∗r⟩L2(Wn−1×R)

= ⟨v,R∗r⟩L2(Wn−1×R) =

∫
I

⟨vκ, rκ⟩L2(Wn) dκ

≥ −c ∥rκ∥2L2(Wn) +

∫ κ◦+η

κ◦−η

N∑
ℓ=1

|⟨rκ, ϕℓ,κ⟩L2(Wn)|2

µℓ,κ − λ
dκ .

In this lower bound, we can now use the fact that the maps κ 7→ µj,κ are locally
Lipschitz continuous. Because of µj,κ◦ = a+, we have

µj,κ − λ ≤ µj,κ◦ − λ + cL|κ− κ◦| = a+ − λ + cL|κ− κ◦|

for |κ−κ◦| < η where cL > 0 denotes the Lipschitz constant. This leads to the lower
bound

⟨(M − λE)−1
m◦R∗r, R∗r⟩L2(Wn−1×R)

≥
κ◦+η∫
κ◦−η

1

a+ − λ+ cL|κ− κ◦|

N∑
j=1

∣∣〈rκ, ϕj,κ〉L2(Wn)

∣∣2 dκ − c ∥r∥2L2(Wn) .

At this point we use the requirement (3.3), which provides the information that
⟨rκ◦ , ϕj,κ◦⟩L2(Wn) = ⟨re−iκ◦xn , ϕj,κ◦⟩L2(Wn) ̸= 0 for some j ∈ {1, . . . , N}. Indeed,
⟨re−iκ◦xn , ϕj,κ◦⟩L2(Wn) = 0 for all j ∈ {1, . . . , N} would imply ⟨re−iκ◦xnϕ⟩L2(Wn) = 0
for all ϕ ∈ N (M

a+
k◦ ), a contradiction to the assumption. This yields the estimate

⟨(M − λE)−1
m◦R∗r, R∗r⟩L2(Wn−1×R)

≥ c′
κ◦+η′∫
κ◦−η′

1

a+ − λ+ cL|κ− κ◦|
dκ − c ∥r∥2L2(Wn) .

The assertion follows since the integral tends to infinity as λ→ a+.

Our third lemma uses the above constructions in order to derive a result on the
perturbed operator. Again, we treat the operator after a Floquet-Bloch transform
in n− 1 coordinates.

Lemma 3.5 (The inverse of the perturbed operator has a large norm). Let the
situation be as in Theorem 3.2 with (a−, a+) a spectral gap of the family Mλ =
M − λE and a0 = 1

2
(a+ + a−) the mid-point. Let k◦ = (m◦, κ◦) be such that M

a+
k◦

has a non-trivial kernel N (M
a+
k◦ ) ⊂ Yper. We use the assumption of Theorem 3.2

that there exists ϕ ∈ N (M
a+
k◦ ) with ⟨Qϕ, ϕ⟩ ≠ 0. Then there exists δ0 > 0 such that

for every δ ∈ (0, δ0), there exists λ ∈ (a0, a+) such that the operator

(M − λE − λδR∗QQR)m◦ (3.12)

has no bounded inverse.
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Proof. Step 1: Simplification and the function f . With the two real parameters
λ ∈ [a0, a+) and δ > 0, we define the real-valued function

f(λ, δ) := λδ sup
∥w∥=1

⟨(M − λE)−1
m◦R∗Qw,R∗Qw⟩L2(Wn−1×R) , (3.13)

where w ranges in L2(W n) and the norm is ∥w∥ = ∥w∥L2(Wn).
Since the operator is invertible for λ = a0, by boundedness of Q, we can choose

δ0 > 0 such that f(a0, δ) ≤ 1
2
holds for every δ ∈ (0, δ0).

From now on, we consider a fixed parameter δ ∈ (0, δ0).
By assumption we can choose ϕ ∈ N (M

a+
k◦ ) with ∥ϕ∥L2(Wn) = 1 and ⟨Qϕ, ϕ⟩ ≠ 0.

We set w := ϕ eiκ
◦xn and r := Qw = Qϕeiκ

◦xn , the latter since Q is a multipli-
cation operator. Then ⟨re−iκ◦xn , ϕ⟩L2(Wn) = ⟨Qϕ, ϕ⟩ ≠ 0, hence (3.3) is satisfied.
Lemma 3.4 yields supa0<λ<a+ f(λ, δ) = ∞.

By the continuity of f(·, δ) there exists λ ∈ (a0, a+) with f(λ, δ) = 1. We claim
that, for this value of λ, the operator (M − λE − λδR∗QQR)m◦ has no bounded
inverse. When this claim is shown, the proof is complete.

Step 2: The operator A and conclusion. We have to study the operator

A := λδ QR(M − λE)−1
m◦R∗Q : L2(W n) → L2(W n) (3.14)

in more detail. By the choice of λ, the operator A has the property

1 = f(λ, δ) = sup
∥w∥=1

⟨Aw,w⟩L2(Wn) .

Since A is self adjoint, this relation implies ∥A∥ = 1. Accordingly, there exists a
sequence wj ∈ L2(W n) with ∥wj∥L2(Wn) = 1 and

⟨Awj, wj⟩L2(Wn) → 1 as j → ∞ .

We calculate

∥Awj − wj∥2L2(Wn) = ∥Awj∥2L2(Wn) − 2Re⟨Awj, wj⟩L2(Wn) + ∥wj∥2L2(Wn)

≤ ∥A∥ − 2Re⟨Awj, wj⟩L2(Wn) + 1

= 2 − 2Re⟨Awj, wj⟩L2(Wn) .

The right hand side converges to zero. Since the left-hand side is nonnegative, this
implies Awj − wj → 0. The function vj := λ

√
δ (M − λE)−1

m◦R∗Qwj then satisfies√
δQRvj − wj = Awj − wj → 0 and hence also

√
δR∗QQRvj −R∗Qwj → 0.

On the other hand, there holds (M − λE)m◦vj = λ
√
δ R∗Qwj and thus

(M − λE − λδR∗QQR)m◦ vj → 0 . (3.15)

However, vj does not tend to zero; indeed, otherwise we would find wj =√
δQδRvj−(

√
δQRvj−wj) → 0, in contradiction to ∥wj∥L2(Wn) = 1. Relation (3.15)

therefore implies that (M − λE − λδR∗QQR)m◦ is not boundedly invertible.

Proof of Theorem 3.2. Lemma 3.3 provides k◦ = (m◦, κ◦) as needed in Lemma 3.5.
In particular, we find a non-trivial element ϕ ∈ N (M

a+
k◦ ).

Lemma 3.5 provides λ ∈ (a0, a+) such that (M − λE − λδR∗QQR)m◦ is not
invertible. Lemma 2.12 shows that λ is not in the spectral gap of the perturbed
operator. This concludes the proof of Theorem 3.2.
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4 Applications

We next show that our result has many applications: scalar elliptic equations, elliptic
systems with arbitrary dimensions in image and pre-image, elasticity systems and
Maxwell’s equations. In all applications we conclude: When periodic coefficient are
perturbed in such a way that the coefficients are modified along a hyperplane, then
spectral gaps become smaller at the upper end.

4.1 Application to an elliptic system

Let the two dimensions n,m ∈ N be arbitrary. The coefficient fields are a : Rn →
Rm×m×n×n and b : Rn → Rm×m, they are measurable, bounded and 2π-periodic in
every direction. For every x ∈ Rn, the coefficient a is a fourth order tensor in the
sense that an arbitrary matrix ξ ∈ Rn×m is mapped to a matrix a(x) ξ ∈ Rn×m,
given as

(a(x) ξ)ki =
∑
j,l

ak,li,j (x) ξ
l
j . (4.1)

We use the convention that indices that are related to directions in Rn are i and j,
they are lower indices and they run from 1 to n. Indices that are related to vector
coordinates in Rm are k and l, they are upper indices and they run from 1 to m.

We always assume that b is positive definite: For some γ > 0, for every vector
ζ ∈ Rm and every x ∈ Rn holds: ζ · b(x)ζ =

∑
k,l b

k,l(x)ζkζl ≥ γ∥ζ∥2. Furthermore,
we assume that, for every x, the matrix b(x) is symmetric.

Regarding positivity of a, we consider two different requirements. We say that a
is strongly elliptic when the following holds for some γ > 0: For every x ∈ Rn and
every matrix ξ ∈ Rn×m

ξ · a(x) ξ =
∑
i,j,k,l

ξki a
k,l
i,j (x) ξ

l
j ≥ γ∥ξ∥2 . (4.2)

In order to treat additionally the system of elasticity, we consider also an alter-
native concept in the case n = m. We say that a is weakly elliptic when (i) for
every x and every skew-symmetrix matrix ξ there holds a(x) ξ = 0, and (ii) for some
γ > 0 holds

ξ · a(x) ξ ≥ γ∥ξ∥2 (4.3)

for every x ∈ Rn and every symmetric matrix ξ ∈ Rn×m.

With this notation, we can generalize the perturbed elliptic problem of Definition
2.1: The dimensions n,m ∈ N are now arbitrary, the coefficients are a : Rn →
Rm×m×n×n and b : Rn → Rm×m, both measurable, bounded and 2π-periodic in
every direction, b positive and symmetric. The tensor a satisfies either the strong
ellipticity (4.2) or the weak ellipticity (4.3) (in the latter case, the dimensions must
coincide, n = m). The perturbation is given by 0 ̸= q ∈ L∞(Rn,Rm×m) supported
in Rn−1 ×W with q(x) a symmetric matrix for every x, the map q is 2π-periodic in
the first n− 1 directions.

We denote the derivative of a function u : Rn → Rm with ∇u: For every x,

the matrix is ∇u(x) = (∂jul(x))
l
j. Accordingly, (a∇u)(x) =

(∑
j,l a

k,l
i,j (x) ∂jul(x)

)k
i
.

In the first line of the subsequent formulas, the dot in the integrand indicates the
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scalar product in the space Rn×m of matrices. With this interpretation of products,
we use the operators M , E and Sδ of the definitions (2.4)–(2.6).

Proposition 4.1 (The perturbed elliptic problem fits in the abstract framework).
We consider the perturbed elliptic problem of Definition 2.1 with the above general-
ization as a system. We assume that the assumptions on a, b and q are satisfied:
boundedness and periodicity, positivity of b, strong or weak ellipticity of a. This
perturbed elliptic system satisfies all properties of Assumption 2.9.

Proof. The underlying spaces are X = L2(Rn,Cm) and Y = H1(Rn,Cm). There
holds Y ⊂ L2(Rn), M ∈ L(Y, Y ′), E ∈ L(L2(Rn)), hence also E ∈ L(Y, Y ′),
Sδ ∈ L(L2(Rn−1 ×W )). This verifies Item 1 of Assumption 2.9.

We introduce Yper as the normed space

Yper :=
{
u|Wn

∣∣u : Rn → Cn is 2π-periodic in every direction, u ∈ H1
loc(Rn)

}
,

∥u∥Yper := ∥u∥H1(Wn) .

The subordinate space is given by

Ỹper :=
{
u|Wn−1×R

∣∣u ∈ H1
loc(Rn,Cn) is 2π-periodic in x1,..., xn−1,

u|Wn−1×R ∈ H1(W n−1 × R)
}
,

∥u∥Ỹper := ∥u∥H1(Wn−1×R) .

We must check that the two reflexive Banach spaces Yper and Ỹper are admissible
for Y in the sense of Definitions 2.3 and 2.6. Regarding Definition 2.3, we must
verify (2.15), namely that

F{1,...,n} : Y → L2(In, Yper) (4.4)

is an isomorphism. We consider a function u ∈ Y with derivative g = ∇u ∈ L2(Rn).
The function u is mapped to û = û(x, k) = (F{1,...,n}u)(x, k), similarly g to ĝ =
F{1,...,n}g (component-wise, for every entry of g). The derivative of the transformed
function is given by the formula ∇(eik·xû) = eik·xĝ. This verifies that the map of
(4.4) is well-defined. Vice versa, an arbitrary function û ∈ L2(In, Yper) is also of
class L2(In, L2(W n)) and posesses therefore a pre-image u. The gradient of the pre-
image can be calculated from ∇(eik·xû) = eik·xĝ; in particular, the pre-image has an
L2(W n)-gradient and is therefore of class Y . This argument provides also estimates
and we conclude that the map of (4.4) is an isomorphism.

In the same way one verifies (2.17) and (2.18):

F{1,...,n−1} : Y → L2(In−1, Ỹper)

F{n} : Ỹper → L2(I, Yper) .

are isomorphisms. This verifies Item 2 of Assumption 2.9.
We next have to show that the operators M and E possess continuous Floquet-

Bloch representations (Mk)k and (Ek)k in n directions in the sense of Definition 2.4
and that Sδ possesses a Floquet-Bloch representations (Sδm)m in n − 1 directions
in the sense of Definition 2.7. We define the operators Mk, Ek : Yper → Y ′

per and
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Sδm : L2(W n) → L2(W n) as

⟨Mku, φ⟩ :=
∫
Wn

a(x)∇(u(x)eik·x) · ∇(φ̄(x)e−ik·x) dx ,

⟨Eku, φ⟩ :=

∫
Wn

b u φ̄ , ⟨Sδmu, φ⟩ :=
∫
Wn

δ q2 u φ̄ .

(4.5)

We verify the most interesting relation, namely the representation property (2.16)
for M ; the formulas for E and Sδ follow in the same way and are simpler since no
derivative is involved. We calculate, using, in this order: definition of Mk, rule for
gradients of transformed functions, the coefficient a is periodic in all directions and
hence multiplication commutes with the Floquet-Bloch transform, unitarity of the
Floquet-Bloch transform, definition of M .∫

In

〈
Mkû(·, k), v̂(·, k)

〉
Y ′
per,Yper

dk

=

∫
In

∫
Wn

a(x)∇(û(x, k)eik·x) · ∇(φ̂(x, k)e−ik·x) dx dk

=

∫
In

∫
Wn

a(x) eik·xF{1,...,n}(∇u)(x, k) · e−ik·xF{1,...,n}(∇φ̄)(x, k) dx dk

=

∫
In

∫
Wn

F{1,...,n}(a∇u)(x, k) · F{1,...,n}(∇φ̄)(x, k) dx dk

=

∫
Rn

a(x)∇u(x) · ∇φ̄(x) dx

= ⟨Mu, v⟩Y ′,Y .

This shows Item 3 of Assumption 2.9.
For every k ∈ In, the operator Ek : L

2(W n) → L2(W n) is given as a multiplica-
tion with the positive definite matrix b = b(x). This shows that Ek is a self-adjoint
coercive isomorphism. The mapping k 7→ Ek is independent of k, hence, in particu-
lar, differentiable. We obtain Item 4.

For every k, by its definition, Mk is self-adjoint. We have to show that Mk +Ek
is uniformly coercive. In the case of strong ellipticity, this follows by a direct com-
parison of the expression ⟨Mku, u⟩ with ∥u∥2Yper . In the case of weak ellipticity, the
expression ⟨Mku, u⟩ controls only the symmetric part of ∇u. By Korn’s inequality,
this controls indeed all derivatives and we conclude coercivity.

For every k, the operator Mk is an elliptic operator with well-defined resolvent
(Mk + Ek)

−1 : Y ′
per → Yper. This implies that, for every λ ∈ C, we can write

(Mk + Ek)
−1(Mk − λEk) = id − (Mk + Ek)

−1(1 + λ)Ek. The right hand side is a
compact perturbation of the identity in Yper since the embedding Yper → L2(W n)
is compact. This implies that the left hand side is a Fredholm operator with index
0 in L(L2(W n)). Since (Mk + Ek)

−1 : Y ′
per → Yper is an isometry, we can conclude

that the operator Mk − λEk : Yper → Y ′
per is also a Fredholm operator with index 0.

The fact that λ = 0 is the only possible accumulation point of the spectral values is
a consequence of the compactness of the resolvent.

Its formula shows that the map k 7→ Mk is continuously differentiable from In

into L(Yper, Y ′
per). We have thus verified Item 5 of Assumption 2.9.

For every m ∈ In−1, the operator Sδm : L2(W n) → L2(W n) is given by the
multiplication with the function δq2. In particular, it is bounded and self-adjoint.
This shows Item 6.
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In order to apply Theorem 3.2, we finally have to check that there exists an
eigenfunction ϕ ∈ N (M

a+
k ) such that ⟨Qϕ, ϕ⟩ =

∫
Wn q |ϕ|2 ̸= 0. This is a conse-

quence of the fact that eigenfunctions are not vanishing on any open set (unique
continuation property). We conclude the following result on spectral gaps.

Theorem 4.2 (Application to the perturbed elliptic problem). Let (a−, a+) ⊂
(0,∞) with mid-point a0 = (a− + a+)/2 be a spectral gap of the operator

u 7→ −∇ · (a∇u)− λ b u ,

where a, b ∈ L∞(Rn) and q ∈ L∞(Rn−1 ×W ) satisfy the above assumptions. Then
there there exists δ0 > 0 such that, for every δ ∈ (0, δ0], the interval (a0, a+) is not
contained in a spectral gap of the operator family

u 7→ −∇ · (a∇u)− λ (b+ δq2)u .

Application to a problem in linear elasticity

The time-harmonic Lamé system is covered in the above result. Let us sketch the
setting and provide the necessary arguments in dimension n = m. We use the
density ρ0 ∈ L∞(Rn,R) and the Lamé-parameters µ0, λ0 ∈ L∞(Rn,R), the three
functions are assumed to be periodic in every direction and non-negative, ρ0 and µ0

with a positive lower bound (we write µ0 and λ0 for the Lamé-parameters in order
to avoid confusion with the spectral parameter λ). Every matrix ξ ∈ Rn×n can be
symmetrized, we use ξsym := (ξ + ξT )/2. We define the tensor a as follows: For
every x ∈ Rn and every matrix ξ ∈ Rn×n, we set

a(x)ξ = 2µ0(x)ξ
sym + λ0(x) trace(ξ) id . (4.6)

In particular, for every skew-symmetric matrix ξ ∈ Rn×n (that is: ξT = −ξ), there
holds a(x)ξ = 0. We note that the weak ellipticity is satisfied since, for every
symmetric matrix ξ ∈ Rn×n, using the dot here to indicate the scalar product in the
space of matrices:

ξ · a(x)ξ = 2µ0ξ · ξ + λ0|trace(ξ)|2 ≥ γ∥ξ∥2 . (4.7)

Using the symmetrized gradient ∇symu = (∇u + (∇u)T )/2, we can write the
operator also as

div(a∇u) = div(a∇symu) = div(2µ0∇symu+ λ0 trace(∇u) id) .

With the above choices, the elliptic operator of Theorem 4.2 encodes the Lamé
elasticity system with strain ϵ = ∇symu, stress σ = 2µ0(x)ϵ + λ0(x) trace(ϵ) id, and
balance of momentum described by the operator Mu = − div(σ).

Theorem 3.2 yields the spectral gap result for the elasticity system:

Theorem 4.3 (Application to the perturbed system of elasticity). We consider
bounded, non-negative and measurable periodic coefficient functions µ0, λ0, ρ0 : Rn →
R, we assume that µ0 and ρ0 have positive lower bounds. Let a be the tensor of the
Lamé system described in (4.6). Let (a−, a+) ⊂ (0,∞) with mid-point a0 be a spectral
gap of the operator

u 7→ div(a∇u) + λ ρ0 u .
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Let 0 ̸= ρ1 be a non-negative function, periodic in the first n − 1 directions and
supported on Rn−1 × W . Then there exists δ0 > 0 such that, for all δ ∈ (0, δ0],
the interval (a0, a+) is not contained in a spectral gap of the elasticity system with
perturbed mass,

u 7→ div(a∇u) + λ (ρ0 + δρ1)u .

4.2 Application to the Maxwell system

In this section we consider the Maxwell system of Definition 2.2,

⟨Mu,ψ⟩Y ′,Y =

∫
R3

µ−1 curlu · curl ψ̄ , ⟨Eu, ψ⟩Y ′,Y =

∫
R3

ε u ψ̄ ,

⟨R∗SδRu, ψ⟩Y ′,Y =

∫
R3

δ ε1 u ψ̄ .

The underlying space is X = L2(R3,C3). The domain of the operators is Y =
H(curl,R3) = {u ∈ L2(R3,C3) | curlu ∈ L2(R3,C3)}. With the space of locally
integrable functions, Hloc(curl,R3) = {u ∈ L2

loc(R3,C3) | curlu ∈ L2
loc(R3,C3)} we

define the space Yper as

Yper := {u|Wn|u : Rn → Cn is 2π-periodic in every direction, u ∈ Hloc(curl,Rn)} ,
∥u∥Yper := ∥u∥H(curl,Wn) ,

and Ỹper as

Ỹper := {u|Wn−1×R|u ∈ Hloc(curl,Rn,Cn) is 2π-periodic in x1,..., xn−1,

u|Wn−1×R ∈ H(curl,W n−1 × R)
}
,

∥u∥Ỹper := ∥u∥H(curl,Wn−1×R) .

The operators Mk, Ek : Yper → Y ′
per and Sδm : L2(W 3) → L2(W 3) are defined

just as in (4.5); the factor in the definition of Ek is ε instead of b, the factor in the
definition of Sm is ε1 instead of q2, and in the definition of Mk gradients must be
replaced by rotations,

⟨Mku, φ⟩ :=
∫
Wn

µ−1 curl(u(x)eik·x) · curl(φ̄(x)e−ik·x) dx ,

⟨Eku, φ⟩ :=

∫
Wn

ε u φ̄ , ⟨Sδmu, φ⟩ :=
∫
Wn

δ ε1 u φ̄ .

(4.8)

Proposition 4.4 (The Maxwell system fits in the abstract framework). Under the
assumptions on µ, ε and ε1 in Definition 2.2, the above description of the Maxwell
system satisfies all requirements of Assumption 2.9.

Proof. Most items of Assumption 2.9 are shown as in Proposition 4.1.
When we want to verify that F{1,...,n} : Y → L2(In, Yper) is an isomorphism,

we must calculate derivatives. We exploit the product rule to calculate rotations,
curl(eik·xû(x, k)) = eik·x curl û(x, k) +∇(eik·x) × û(x, k). This identity implies that
the function eik·xû(x, k) has a curl in L2 when curl û(x, k) and û(x, k) are both in
L2. Since the Floquet-Bloch transform is an isometry in L2, we can also conclude
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that, vice versa, û(x, k) has a curl in L2 when curl(eik·xû(x, k)) and û(x, k) are both
in L2. This observation is also used in the analysis of F{1,...,n−1} and F{n}.

The only other assumption that requires additional arguments is Item 5 of As-
sumption 2.9. The fact that Mk is self-adjoint follows from its formula in (4.8).
That Mk + Ek is uniformly coercive follows from

⟨(Mk + Ek)u, u⟩Y ′
per,Yper ≥

∫
Wn

µ−1 curl(u(x)eik·x) · curl(ū(x)e−ik·x) dx

+

∫
Wn

ε |u(x)eik·x|2 dx ≥ min(µ−1, ε)∥u(x)eik·x∥2H(curl) ≥ c∥u∥2Yper .

The fact that the mapping k 7→ Mk is continuously differentiable from In into
L(Yper, Y ′

per) follows also from (4.8).

It remains to show that the operators Mk − λEk : Yper → Y ′
per are Fredholm

operators with index 0 for all λ ∈ C, λ ̸= 0. This property is verified for real and
positive λ in Lemma B.1 of [13], the argument can easily be extended to 0 ̸= λ ∈ C.
We note that, in [13], the roles of ε and µ are exchanged and the parameter λ is
denoted as ω2. Another technical difference is that, while we let the operator curl
act on u(x)eik·x, in [13], u is in the space of k-quasiperiodic functions (and α is used
instead of k as the parameter for quasi-periodicity).

The eigenvalues have no accumulation point except for (possibly) λ = 0. This
is a consequence of the proof of Lemma B.1 of [13]. The underlying space can
be decomposed with a Helmholtz decomposition. On the space of divergence-free
functions, the Maxwell operator is a compact perturbation of the identity. On the
space of gradients, the Maxwell operator is multiplication with −ω2. This shows
that 0 is the only possible accumulation point of eigenvalues.

Theorem 3.2 yields the subsequent spectral gap result for the Maxwell system.

Theorem 4.5 (Application to the perturbed Maxwell system). Let µ, ε ∈ L∞(Rn)
and ε1 ∈ L∞(Rn−1 ×W ) satisfy the assumptions of Definition 2.2. Let (a−, a+) ⊂
(0,∞) with mid-point a0 be a spectral gap of the operator family

u 7→ curl(µ−1 curlu)− λ ε u .

Then there exists δ0 > 0 such that, for all δ ∈ (0, δ0], the interval (a0, a+) is not
contained in a spectral gap of the operator family

u 7→ curl(µ−1 curlu)− λ (ε+ δε1)u .

A Lipschitz dependence of eigenvalues

In the proof our main result, we use a well-known property of parameter depen-
dent eigenvalue problems: The Lipschitz dependence of eigenvalues, formulated in
a classical form in Theorem A.1 below. The Lipschitz dependence of eigenvalues is
well-known and frequently used, but we did not find a reference with full proof in
the required setting, namely that of Theorem A.4 for Fredholm operators. For the
convenience of the reader, we provide all proofs. The ideas are taken from [12].
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A.1 Classical eigenvalue problem

We are interested in a family of operators, indexed with a real parameter κ. We
always assume that, with real numbers κ̂, η0 ∈ R, η0 > 0, the parameter ranges in a
real interval, κ ∈ I0 := (κ̂ − η0, κ̂ + η0). We consider the problem for κ = κ̂ as the
unperturbed problem.

For a linear operator A : X → X, we write σ(A) for the spectrum of A. Let us
assume that, for every 0 ̸= λ ∈ C, the operator A−λ id is a Fredholm operator with
index 0. Under this assumption, the set σ(A)\{0} ⊂ R consists only of eigenvalues.
Furthermore, for every eigenvalue, algebraic and geometric multiplicity coincide.

Theorem A.1 (Lipschitz dependence of eigenvalues). Let X be a Hilbert space over
C. For an interval I0 = (κ̂−η0, κ̂+η0), let A ∈ C1(I0,L(X)) be a family of operators.
For every κ ∈ I0 we assume that (i) A(κ) : X → X is self-adjoint and (ii) for every
0 ̸= λ ∈ C, the operator A(κ)− λid is a Fredholm operator with index 0.

Let λ̂ ̸= 0 be an isolated eigenvalue of A(κ̂) and let m := dimN (A(κ̂)−λ̂ id) <∞
be the dimension of the corresponding eigenspace. Then there exists a parameter
0 < η ≤ η0 such that, on the possibly reduced interval I := (κ̂− η, κ̂+ η), there exist
m Lipschitz continuous functions λj : I → R, j = 1, . . . ,m, such that, for every

j ≤ m, λj(κ̂) = λ̂ and, for every κ ∈ I, the real number λj(κ) is an eigenvalue of
A(κ). In addition, the functions λj provide a continuation of the eigenspace in the
following sense: The linear subspace

M(κ) :=
m⊕
j=1

N
(
A(κ)− λj(κ) id

)
satisfies M(κ̂) = N (A(κ̂) − λ̂ id), for every κ ∈ I holds dim(M(κ)) = m, and
the orthogonal projection P (κ) from X onto M(κ) ⊂ X is differentiable as a map
P : I ∋ κ 7→ P (κ) ∈ L(X).

Remark: A well know counterexample by Rellich, presented as Example II, 5.3 in
[12], shows that the eigenvectors ϕj(κ) corresponding to the eigenvalues λj(κ) are not
necessarily continuous in κ. It is therefore important to study the projection P (κ) to
the entire continuation of the eigenspace, M(κ). We also note that Example II, 5.9
of [12] shows that the eigenvalues λj are not necessarily continuously differentiable
in κ. In this sense, the Lipschitz dependence of the eigenvalues is optimal.

The proof of the theorem is based on two lemmas. The first lemma provides a
formula for the projection onto eigenspaces. If we think of the above situation with
a parameter κ, we might say: The subsequent lemma is for a fixed point κ ∈ I.

Regarding notation: We denote eigenvalues in the theorem by λj, it is possible
(and it might be necessary) that eigenvalues are repeated, λj = λi for j ̸= i. In
the subsequent lemma, eigenvalues are denoted by µj, every eigenvalue appears only
once.

Lemma A.2 (Formula for projections). Let X be a Hilbert space over C and let
A ∈ L(X) be self-adjoint with the property that A−λ id is Fredholm with index 0 for
every 0 ̸= λ ∈ C. Let D ⊂ C be an open disc with 0 ̸∈ D̄, we regard the boundary
Γ = ∂D as a positively oriented simple curve in C. We assume that there are no
spectral values on the boundary, ∂D ∩ σ(A) = ∅, and that D contains finitely many
eigenvalues of A, denoted as µ1, . . . , µn. In this situation, the orthogonal projection
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P ∈ L(X) onto the subspace M :=
⊕n

j=1N (A − µj id) coincides with a complex
integral: For arbitrary u ∈ X holds

Pu =
1

2πi

∫
Γ

(A− λ id)−1u dλ . (A.1)

Proof. Step 1: Preparations. For every eigenvalue µj, let ψℓ,j with index ℓ =
1, . . . ,mj be the eigenvectors of A corresponding to µj. We may assume that these
eigenvectors are normalized such that {ψℓ,j | ℓ = 1, . . . ,mj, j = 1, . . . , n} is an
orthonormal basis of M. By its definition, the space M is invariant under A in the
sense that A(M) ⊂ M. Since A is self-adjoint, this implies that also the orthogonal
complement M⊥ is invariant under A.

For u ∈ X, the projection onto M is

Pu =
n∑
j=1

mj∑
ℓ=1

⟨u, ψℓ,j⟩X ψℓ,j .

The application of (A− λ id)−1 can be written, with u⊥ = (id− P )u ∈ M⊥, as

(A− λ id)−1u = (A− λ id)−1u⊥ +
n∑
j=1

1

µj − λ

mj∑
ℓ=1

⟨u, ψℓ,j⟩X ψℓ,j .

In order to obtain (A.1), we must establish a relation of these two quantities.

Step 2: Application of the Cauchy integral formula. Let u, v ∈ X be arbitrary
and let u⊥ be defined as above; these vectors are kept fixed until the end of the
proof. For every λ ∈ D \ {µ1, . . . , µn}, we consider the expression

f(λ) :=
〈
(A− λ id)−1u, v

〉
X

=
〈
(A− λ id)−1u⊥, v

〉
X

+
n∑
j=1

1

µj − λ

mj∑
ℓ=1

⟨u, ψℓ,j⟩X ⟨ψℓ,j, v⟩X .

We begin with an analysis of the first term, g : λ 7→
〈
(A− λ id)−1u⊥, v

〉
X
. This

function can actually be extended as a continuous function to all of D and also to D̄.
This follows from the fact that A − λ id : M⊥ → M⊥ is an invertible operator for
every λ ∈ D̄ (it is a Fredholm operator with index 0, restricted to the complement of
the kernel, and it is considered as a map to its image). By the analytic dependence
on λ, the function g is holomorphic in λ ∈ D.

As a consequence, f is a meromorphic function in D with poles in the eigenval-
ues µj, j = 1, . . . , n, the corresponding residua are

∑mj

ℓ=1⟨u, ψℓ,j⟩X ⟨ψℓ,j, v⟩X . The
residual theorem yields

1

2πi

∫
Γ

〈
(A− λ id)−1u, v

〉
X
dλ =

1

2πi

∫
Γ

f(λ) dλ

=
n∑
j=1

mj∑
ℓ=1

⟨u, ψℓ,j⟩X ⟨ψℓ,j, v⟩X =
〈
Pu, v

〉
X
.

Since this holds for all v ∈ X, the characterization (A.1) is shown.
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The next lemma provides, for a differentiable family of projections, a differen-
tiable family of coordinates for the images.

Lemma A.3 (Coordinates for a family of projections). Let X be a complex Hilbert
space and let I = (κ̂− η, κ̂+ η) be a real interval. Let P ∈ C1(I,L(X)) be a family
of operators such that P (κ) : X → X is an orthogonal projection for every κ ∈ I.

Then there exists a differentiable family I ∋ κ 7→ U(κ) ∈ L(X) such that U(κ̂) =
id and, for every κ ∈ I, U(κ) is a unitary operator that provides coordinates for the
subspace P (κ)X in the sense that

U(κ)P (κ̂)U(κ)∗ = P (κ) . (A.2)

Proof. Step 1: Preparation. We prepare the proof by collecting consequences of the
fact that every P (κ) is a projection. From P (κ) ◦ P (κ) = P (κ) we obtain for the
derivative P ′(κ) = ∂κP (κ), suppressing the argument, P ′P + PP ′ = P ′ and, as a
consequence, PP ′P = 0. For Q := P ′P − PP ′ we therefore obtain

PQ = −PP ′ , QP = P ′P , QP − PQ = P ′ . (A.3)

The orthogonality of P implies, for all elements u, v ∈ X, the identity ⟨u, Pv⟩ =
⟨Pu, Pv⟩ = ⟨Pu, v⟩ and hence P ∗ = P . Differentiating the identity also implies
(P ′)∗ = P ′ and, in turn, Q∗ = −Q.

Step 2: Unitary operators as solutions of an ODE.We use an ordinary differential
equation (ODE) to find U ∈ C1(I,L(X)), namely the linear initial value problem

U ′(κ) = Q(κ)U(κ) ∀κ ∈ I , U(κ̂) = id . (A.4)

We claim that the solution is a family of unitary operators. To verify this claim,
we study the operator family V := U∗. By forming the dual of (A.4) and exploiting
Q(κ)∗ = −Q(κ), we find that V solves the ODE

V ′(κ) = −V (κ)Q(κ) ∀κ ∈ I , V (κ̂) = id . (A.5)

The product rule yields (V U)′ = V ′U + V U ′ = −V QU + V QU = 0 and thus
V (κ)U(κ) = id for all κ.

The expression UV satisfies the initial condition (UV )(κ̂) = id and the differen-
tial equation (UV )′ = U ′V + UV ′ = Q(UV )− (UV )Q. The same linear differential
equation is solved by the constant function id. Uniqueness of the ODE implies
U(κ)V (κ) = id for all κ. We conclude that U is invertible with U∗ = U−1, and
hence the claim.

Step 3: Property regarding projections. It remains to show (A.2). We compute

(PU)′ = P ′U + PU ′ = (P ′ + PQ)U = Q(PU) .

This shows that P (κ)U(κ) satisfies the same ODE (namely Y ′ = QY ) as U(κ)P (κ̂),
compare (A.4). Both functions have the initial condition P (κ̂). We conclude that
the two functions coincide, P (κ)U(κ) = U(κ)P (κ̂) for all κ. This provides (A.2).

We can now prove the theorem on the continuation of eigenvalues.
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Proof of Theorem A.1. We are given an eigenvalue λ̂ ∈ C \ {0} of A(κ̂) with multi-
plicity m. Our aim is to show that the eigenvalue can be continued with m functions
λj : I → R.

Step 1: Construction of the projections. We choose a small circle D = Bε(λ̂) ⊂ C
with positively oriented boundary curve Γ = ∂D such that 0 ̸∈ D̄ and λ̂ is the only
eigenvalue of A(κ̂) in D̄.

By our choice of Γ, the operator A(κ̂) − λ id is invertible for all λ ∈ Γ. This
fact, together with the compactness of Γ, allows to find η > 0 such that A(κ)− λ id
is invertible for all λ ∈ Γ and all κ ∈ I = (κ̂ − η, κ̂ + η). This implies that
P (κ) := 1

2πi

∫
Γ
(A(κ)−λ id)−1 dλ exists for all κ ∈ I and that P is differentiable with

respect to κ.
For every κ ∈ I, we denote the eigenvalues of A(κ) in the disc D by µℓ(κ), ℓ =

1, . . . , n for some n = n(κ) ≤ m. Lemma A.2 implies that this P (κ) is the orthogonal
projection onto the finite sum of eigenspaces M(κ) :=

⊕n
ℓ=1N (A(κ)− µℓ(κ) id).

Step 2: Coordinates. We can now apply Lemma A.3 to the family of projections
P (κ). The equation U(κ)P (κ̂)U(κ)∗ = P (κ) shows that U(κ) maps M(κ̂) into
M(κ) and U(κ)∗ = U(κ)−1 maps M(κ) into M(κ̂), i.e. U(κ) is an isomorphism
from M(κ̂) onto M(κ).

A consequence of the fact that the subspaces are isomorphic is that the dimension
is constant. We recall that M(κ̂) = N (A(κ̂)− λ̂id) and hence dimM(κ̂) = m. This
implies dimM(κ) = m for all κ.

The operator B(κ) := U(κ)∗A(κ)U(κ)|M(κ̂) is an operator on the finite di-
mensional space Z := M(κ̂), we constructed a family of self-adjoint operators
B(κ) ∈ L(Z) for κ ∈ I. If λ is an eigenvalue of A(κ) in D with eigenvector
ϕ ∈ M(κ), then λ is an eigenvalue of B(κ) with eigenfunction U(κ)∗ϕ ∈ Z. Con-
versely, if λ is an eigenvalue of B(κ) with eigenvector ψ ∈ Z, then λ is an eigenvalue
of A(κ), with λ ∈ D, with eigenvector U(κ)ψ ∈ M(κ). It is therefore sufficient to
consider the eigenvalues of B(κ) : Z → Z inside D and their dependence on the
parameter κ.

Step 3: Lipschitz continuity. It remains to consider the following situation:
Let Z be a finite dimensional complex Hilbert space and let, for every κ ∈ I, the
operator B(κ) : Z → Z be self-adjoint, the map B : I → L(Z) being differentiable.
We consider the ordered eigenvalues λj(κ) with λ1(κ) ≤ . . . ≤ λm(κ), repeating
multiple eigenvalues according to their multiplicity. Courant’s min-max principle
characterizes the eigenvalues for j = 1, . . . ,m as

λj(κ) = max
codimM=j−1

min
0̸=ψ∈M

⟨B(κ)ψ, ψ⟩X
∥ψ∥2X

.

From this formula, we can conclude the Lipschitz continuity of the eigenvalues.
Indeed, from the differentiability of B(κ) we have ∥B(κ1)− B(κ2)∥ ≤ CL |κ1 − κ2|,
and therefore ⟨B(κ1)ψ, ψ⟩X ≤ ⟨B(κ2)ψ, ψ⟩X +CL|κ1 −κ2|∥ψ∥2X . Taking, for a fixed
subspace M , a minimum, we find

min
0̸=ψ∈M

⟨B(κ1)ψ, ψ⟩X
∥ψ∥2X

≤ min
0̸=ψ∈M

⟨B(κ2)ψ, ψ⟩X
∥ψ∥2X

+ CL|κ1 − κ2| .

Choosing M as the subspace that maximizes the left hand side, we obtain λj(κ1) ≤
λj(κ2) + c|κ1 − κ2|. Reversing the roles of κ1 and κ2 implies Lipschitz continuity of
the eigenvalues. This completes the proof.
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A.2 A spectral result in a generalized setting

We want to generalize our results to the following situation: Let Y ⊂ X ⊂ Y ′

be a Gelfand triple, M ∈ L(Y, Y ′) and E ∈ L(X) both self-adjoint, E coercive.
With the embeddings of the Gelfand triple, E can also be regarded as an operator
E ∈ L(Y, Y ′) using the relation ⟨Eu, v⟩Y ′,Y = ⟨Eιu, ιv⟩X for all u, v ∈ Y . With this
interpretation, it makes sense to study the eigenvalue problem for ψ ∈ Y and λ ∈ R,

Mψ = λEψ . (A.6)

Our result is that the dependence of eigenvalues λ on a parameter κ can be described
as in Theorem A.1. To prove this result, we formulate an equivalent problem to
which we apply Theorem A.1.

A central point of the proof is the choice of the scalar product on X and the
corresponding interpretation of the operator E ∈ L(Y, Y ′). Since E is self-adjoint
and coercive, we can use on X the expression ⟨u, v⟩E = ⟨Eu, v⟩X as scalar product
and equivalent norm. Choosing this scalar product means that we introduce also a
new embedding ι∗ : X → Y ′: We want that ι∗ is the adjoint to ι : Y → X with
respect to ⟨·, ·⟩E, hence, for u ∈ X and v ∈ Y , it must satisfy the relation with the
exclamation mark,

⟨ι∗u, v⟩Y ′,Y
(!)
= ⟨u, ιv⟩E = ⟨Eu, ιv⟩X . (A.7)

This implies a relation for the operator E ∈ L(Y, Y ′), which is defined by the first
equality, for u, v ∈ Y ,

⟨Eu, v⟩Y ′,Y = ⟨Eιu, ιv⟩X = ⟨ιu, ιv⟩E = ⟨ι∗ιu, v⟩Y ′,Y . (A.8)

This shows that, with ι∗ defined with the E-scalar product on X, the operator
E ∈ L(Y, Y ′) is given as

E = ι∗ι . (A.9)

From now on, we will use only the E-scalar product on X and exploit E = ι∗ι.

We will demand coercivity of M + E : Y → Y ′, which is defined as follows: For
some c > 0, there holds ⟨(M + E)v, v⟩Y ′,Y ≥ c∥v∥2Y for every v ∈ Y .

Theorem A.4 (Lipschitz dependence of eigenvalues in the generalized case). Let
X be a complex Hilbert space, let Y ⊂ X be an embedded Banach space and let Y ′ be
the dual space of Y . For an interval I0 = (κ̂− η0, κ̂+ η0), let M ∈ C1(I0,L(Y, Y ′))
and E ∈ C1(I0,L(X)) be two families of operators. For every κ ∈ I0 we assume
that (i) M(κ) and E(κ) are both self-adjoint and (ii) E(κ) and M(κ) + E(κ) are
both coercive (both uniformly with respect to κ) and (iii) for every 0 ̸= λ ∈ C, the
operator M(κ)− λE is a Fredholm operator with index 0.

Let λ̂ ̸= 0 be an isolated eigenvalue of M(κ̂) with mass matrix E(κ̂) and let
m := dimN

(
M(κ̂)− λ̂E(κ̂)

)
<∞ be the dimension of the corresponding eigenspace.

Then there exists a parameter 0 < η ≤ η0 such that, on the possibly reduced interval
I := (κ̂ − η, κ̂ + η), there exist m Lipschitz continuous functions λj : I → R,
j = 1, . . . ,m, such that, for every j ≤ m, λj(κ̂) = λ̂ and, for every κ ∈ I, the real
number λj(κ) is an eigenvalue of M(κ) with mass-operator E(κ). In addition, the
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functions λj provide a continuation of the eigenspace in the following sense: The
linear subspace

M(κ) :=
m⊕
j=1

N
(
M(κ)− λj(κ)E(κ)

)
satisfies M(κ̂) = N (A(κ̂) − λ̂ id), for every κ ∈ I holds dim(M(κ)) = m, and
the orthogonal projection P (κ) from X onto M(κ) ⊂ X is differentiable as a map
P : I ∋ κ 7→ P (κ) ∈ L(X).

Proof. We consider the following family of operators:

A(κ) := ι [M(κ) + E(κ)]−1 ι∗ : X → X .

We recall that, as a map Y → Y ′, there holds E = ι∗ι. The family of operators is
well-defined since M(κ) +E(κ) is coercive, there holds A ∈ C1(I0,L(X)), since M ,
E and ι∗ depend differentiably on κ. Furthermore, since M and E are, also A is
self-adjoint for every κ.

Step 1: Equivalence of the eigenvalue problems. We consider the self-adjoint
eigenvalue problem Aψ = ρψ, that is,

ι [M(κ) + ι∗ι]−1ι∗ψ(κ) = ρ(κ)ψ(κ) . (A.10)

for ρ(κ) ∈ R and ψ(κ) ∈ X. We want to show that the problems (A.6) and (A.10) are
equivalent. In the corresponding calculations, we drop the argument κ for simplicity.

Let ψ ∈ X be an eigenfunction for (A.10) with eigenvalue ρ ̸= 0. We define
µ := ρ−1 − 1 ∈ R and ϕ := [M + ι∗ι]−1ι∗ψ ∈ Y . Relation (A.10) and the definition
of ϕ imply ιϕ = ρψ and ι∗ψ = [M + ι∗ι]ϕ. We obtain, for arbitrary φ ∈ Y ,

⟨ι∗ιϕ, φ⟩Y ′,Y = ⟨ιϕ, ιφ⟩E = ρ⟨ψ, ιφ⟩E = ρ⟨ι∗ψ, φ⟩Y ′,Y

= ρ⟨[M + ι∗ι]ϕ, φ⟩Y ′,Y .

This provides Mϕ = µ ι∗ιϕ = µEϕ and we see that µ is an eigenvalue of (A.6) with
eigenvector ϕ.

Conversely, let µ and ϕ satisfy Mϕ = µι∗ιϕ. We set ρ := (µ + 1)−1 and ψ :=
ρ−1ιϕ. The choice of ρ implies ρ(M + ι∗ι)ϕ = ι∗ιϕ. We conclude ϕ = (M + ι∗ι)−1ι∗ψ
and thus ρψ = ιϕ = ι(M + ι∗ι)−1ι∗ψ. This shows that ρ is an eigenvalue of (A.10)
with eigenvector ψ.

We have obtained that the problems (A.6) and (A.10) are equivalent.

Step 2: Fredholm property of the family A. We can apply Theorem A.1 to the
family A = A(κ) when we verify, for every κ and every ρ ̸= 0, that the operator
A(κ)− ρ id is a Fredholm operator with index 0. From Step 1 we conclude that the
kernel of A(κ)− ρ id is finite dimensional; the kernel is the complement of the range
since A(κ) is self-adjoint.

Therefore, we can apply Theorem A.1 which yields the existence of m Lipschitz
continuous functions κ 7→ ρj(κ) such that ρj(κ) are eigenvalues of A(κ) and ρj(κ̂) =
ρ̂ := (1 + µ̂)−1. Then µj(κ) := ρj(κ)

−1 − 1 yields the Lipschitz continuation of the
eigenvalues.

Step 3: Projections. It remains to look at the eigenprojection. Let {ϕℓ,j(κ) |
ℓ = 1, . . . ,mj} be an orthonormal (with respect to ⟨·, ·⟩E(κ)) basis of N

(
M(κ) −
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µj(κ)E(κ)
)
. We have seen above that ψℓ,j(κ) := (µj(κ) + 1)ιϕℓ,j(κ) ∈ X is a basis

of
⊕m

j=1 N
(
A(κ)− ρj(κ)id

)
. This shows M(κ) =

⊕m
j=1 N

(
A(κ)− ρj(κ)id

)
. By the

second part of Theorem A.1 the orthogonal projection from X onto
⊕m

j=1N
(
A(κ)−

ρj(κ)id
)
= M(κ) is differentiable as a mapping from (κ̂− η, κ̂+ η) into L(X).
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