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Abstract: In the context of infinitesimal strain plasticity with hardening, we
derive a stochastic homogenization result. We assume that the coefficients of
the equation are random functions: elasticity tensor, hardening parameter and
flow-rule function are given through a dynamical system on a probability space.
A parameter € > 0 denotes the typical length scale of oscillations. We derive
effective equations that describe the behavior of solutions in the limit ¢ — 0.
The homogenization limit is based on the needle-problem approach: We verify
that the stochastic coefficients “allow averaging”™ In average, a strain evolution
[0,T] >t — &£(t) € R induces a stress evolution [0, T] 3 ¢ — X(£)(t) € R4,
With the abstract result of [9] we obtain the stochastic homogenization limit.

1 Introduction

In its history, mathematics has often been inspired by questions from continuum me-
chanics: Given a body of metal and given a force acting on it, what is the deformation
that the body of metal is experiencing? Fuler has been inspired by this question;
much later, the development of linear and non-linear elasticity theory provided excel-
lent models (and mathematical theories) for non-permanent deformations. In contrast,
the description of permanent deformations with plasticity models is much less devel-
oped. The only well-established plasticity models are based on infinitesimal strain
theories, ad-hoc decomposition rules of the strain tensor and flow rules for the plastic
deformation tensor.

Homogenization theory is, in its origins, concerned with the following question: How
does a heterogeneous material (composed of different materials) behave effectively? Can
we characterize an effective material such that a heterogeneous medium (consisting of
a very fine mixture) behaves like the effective material? This homogenization question
has a positive answer in the context of linear elasticity: effective coefficients can be
computed and bounds for these effective coefficients are available. The situation is
quite different for plasticity models: Results have been obtained only in the last ten
years. The effective model cannot be reduced to one macroscopic set of differential
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equations. The effective system either remains a two-scale model or, as we do here,
must be formulated with a hysteretic stress-strain map.

With only two exceptions, so far, homogenization results in plasticity treat essen-
tially the same system: Infinitesimal strains and an additive decomposition of the strain
tensor are used, some hardening effect is included, and the homogenization is performed
in a periodic setting. The two exceptions are [6] and [17]: In [6], no hardening effect
is used and the limit system is much more involved. In [17], stochastic coefficients are
permitted, but at the expence of a one-dimensional setting. The present article is based
on [9] and provides the third exception: We treat a model with stochastic coefficients
in dimensions 2 and 3.

We mention at this point the more abstract approach in the framework of energetic
solutions, see [12, 13|, and its application in gradient plasticity in [8].

Plasticity equations

We study a bounded domain Q C R¢, d € {2, 3}, occupied by a heterogeneous material,
and its evolution in a time interval (0,7") C R. For a parameter £ > 0, we consider on
Q@ x (0,T) the plasticity system

_V'UE:fa 08:05_1667
Viu® = e +p°, Op° € OV (0° — Bp) .

(1.1)

The first relation is the quasi-static balance of forces in the body, f is a given load, o the
stress tensor. The second relation is Hooke’s law which relates linearly the stress o with
the elastic strain e. The third relation is the additive decomposition of the infinitesimal
strain Vou = (Vu+(Vu)T)/2. The fourth relation is the flow rule for the plastic strain p,
it uses the subdifferential OV of a convex function ¥. Kinematic hardening is introduced
with the positive tensor B.. Hardening is an experimental fact in metals. From the
analytical point of view, hardening simplifies the mathematical treatment considerably:
Standard function spaces can be used, while in the case without hardening (perfect
plasticity) the space BD(Q) of bounded deformations must be used (measure-valued
shear bands can occur). We refer to [1, 7] for the modelling.

Our interest here is to study coefficients B = B. (hardening), C' = C. (elasticity
tensor), and ¥ = W_ (convex flow rule function) that depend on the parameter € > 0.
We imagine ¢ to be the spatial length scale of the heterogeneities. Since the coefficients
depend on ¢, also the solution (u, o, e, p) = (u®, 0%, e, p?) depends on ¢.

We consider only positive and symmetric coefficient tensors, using the following
setting: We denote by R4 C R¥? the space of symmetric matrices, £(R%*4 R¥4) is
the space of linear mappings on R¥?. For every ¢ > 0 and almost every z € Q, the
tensors C.(x), B.(z) € L(R¥4 R¥4) are assumed to be symmetric with respect to the
scalar product on R%*¢, Furthermore, for constants v, 3 > 0, we assume the positivity
and boundedness

YIEF <€ (Cela) ) < %Ifl2 . Bl <& (Bn)€) < %I&I2 (1.2)

for every £ € R4 ae. z € Q, and every ¢ > 0.
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System (1.1) is accompanied by a Dirichlet boundary condition u® = U on 0Q x (0, T")
and an initial condition for the plastic strain tensor (for simplicity, we assume here a
vanishing initial plastic deformation). Finally, the load f must be imposed. We consider
data

Uec H(0,T; H'(Q;RY), fe HY(0,T;L*(Q,RY)), plieg=0. (1.3)

The fundamental task of homogenization theory is the following: If u® — u converges
in some topology as ¢ — 0, what is the equation that characterizes u?

Known homogenization results and the needle-problem approach

The periodic homogenization of system (1.1) was performed in the last 10 years. The
effective two-scale limit system was first stated in [2]. The rigorous derivation of the
limit system (under different assumptions on the coefficients) was obtained by Visintin
with two-scale convergence methods [21, 22, 23], by Alber and Nesenenko with phase-
shift convergence [3, 14], and by Veneroni together with the second author with energy
methods [18]. By the same authors, some progress was achieved regarding the monotone
flow rule and a simplification of proofs in [20]. We refer to these publications also for a
further discussion of the periodic homogenization of system (1.1).

The non-periodic homogenization of system (1.1) is much less treated. In particular,
we are not aware of any stochastic homogenization result (with the exception of [17],
but the analysis of the one-dimensional case is much simpler, since the stress variable
can be obtained by a simple integration from the force f).

For the non-periodic case, a partial homogenization result has been obtained in [9].
That contribution is based on the needle-problem approach, which has its origin in [19].
The present article is based on [9] and we therefore describe in the next paragraph the
needle-problem approach in more detail.

In the needle-problem approach, homogenization is seen as a two-step procedure. We
describe the two steps here with the scalar model —V - (a*Vu?®) = f for a deformation
u® : () — R. Step 1 is concerned with cell-problems: One verifies that, on a represen-
tative elementary volume (REV, the unit square in periodic homogenization) and for a
vanishing load, the material behaves in a well-defined way: An input (here: the aver-
aged gradient & of the solution across the REV) results in a certain output (here: the
averaged stress o(§) = a*¢ for a matrix a*). Step 2 is concerned with arbitrary domains
@ and arbitrary loads f. The conclusion of Step 2 (which can be justified with the
needle-problem approach) is the following: If the REV-analysis provides the material
law & — o(&), then the behavior of the material on the macroscopic scale is character-
ized by =V - (¢(Vu)) = f in @ (in our example by —V - (a*Vu) = f). In [19], these
methods are developed and the two-step scheme is illustrated with the linear model:
The assumption of an averaging property on simplices implies the homogenization on
the macroscopic scale with the corresponding law.

In [9], we performed Step 2 of the needle-problem approach in the context of plas-
ticity. Our assumption was that the material parameters allow averaging: solutions on
simplices with affine boundary data x — £ - z and vanishing forces f = 0 have conver-
gent stress averages: in the limit € — 0, stress integrals converge to some deterministic
quantity 3(£). Due to memory effects in plasticity problems, one has to find for every
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evolution of strains £ = £() an evolution of stresses X(§)(t) = 2(&(.))(¢). In [9], we
derived from this averaging assumption a homogenization result: For general domains
@, general boundary data U and general forces f, the effective problem for every limit
u = lim,_,o u® reads

V- -S(VPu)=f inQx(0,T). (1.4)

Let us briefly describe the relation between the needle-problem approach (used here)
with classical stochastic homogenization results (as in [10, 11, 15]: We believe that our
result on the stochastic homogenization of plasticity equations could also be obtained
along the classical route. In such a proof one would first obtain a two-scale effective
problem in the variables (z,t,w). In a second step, one can realize that the dependence
on x can be disintegrated: The two-scale system can be written in the form (1.4), if the
hysteretic stress operator ¥ is defined through a stochastic cell problem in the variables
(t,w). In the needle-problem approach, we keep these two aspects separated: The
abstract result “averaging property for ¥ implies homogenization” of [9] is independent
of the stochastic description. The stochastic analysis concerns only the operator > and
its properties (the work at hand).

The stochastic homogenization result

In this contribution, we perform the stochastic homogenization of the plasticity system.
In particular, we demonstrate that the averaging assumption is satisfied for an evolution
operator ¥ and that equation (1.4) is the effective plasticity problem. Comparing
with other homogenization results for plasticity equations, this means that we obtain
a disintegrated effective system: Equation (1.4) is local in space, it is not a two-scale
system. The microscopic behavior is synthesized in the operator X. The only non-local
effect occurs in the time variable, since ¥ is an evolution operator.

Definition 1.1 (The structure of the limit problem). Let the domain @ C R? and the
time horizon T" > 0 be as above, let €2 be a probability space with ergodic dynamical
system as in Section 1.1, let the stochastic coefficients C', B and ¥ be as in Assumption
1.4.

(i) Definition of the hysteretic strain-to-stress map ¥ : { — 0. We con-
sider an input ¢ : [0,7] — R%? and solve the following stochastic cell problem
with a triplet (p, z,v), where p € H'(0,T; L*(;R%*Y)), 2 € HY(0,T; L?,(; R¥*9)),
ve HY0,T; Lzot(Q;RdXd)), and z is symmetric, z = z°:

E=Cz—v'+p ae in[0,7] xQ, (1.5)
Owp € 0¥(z — Bp) ae. in [0,T] x Q. '

For the definition of the function spaces L2 ,(Q) and L?,(2) see (1.11) and (1.13). The

pot
solution (p, z,v) defines the operator 3,

X(&)(t) = /Qz(t,w) dP(w) . (1.6)
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(ii) Definition of the effective equation. For boundary data U and loading f
as in (1.3), we search for u € H*(0,T; H*(Q)) such that

/OT/Qz(Vsu):vcp:/oT/Qf.go Ve € L0, T; HA(Q)). (L)

Additionally, we demand that the boundary condition u = U on 0Q x (0,7 is satisfied
in the sense of traces.

Remark. The argument of the stress function ¥ is & = £(¢), in the limit problem (1.7)
the stress function is evaluated, for every x € @, with the argument £(.) = Viu(., z).
For a more detailed description of the limit problem (1.7) see Definition 1.8. The precise
statement of the stochastic cell-problem (1.5) and the corresponding definition of the
operator ¥ in (1.6) is given in Definition 2.2.

Our stochastic homogenization result follows by applying the main theorem of [9].
Essentially, we only have to verify that, if the coefficient functions of system (1.1) are
given by an ergodic stochastic process, then the coefficients “allow averaging” In the
limit ¢ — 0, averages of the stress (for a homogeneous plasticity system on a simplex
with affine boundary data &) are given by the operator X.

We verify this statement in Sections 2 and 3. The consequence is the following
homogenization theorem, which is our main result.

Theorem 1.2 (Stochastic homogenization in plasticity). Let Q@ C R? be a bounded
domain, d € {2,3}, T > 0. Let 7 be an ergodic dynamical system on the probability
space (€, 3q,P) as in Section 1.1, let the stochastic coefficients B, C, U and the data
U and f be as in Assumption 1.4. Then, there exists a unique solution w to the limit
problem (1.5)—(1.7) of Definition 1.1. For w € 2, let (u®,0°, e, pf) be weak solutions to
(1.1). Then, for a.e. w € Q, as e — 0,

ut —u  weakly in H'(0,T; H'(Q)) and
o° = XN(Vu)  weakly in H'(0,T; L*(Q)) .

Remark. The weak solution concept for the e-problem (1.1) is made precise in Definition
1.5. The unique existence of a solution u* for a.e.w € () is guaranteed by Theorem 1.6.

The proof of Theorem 1.2 is concluded in Section 3.4. A sketch of the proof is
presented at the end of Section 1.3.

1.1 Setting in stochastic homogenization

We follow the traditional setting in stochastic homogenization, first outlined by Papan-
icolaou and Varadhan in [15] and by Kozlov in [11], later used by Jikov, Kozlov and
Oleinik [10]. Let (€2, 3q, P) be a probability space where we assume that the o-algebra
Yo is countably generated. This implies that L?*(f2) is separable. Let (7,),cre be an
ergodic dynamical system on (€2, ¥q, P). We rely on the following definitions: A family
(Tz)zcre of measurable bijective mappings 7, : 2 — Q is called a dynamical system on
(Q, Xq, P) if it satisfies
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(i) 707y =Tuty , 10 =1d  (group property)
(i) P(r_,B)=P(B) VzxeR? Be€Xq (measure preservation)
(iii) A: RIx Q— (x,w) — T,w is measurable  (measurability property)

We say that the system (7,),cra is ergodic, if for every measurable function f: Q — R
holds

[f(w) = f(raw) Vz €R? ae. w € Q] = [Fep €R: f(w) = ¢ for ae. w e Q] . (1.8)

Given f € L?(Q) and w € Q, we call f, : R" - R, x — f(7,w) the w-realization of f.
An important property of ergodic dynamical systems is the fact that spatial averages
can be related to expectations. For a quite general version of the ergodic theorem, we
refer to [24]. The following simple version is sufficient for our purposes.

Theorem 1.3 (Ergodic theorem). Let (£2, Xq,P) be a probability space with an ergodic
dynamical system (7,)zera on Q. Let f € LY(Q) be a function and Q C R be a bounded
open set. Then, for P-almost every w € €1,

hr%/ [ (Tp/ew dx—hm/ fu dx— \Q]/f )dP(w). (1.9)
e—

Furthermore, for every f € LP(2), 1 < p < 00, and a.e. w € Q, the function f,(x) =
f(row) satisfies f, € L (R). For p < oo holds f,(-/e) = f(1 .w) = [, [ dP weakly
in LY (R?) ase — 0.

loc
For brevity of notation in calculations and proofs, we will often omit the symbol dP
in (-integrals. We assume that the coefficients in (1.1) have the form

Ce(z) = C(T2w), B.(z) = B(rzw), V(o) = V(0;Tzw) (1.10)

for some functions B, C, and ¥, see Assumption 1.4.

Using the function spaces
L2 o(RY) == {u € L} (R% R | VU bounded domain, 3p € H'(U;R?) : u = Ve},

pot,loc

L2

sol loc(Rd> {'LL € Lloc(Rd;RdXd) | u - VQO =0 VQD € Ccl(Rd)} )

R4
we follow Chapter 7 in [10] and define

L2,(Q) := {v e L*(QR™) |z v(r,w) in L2, 1,.(R?) for a.e. we Q},  (1.11)
v = {1 e 2| [ rap=o}, (112

L2,() == {v e L*(GR™) |z — v(r,w) in L2, ,.(R?) for a.e. we Q} . (1.13)

The three spaces (1.11)—(1.13) are closed subspaces of L*(Q; R%*?). The latter spaces
can be decomposed in an orthogonal sum as L*(Q; R*?) = V2 (Q) @& L2,(Q), see [10].
Remark. The periodic homogenization setting is a special case of the stochastic setting,
and we recover known results in the periodic case. The cell problem on the period-
icity cell is encoded in (1.5) with the help of the spaces L2, () and L?,(Q) (v° is a
symmetrized gradient and z has a vanishing divergence).
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1.2 Solution concepts and existence results

To formulate a stochastic setting, we consider C, B € L*°(; L(RZ*4 R*4)) | pointwise
symmetric, such that for v, 5 > 0 holds

7|§|2§§r0(w)§§%|£|2, ﬂ|§|2§§:B(w)§§%!§|2, (1.14)

for every £ € R and a.e. w € Q. Let U : R4 x Q — (—o0, +o0], (§,w) = V(& w)
be measurable in R x ) lower semicontinuous and convex in R¥? for a.e. w € €,
and with U(0,w) = 0 for a.e.w € 2. We furthermore assume that for a.e.w € 2 there
is ¢(w) > 0 such that the convex dual (in the first variable) satisfies

|U* (0; Tw) — U (0 Tyw)| < e(w) |z —yl|o] Vo e R™ 2y e RY. (1.15)

We note that the above assumption on W implies that no discontinuities are allowed
in the flow rule.

Assumption 1.4 (Data). Let C, B € L®(Q; L(R¥4 R>Y)) gnd ¥ : R>*? x QO —
(—o0, +o0| satisfy (1.14)—(1.15). We consider only parameters w € §) such that the
w-realizations C,(z) = C(T,w), B,(x) := B(T,w) are measurable and such that (1.2)
and (1.15) hold. We furthermore assume that U and f satisfy the reqularity (1.3) and

the compatibility conditions Uly—g = 0, f|i=o = 0.

Our aim is to study (1.1) with the coefficients defined in (1.10). By slight abuse of
notation and omitting the index w whenever possible, we also write C.(z) 1= C. ,(z) :=
C(rzw) and Be(z) := Bey(r) := B(rzw) as in (1.10). We assume that they satisfy
(1.2) and that U, satisfies

|\I/:’w(o;x1) — \If;w(a;xg)‘ < cle,w) |r1 — x| |o] - (1.16)

This condition is of a technical nature. It is used only in the proof of the existence
result of Theorem 1.6. We remark that the existence result remains valid also without
assumption (1.16), as can be shown with the methods of Section 2. Since we do not
want to repeat the proof of Theorem 1.6 here, we assume the above Lipschitz condition.

Definition 1.5 (Weak formulation of the e-problem). We say that (u®,0°, e®, p®) is a
weak solution to the e-problem (1.1) on @ with boundary condition U if the following
is satisfied: There holds u® = v* + U with

v € HI(O,T; H&(Q)), e, p°,0° € Hl(O,T; LQ(Q;RfXd)) ,

equation —V - 0¢ = f of (1.1) holds in the distributional sense and the other relations
of (1.1) hold pointwise almost everywhere in ¢ x (0,7).

We note that, due to the regularity of o¢, every weak solution to (1.1) satisfies

/OT/QUE:VW:/OT/QJE'SO Vo € L*(0,T; H Q). (1.17)

Theorem 1.2 of |9] provides the following existence result.
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Theorem 1.6 (Existence of solutions to the e-problem). Let the coefficient functions
C, B, U, the parameter w € Q, and the data U and f be as in Assumption 1.4. Then,
for every e > 0, there exists a unique weak solution (u®, o, e, p°) to the e-problem (1.1)
in the sense of Definition 1.5. The solutions satisfy the a priori estimate

Hu5||v11 + ||66||v5 + ||p€||v3 + ||06||v3 <C, (1~18)

in the spaces Vi := HY0,T; L*(Q;R¥9)) and Vi = H(0,T; H(Q)), the constant
C =C(U,f,B,vy) depends on B and v from (1.2), but it does not depend on ¢ > 0 or
w e Q.

1.3 The needle problem approach to plasticity

The main result of [9] is a homogenization theorem. Under the assumption that causal
operators ¥ and II satisfy certain admissibility and averaging properties, we obtain the
convergence of the e-solutions u® to the solution u of the effective problem (1.4). We
next recall the required properties. In the following, we use the space H(0, T; R%*4) :=
HY(0,T;R>) N {€ | £]4=0 = 0} of evolutions with vanishing initial values.

Definition 1.7 (Averaging). We say that a map F : H}(0, T; R>4) — H(0, T; R%*4)
defines a causal operator, if, for almost every ¢t € [0,7], the value F(,t) := F(&)(t)
is independent of | 7). We say that the coeflicients C;, B. and V. allow averaging,
if there exist causal operators ¥ and II such that the following property holds: For
every simplex 7 C Q, every boundary condition £ € H1(0,T;R%*9) and every additive
constant a € H'(0,T;R?), the corresponding solution (uf,o*, e, pf) of the e-problem
(1.1) on 7 with f = 0 and U(x,t) = £(t)z + a(t) satisfies the following: As ¢ — 0, for
a.e. t € (0,T), the averages of p* and o° converge:

][m ST, f o () = S(E)(H) (1.19)
T T

Here, JCT =7t fT denotes averages. In particular, we demand that limits of (averages
of) stress and plastic strain depend only on the (time-dependent) boundary condition
&, not on a and not on the simplex 7.

Definition 1.8 (Effective equation in the needle problem approach). The effective
plasticity problem in the needle problem approach is given by

—V-X(Vu)=f inQx(0,T), (1.20)

with boundary condition u = U on 0Q x (0,T). A function u is a solution to this limit
problem if u = U + v holds with v € H'(0, T; H}(Q;R?)) and (1.20) is satisfied in the
distributional sense. Regarding the expression ¥(V*®u) we note that, for a.e.xz € Q,
the map ¢ — V*u(z,t) is in the space H}(0,T;R%¥?), hence ¥(V*u) is well-defined for
almost every point in @ x (0,7).
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Result of the needle problem approach. In Theorem 1.6 of [9], the abstract op-
erator X is assumed to satisfy two conditions: (i) Averaging property. This assumption
is recalled in Definition 1.7. (ii) Admissibility. Admissibility is defined in Definition 1.5
of [9] as: The effective problem has a solution.

The existence property of the admissibility condition (ii) can be shown by proving
that Galerkin approximations converge to solutions. We formulate a sufficient condition
in this spirit in Definition 1.7 below. We therefore obtain from Theorem 1.6 of [9]:

Theorem 1.9 (Needle-approach homogenization theorem in plasticity). Let Q C RY
be open and bounded, let the data f and U be as in Assumption 1.4, let the coefficients
C., B. and V. be as above, satisfying (1.2). Let the data allow averaging in the sense
of Definition 1.7 with causal operators ¥ and 11, and let X satisfy the admissibility
condition of Definition 1.10. Let (u®, 0%, €%, p°) be the weak solutions to the e-problems
(1.1). Then, as e — 0, there holds

u® —u  weakly in H*(0,T; Hy(Q;RY)),
pF = I(Viu), o = X(Viu) weakly in H'(0,T; L*(Q; R™)),

where u is the unique weak solution to the homogenized problem
-V -X(Véu)=f on Q x (0,T)

with boundary condition U in the sense of Definition 1.8.

An assumption that implies admissibility. For arbitrary h > 0, we use a polyg-
onal domain (), C ) and a triangulation T, with the properties

Ty := {Tx}ren, Iis a triangulation of @, diam (7)) <h VT, € Ty,

1.21
@1, has the property that x € Q,dist(z,0Q) > h implies z € Qy,, (1.21)

where Ty are disjoint open simplices and A, C N is a finite set of indices. We always
assume that the sequence of meshes is regular in the sense of [5], Section 3.1. As in
[19], we consider the finite element space of continuous and piecewise linear functions
with vanishing boundary values,

Yy, :={¢ € Hy(Q)| ¢|7, is affine VT, € T, ¢ =00n Q\ Qy} - (1.22)

Discretization of boundary conditions: We may extend the triangulation of @y by
a finite amount of simplices with diameter not greater than h to obtain a grid T}, that
covers () in the sense ) C UE T, Tr and introduce the finite element space Y :=

{qb € HY Q)| ¢l is affine VT € 'ﬁ‘h} . Denoting by Rg, the H'-orthogonal Riesz-
projection H(Q) — Yj, we set Uy, := Rou(U) and observe that Uy, — U converges
strongly in H*(0,T; H*(Q)) as h — 0.

Definition 1.10 (Sufficient condition for admissibility of ). We consider a causal
operator ¥ : H1(0,T;R>4) — H(0,T;R¥>*9). We say that ¥ satisfies the sufficient
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condition for admissibility if the following property holds: Let h — 0 be a sequence
of positive numbers, let T}, be a sequence of regular grids satisfying (1.21), and let
v, € L*(0,T;Y}) be a corresponding sequence of solutions to the discretized problems
(the existence is guaranteed in [9])

/ Y (Vi (v +Up)) : Vo = / fon Vo € L*(0,T;Yy) .
Q Q

Assume furthermore that the solutions converge, v, — v weakly in H'(0,T; H}(Q)) as
h — 0. Then v is a solution to

/Z(VS(erU))ero:/fso Vo € L2(0,T; HL(Q)).
Q Q

Remaining program. Using Theorem 1.9, our stochastic homogenization result of
Theorem 1.2 can be shown as follows: For stochastic parameters C., B, and V. we
define causal operators X and II with cell-problems on 2. For these operators, we only
have to check the averaging property of Definition 1.7 and the admissibility condition
of Definition 1.10.

2 Stochastic cell problem and definition of X

Given a strain evolution £, we want to define the corresponding evolution (&) of plastic
stresses. For the strain &, we use the function space

HY(0,T;RPY) = {¢ € H'(0, T;RPY) | €10 =0} (2.1)

of evolutions with vanishing initial values. For any function & € HL(0,T;R%9) we
consider the ordinary differential equation (inclusion) for p(t, .) € L?(2; R%*4),

Op(t,w) € OV (2(t,w) — B(w) p(t,w); w) (2.2)

(equality pointwise a.e.), with the initial condition p(0,w) = 0. In order to close the
system, the function z(¢) must be determined through £(¢) and p(t). We search for a
map z(t) € L?,(Q), symmetric in every point w, i.e. z(t,w) = 27 (t,w), such that the
equality

Cz(t) = £(t) + v°(t) — p(t) (2.3)

holds in L*(Q) for a function v € L*(0,T;V>,(2)). Throughout this text we use
2* = (24 27) /2 for the symmetric part of a matrix z; for the symmetric matrix z there
holds z = 2°. Note that v € V2,(Q) does not imply v* € V2,,(€2). Up to the matrix
factor C' and the symmetrization, equation (2.3) is a Helmholz decomposition of the
field £(t) — p(t): Essentially, the given field is decomposed into a gradient field and a
solennoidal field. It is therefore plausible that, given £(¢) and p(t), (2.3) yields z(¢) and
thus closes the evolution equation (2.2). The rigorous existence result is provided in

the following theorem.
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Theorem 2.1. Let C, B and ¥ be as in Assumption 1.4. Then, for & € HL(0,T; R¥*?),
there exists a unique solution (p, z,v) € HY(0,T; L*(Q; R4))x HY(0,T; L% ,(Q; R™*4)) x

H' (0, T; V2, (R ) with z = 2° to (2.2)+(2.3) satisfying the a priori estimate

Hpva + HZva + HUva <C H§||H1(O,T) ’ (2.4)

where Vi := HY(0,T; L*(Q; R%*9)). The solution (p,z,v) € (V§)? depends continuously
on & € HL(0,T;R¥?) with respect to the weak topologies in both spaces.

Theorem 2.1 permits us to define the operators ¥ and II.

Definition 2.2 (The effective plasticity operators). For arbitrary ¢ € H(0, T; R%*%),
let (p, z,v) be the solution of (2.2)—(2.3) with z = 2°. We set

S(E)(1) = /Q Shw) dPW),  TIE)) = /Q p(t,w) dP(w) . (2.5)

We note that the operators ¥, IT : H(0,T;R%¥4) — H(0,T;R%*) are well defined
and continuous by Theorem 2.1.

The rest of this section is devoted to the proof of Theorem 2.1. We proceed as
follows: In Section 2.1, we introduce a Galerkin approximation scheme for (2.2)—(2.3),
using additionally a regularization of W. In 2.2, we recall some results from the theory
of convex functions, in 2.3 we provide a Korn’s inequality in the probability space ). In
Section 2.4 we prove existence and uniqueness of solutions to the approximate problems
and show that these solutions satisfy uniform bounds. Finally, in Section 2.5, we show
that the solutions of the approximate problems converge to the unique solution of the
original system (2.2)—(2.3).

2.1 Galerkin method and regularization

Finite dimensional approximation. In what follows, let (¢, 1), == [ ¢ : 1 dP
denote the scalar product in L?(Q) := L?(2; R?*?). We choose complete orthonormal
systems {ex}ey of V2, (Q) and {éx},cy of L7,(Q2) and consider the finite dimensional
spaces

f/i(Q) =span{er}t,_, , ®span{ér}t,_, . , L2(Q) = En(Q) D {vs |v e En(Q)} ,
L

Viorn(Q) 1= Vo () N L (Q). Lo () = Lig() N Ly ().
We furthermore set L2(Q2) := L*(Q;R*?) and L2 () := {v*|v € L%(Q)}. Since con-
stants are in L7,(Q), we can assume that they are in L7 (Q) and thus in L, (€) for

every n > d*>. We finally introduce the orthogonal projection P, : L*(Q) — L2(Q) and
note that B, — ¢ strongly in L2(£2; R%*?) as n — oo for every ¢ € L?(£; R¥*9).
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Definition of regularized convex functionals. In order to prove Theorem 2.1, we
consider the family of Moreau-Yosida approximations

¢cRrIxd 24

V(o,w) = mf{@@¢0+K_UF}, (2.6)

satisfying (see [16], Exercise 12.23; for the definition of the subdifferential O¥° see

(2.11))
U0 R 5 R is convex, coercive and continuously differentiable

oW’ . R 5 R g single valued and globally Lipschitz-continuous (2.7)

<lsin(l) W (o;w) = ¥(o;w) Vo € R4 and ae. we Q.
ﬁ

Note that the last convergence is monotone, since W% > W for all §, < §;. Given ¥
and W%, we consider the corresponding functionals

T, 70 L) - R, ﬂ@:/
Q

U(2(w)) dP(w), Y(z) = / U0 (2(w)) dP(w).
0
(2.8)
We denote by Ty, : L7 (€2) — R the restriction of T to L2 (). the subdifferential of
T, is OT,. Accordingly, we can define TS and 9Y?.
The approximate problem for (2.2)—(2.3)

We consider the following problem on discretized function spaces: Given an evolution
£ € HL0,T;R¥™?) we look for

p&,n S Cl (07 T7 LZ,S(Q)) ) Z(S,n S Hl (07 T7 Lgol,n(Q)) ) 'Ué,n € Hl (07 T? Vgot,n(Q)) )
with the symmetry z;, = zj,, , satisfying

atp&,n - 8Ti (25,71 - Bn pé,n) (29)

and C), 25, = & + V5, — Do The last equation can be written as

Zn = Oyt (E+ 05, — Do) - (2.10)

Here, B, Cy, : L7, () — L? ,(Q) are bounded positive (and thus invertible) operators
defined through

(B, ) = / (BY): o, (Cotig)g = / (V)¢ Ve I2,(Q).

We obtain the existence and uniqueness of solutions to (2.9)—(2.10) from the Picard-
Lindelof theorem: We show that the system can be understood as a single ordinary
differential equation for p;, with Lipschitz continuous right hand side, and that the
solutions are uniformly bounded.
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2.2 Convex functionals

Basic concepts of convex functions. We recall some well known results from con-
vex analysis on a separable Hilbert space X with scalar product “-”. In the following,
¢ : X — RU{+o00} is a convex and lower-semicontinuous functional with ¢ # +oo. The
domain of ¢ is dom(p) := {0 € X|p(0) < 400}, and the Legendre-Fenchel conjugate
©* is defined by

" X 5> RU{+o00}, errsup{e-o— (o)}
oeX

The subdifferential dp : dom(p) — P(X) is defined by
Op(o) ={e € X|p(§) 2 (o) +e- (£ —0) VEe X}, (2.11)
A multivalued operator f : dom(f) C X — P(X) is said to be monotone if
(01 —03) - (61 —e2) >0, Ve €dom(f), o;€ f(e), (i=1,2).
In what follows, we frequently use the following properties of convex functionals [16].

Lemma 2.3. For every convex and lower semicontinuous function ¢ on a Hilbert space
X with ¢ # 400 holds

(i) ¢* is conver, lower-semicontinuous, and dom(p*) # ()
(ii) Op, Op* are monotone operators
(111) o(o) 4+ p*(e) >0 -¢ Vo,ee X
() o € dom(p) and € € Op(0) < e € dom(p*) and o € 0p*(e)
(v) € € dom(p*) and o € 0p*(c) & (o) +¢*(e)=0-¢
(vi) o™ =

We refer to (v) as Fenchel’s equality and to (iii) as Fenchel’s inequality.

Continuity properties of T and Y° and subdifferentials

In order to obtain the subdifferential of the functional T : L?(2) — R we calculate
a€dY(z) & Y(E+v)>T(2)+ (a,v), Ve L)
o / Gz [ W)+ v Ve Lie)
& a(w) € 0¥(2(w)) for a.e. w e Q. (2.12)

Similarly, a € 9Y°(z) if and only if @ € OW°(z) almost everywhere. Both subdifferentials
are therefore single-valued and we may identify 9Y°(z) = O¥°(z). We next determine
the subdifferential of the restricted functional Y¢.

Lemma 2.4. The functionals Y° have a single valued subdifferential in every zy €
L (), given through
Y2 (20) = P,0W°(2). (2.13)
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Proof. Let a € 9Y9(z) C L2 () and let id be the identity on L2(€2). For arbitrary
¢ € L2(Q) we set g, := Py and @, := (id — P,)y. We obtain

/ (20 + tp) = Y0 (20 + tion + tpo) > T2 (20 + tioy) + £ {0V (20 + tipn) ,%0) g,
Q
> T, (20) + (@, n)g + 1 (O’ (20 + ten) , 0o,

Since W is differentiable and W° is Lipschitz continuous, we obtain from the fact that
the subdifferential coincides with the derivative and from the last inequality

J —im1 Je — 520 a 520
(00 ).y =l ([ W0+ 10) = [ 990)) 2 {evpuba + (O (o) o)

t—0

Replacing ¢ by —¢ in the above calculations, we obtain OV°(zy) = a+ (id — P,)0V°(z)
or P,0¥°%(z) = a. O

The Fenchel conjugate of T2 in L2 () is

T (o) := sup {/Qa cedP —To(e)|e € L?LS(Q)} .

Since —Y?(+) is coercive in a finite dimensional space, it has compact sublevels in L2 (1),
and the supremum is indeed attained.

Lemma 2.5. Let Y% be the Fenchel conjugate of Y°. For every p € L2(Q) holds

T (p) = / Wp)dP,  T*(p) = / U (p) dP | (2.14)

and the functionals Y, T*, T and Y% are convex and weakly lower semicontinuous on

Proof. The functional T is convex with the conjugate
T*(p) == sup {(p,e)o — T(e)[e € LI(Q)}  Vpe LI(Q).

We first prove (2.14): Let p € domT* = L*(Q). Since T* is convex, we know that
IY*(p) # 0. Lemma 2.3 (iv) yields for any o € 9T*(p) that o € dom Y with p € 9T (o)
and Lemma 2.3 (v) then yields

T*(p) + T(o) = (p,0)q - (2.15)

Since p € 9Y (o), (2.12) yields p(w) € O¥(o(w);w) for a.e. w € 2 and Lemma 2.3 (v)
yields ¥*(p) + ¥(o) = p : o a.e.. Integrating the last equality over Q2 and comparing
with (2.15), we find T*(p) = [, ¥*(p) since Y(o) = [, ¥(o). The proof for the second
statement in (2.14) is similar.

We now prove the weak lower semicontinuity of Y*. Let o; € dom(¥), i € N, be
dense in dom(¥). We define ¥ as the maximum of finitely many functions

Ur (p) == max {p:o;— V(0;)} Vp € Réxd

i=1,....m
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and note that W (p) < ¥*(p) for every p € R4, For z € L2(Q) and i = 1,...,m, we
introduce the sets

Q= {we Q| (2) :z:Ui—\IJ(Ui)}\UQj.

Let (2,), be a sequence such that z, — z weakly in L?(Q2). We find that
. . > * — Lo .
hgggf/g U™ ( hgggf Z / U (zn) hgglol.}f Z max (2, : 0, U(oj))

zn?ggf;/ (zn : 05 — W(0y)) :Z/Q (z:0; — U(0;)) :/Q\Iffn(z).

Since U*(p) = lim,, o ¥ (p) for every p € R4 by definition of ¥* , and since this
convergence is monotone, we can apply the monotone convergence theorem and get
Jo Vi (z) = [, ¥*(2) = T*(2). This yields the weak lower semicontinuity of T*.

Since VU is convex and lower semicontinuous, we find ¥ = U** and switching ¥
and ¥* in the above argumentation, the weak lower semicontinuity of Y follows. The
statements for T° and Y°* follow similarly. O

Convergence properties

We will later need additional lower semicontinuity properties: We have to analyze the
behavior of, e.g., T°(us).

Lemma 2.6 (Lower semicontinuity property of W° and W%*). Let U, := Q x (0,5s) be
the space-time cylinder and let (us)s be a weakly convergent sequence, us — u weakly in
L*(U,) as 6 — 0. Then, for V°, U as above, we find

lim inf / UO* (ug) dP dt > / U™ (u) dP dt . (2.16)
6—0 U, ;
For every sequence (us)s with us — u weakly in L*(Q)) we find
lim inf Y (us) > Y (u). (2.17)
0—0

Proof. The proof of (2.16) is the same as in [18], Lemma 2.6.
Using the definition of ¥ in (2.6), we choose, for every § > 0, a function 75 €
L?(Q; R¥4) such that

|ms — us|” 5

Without loss of generality, we may assume liminfs_, fQ U (us) dP < co. Then we get
for a subsequence [, |5 — us|° — 0 as § — 0 and hence 7r5 — Weakly in L2(€); R*9)

for this subsequence. Since [, |m5 — us|® is positive and Y (z = [, V() is weakly lower
semicontinuous, we find (2.17). O
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The following lemma uses time-dependent functions and the discretization parame-
ter n € N.

Lemma 2.7. Let s > 0 and let p € L*(0,s; L2(Q)) and p, € L*(0,s; L2()) such that
pn — p weakly in L2(0, s; L2(; R>)) as n — oo. Then, for Y2* and Y2 as above we
find

liminf/ Ti(pn)dtz/ To(p)dt, liminf/ Ti*(pn)dtZ/ T*(p)dt. (2.18)

Furthermore, if 2z, — z strongly in L?(; R™?) as n — oo, then

lim Y°(z,) = Y°(2). (2.19)

n—o0

Proof. Let z, — z strongly in L2(Q;R%9). Since W’ is Lipschitz continuous with
W(0) = 0, we find because of T9(z,) = T%(2,)

n—o0 n—oo

lim Y?(z,) = lim Q\I/‘S(zn) = /9\115(2)

and thus (2.19). For p, — p weakly in L*(U,) with p, € L*(0,s; L?(2)), the first
inequality in (2.18) can be proved similarly to the weak lower semicontinuity results of
Lemma 2.5, using Y2 (p,) = T°(p,).

For the second inequality in (2.18), we choose finite sets B,, = {e! |i =1,...,K,} C
L2(Q) with K,, > n such that B, C B,11 and |J,, B, is dense in L*(2; R¥?). For fixed
N € N, the interval [0, s] is split into subsets

'IT‘?V = {t € [0,s] | max {(e,p(t))Q —To(e)|e€ BN} = <e§v,p(t)>Q — T‘;(eﬁv)} (2.20)

and we set T} := T} and T4 := T4\ ., T% for i = 2,..., Ky. For n > N we find,

1<t
decomposing the time integral, taking the maximum, performing the weak limit, and

using the definition of Ti;:

n—oo

lim inf T‘S* (pn) >hm1nf2/ max { (e, pn(t))q — Yo(e) |e € By} dt
0

_ ;/T ((ely, plt)), — TH(ely)) dt
-20) Z/ max { (e, p(t)), — Y°(e) |e € By} dt
:sup{/ ((€,p(t)) — YO(E(t))) dt|é € LQ(O,S;BN)} .

0

> lim mfz / (e palt))g — Ti(el) dt
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This inequality implies, due to density of | J, By in L*(Q; R¥*?),
liminf/ T (p,) > sup {/ / (e:p—Te)) |e € L*(0,s; LQ(Q;RdXd))}

0

[ [ [ 1,

where we used (2.14) in the last equality. We have thus verified the second inequality
of (2.18). m

2.3 Properties of V. ,(Q)-functions

Lemma 2.8 (Potentials with small norm). Let U C R™ be a bounded Lipschitz-domain
and let v € Vzot(Q). Then, for P-a.e. w € § and every € > 0 there exists ¢, €

HY(U;R™) such that V. ,.(r) = v(Tzw) and such that
ll_E% H(bs,w,vHLQ(U) =0.

Proof. Let v € V5, (Q) and write v, ,(2) := v(rzw). By the ergodic theorem 1.3, there

exists 2, C Q with P(£,) = 1 such that for all w € €, there exists C,, > 0 with

Sup || Ve || 20y < Cu - (2.21)

e>0

Let (¢;);ey C L*(©;R?%) a countably dense family. For every ¢ € N there exists (; C €
with P(€;) = 1 such that for every w €

/Uvgyw(x)goi(x) dr — /U (/Q vdP) pidr =0 ase — 0. (2.22)

We define Q2 := Q, UU,en €2+ By (2.21) and (2.22) we obtain that v, (z) = 0ase — 0
for all w € Q.

By the definition of L2 ,(€) in (1.11), there exists ¢. ., € H'(U) such that Vo, ., (z) =
v(Tzw) By adding a constant, we can achieve |, u Peww = 0. By the Poincaré inequality,
it follows that

H¢€,w,vHL2(U) < “V(bs,w,v(x)Hfﬂ(U) + Peww| = HV¢5,w,v<x>HL2(U) = [ |vew(@)?

U U
Since the family ¢, is bounded in H'(U), it is precompact in L*(U). We chose
f € C*(U;R") and denote by F' the solution to the Neumann boundary problem
—AF = f. We obtain

—lm [ ¢epo-f = lim/ Voews: VF =lim [ v(rzw): VF(z)dz =0.
e—0 U e—0 U €

e—0 U

Therefore, ¢, — 0 in L*(U). Since (Geww) .o 18 Precompact in L3(U), it follows that
Gewp — 0in LZ(U). ]
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Lemma 2.9 (A Korn’s inequality on Q). For every f € V2,,() holds
£l 2 @maxay < 2011 2 menay - (2.23)

Proof. In what follows, we denote @ := (—1,1)Yand @, := (—=1+n,1—n)% for £ > n > 0.
We choose 1, € C°(Q) with 0 <1, < 1,4, =1 on Q, and [V, < 2n~ 1.

Let f € V2,(Q) and for every £ > 0 and w € Q let ¢., ; denote the potential of f,
from Lemma 2.8. If we denote the characteristic function of Q\@, by xq\g,, we have
the pointwise inequality

Vs P = [V (bewstn) P < Y100, (2|v¢wf| s Vo] + 2 |¢wf|)

Using this inequality, we get from the ergodic theorem 1.3 and Lemma 2.8 for P-a.e.
w e N

. 2 2
lgl(l)/Q ’ |V¢a,w,f| - |v(¢€,w,fw77)| |

4 4
. 2 . . 2
< lim o 2| Ve w,rl +5}:1_{%||¢s,w,f||L2(Q)||V¢s,w,f||L2(Q)+;l§%\|¢s,w,f”p(@
n
—2\Q, [ f2ap. (2.24)
Q

where we have used that ¢.,, ; — 0 strongly in L*(Q). Arguing along the same limes
with symmetrized functions, we can show that

iy [ 1900l = 9" e n)| <2000Q [ (7207, 225)
Since (¢ew 1y) € Hg(Q), we can apply Korn’s inequality in R and obtain
L9 el <2 [ 19° G (2.26)

Combining (2.24)—(2.26) with the ergodic theorem 1.3, we obtain that

|Q|/|f| dp = hm/ (Tzw) dx:hm/|v¢gwf| dx

(2.24)

2 hm/\v (6o g0y +2\@\@n\/f2d7>
226

2 hm2/ IV (6o ) +2|Q\Qn|/f aP
225

< hm2/|ngbwf\ +(2+4) ]Q\Qn]/deP

< IQ\2/Q!fS\ d7>+6|cz\@n|/gf2d7>.

Since the last estimate holds for every small > 0, we obtain inequality (2.23). O]
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2.4 Solutions to the approximate problem and a priori estimates

Lemma 2.10. There exists a unique solution ps,, Zsn, Vs, to problem (2.9)—(2.10)
which satisfies the a priori estimate

Pty + Nosnllyg + losallyy < ¢ (T00n () + Wellmomy) - (2:27)
with V} = HY(0,T; L*(; R>)) and ¢ independent of § and n.

Proof. In the following, all integrals over €2 are with respect to P and we omit dP for
ease of notation. We will prove the lemma in two steps: we first show that the system
(2.9)-(2.10) is equivalent to an ordinary differential equation for ps, with Lipschitz
continuous right hand side. Then, we show that the solution admits uniform a priori
estimates.

Step 1: Existence. In order to study (2.9)-(2.10), we fix p € L2 (Q) and £ € R¥<4,
and search for 0 € V2, (Q) such that

pot,n

(O, ) = (O Oq = (CEC) . VCEVLLQ).  (228)

The Lax-Milgram theorem in combination with Korn’s inequality (2.23) yields a unique
solution o € Vy,, ,(Q) of the last equality. We introduce the mapping Vz : L7 () —
V2oin(€) with Vz(p) = 0 and note that this operator is linear and bounded. We then

look for a solution ps,, € C'(0,T; L2(£2)) to the following version of (2.9):

atpé,n - anL (Cgl (5 + ‘/%(pé,n)s - pé,n) - Bn pﬁ,n) .

Relation (2.13) yields the Lipschitz continuity of Y. Therefore, since also 9%, C-1,
V¢ and B, are Lipschitz-continuous mappings L7 () — L2 ,(Q), we find a unique
solution ps,, € C'([0,T]; L2 ,(2)) of the ordinary differential equation (a priori bounds
are provided below). We furthermore set vs, = Ve(psn) € C'([0,T]; V5, ,,(€2)) and
zon = Cpt (405, — psn) € HY(0,T5 L2 (€2)). From (2.28) and the definition of vy,
it follows that z5, € H(0,T; Lgom(Q)). Note that ps.,, 25, and vs,, are constructed in

such a way that (2.9)—(2.10) holds. The construction shows that the solution is uniquely
determined.

Step 2: A priori estimates of order 0. We take the time derivative of (2.10),
multiply by zs, and integrate over [0,¢] x Q for ¢t € (0,7 to find

t t
(2.10) s
/ / 0 25 = / / ((Cn8t257n) D 25m + O & Zom — atvdn : z(g,n)
0o Ja 0 Jo

1 t
=35 / (pé,n . Bnp&n + Zon - ané,n)
2 Ja 0

t t
+ / <atp5,n7 Z6m — Bnpé,n)g - / / Z5m - at’UzS,n
0 0 JQ

t

—

*

1
95 [ st (Brsa) + 200 ()
Q

~

0

t
+ / (Ti* (atpé,n) + sz (25,71 - Bnp6,n>) . (229)
0
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In () we used the orthogonality of potentials and (symmetric) solenoidals, fQ Z5m
s, = 0, and Lemma 2.3 (v), written as

(O, z — Bp)g = Y)(z — Bp) + T (8p) & O =0Y)(z— Bp).

A priori estimates of order 1. Taking the time derivative of (2.10), multiplying the
result by 0,25, and integrating over 2, we get

/ atf : atZ(S,n = / atz6,n : 0t (p&,n + an6,n - U&,n) + / (Bnatp&n - Bnatpé,n) : atp&,n
Q Q Q

(2.9)

<atz5n Bnatpé,na an«L('Z&n - Bnp&,n)>9 + / (Bnatpé,n) : atpS,n
Q

+/ (Cnatzé,n) : atzzi,n - / 8t26,n : at'UJ,n
Q Q

() d

2 S o~ Bapia) + [ (C0125,) s 0z + (BOpia) )
Q

where we used [, 9,25, : Oivs5, = 0 in (x). We integrate the last equality over (0,t) for
€ (0, 7] and obtain

T(S Z5n //atz6n at

t
> Ti(z(;,n(t) — Bupsn(t)) +/ / ((COzsp) = Orzsn + (BOpsn) : Opsn) - (2.30)
0 Jo

Since YT%* and Y? are positive, we can neglect them in (2.29). Applying the Cauchy-
Schwarz inequality to the right hand side of (2.29) and then Gronwall’s inequality yields
an estimate

sup ||257n(t)||L2(Q;Rd><d) + sup ||p5,n(t)||L2(Q;Rd><d) <cléllg -
te[0,T7] te[0,T]

From positivity of T2 on the right hand side of (2.30), it follows that

t
/ / (COrzsn) : Duzsm + (BOpsn) : Oupsm) < T2 (z5n(0)) + 1€l
0 Q

The last two inequalities yield (2.27) for zs, and ps,. The inequality for vs,, follows
from equation (2.10). O

2.5 Proof of Theorem 2.1

Existence. Using the sequence (ps., Z5n, Vsn) of solutions to (2.9)-(2.10), we can now
prove Theorem 2.1. For n — oo, we find weakly convergent subsequences of ps ., 25n,
Vs, in V) with limits ps, 25, vs. We note that z;,(0) is the unique solution in L2, 2(82)
to

/<c 25n(0)) : ¥ = /s Vi € L2, (Q).
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Hence, since we consider only £ with £(0) = 0, the initial values 2, (0) vanish identically.
As a consequence, also Y?(25,(0)) in (2.27) vanishes. The estimate (2.27) therefore
implies (2.4) for (ps, 25, vs).

Since psn, Zsn, Vsn satisfy (2.10), the limits ps, 25, vs satisfy

Czs =&+ v5 —ps. (2.31)

We take the limit n — oo in (2.29), apply Lemma 2.7 and exploit the vanishing initial
data to conclude that the functions ps, zs, vs satisfy

t

/Ot/ﬂ(\pé* (Ops) + W (25 — Bpg)) S/Ot/g%if"tf‘%/gz(m Bpo) -z (C))]

(2.32)

In the limit 6 — 0 we find weakly convergent subsequences of ps, zs, vs with the

respective weak limits p, z, v satisfying the estimate (2.4). Passing to the limit 6 — 0 in

(2.31), we find that (p, z,v) satisfies (2.3). Furthermore, passing to the limit in (2.32),
using Lemma 2.6, we find that the functions p, z, v satisfy

[ [wonrve-sms<[ [oe-1([p:mn+ [02)

We thus obtain

t

0

/Ot/g(qf*(atp)Jr\If(z—Bp))=/Ot/ﬂ(z:at§—atp;Bp—atzzcz)

¢
(223)//(Z3C@tz—z:atvs—i-ziatp_atp:Bp—atzzcz)
0o Ja

- /Ot/g(—z:atuwatp:(z—Bp)) = /Ot/gatp:(z—Bp)

for every t € (0, 7). On the other hand, since Lemma 2.3 (iii) yields (¥* (0;p) + ¥ (2 — Bp)) >
Op : (z — Bp) pointwise a.e., we find

(U (9p) + ¥ (2 — Bp)) = 0w : (2 — Bp)

pointwise a.e. in (0,77) x Q. The Fenchel equality of Lemma 2.3 (v) then yields (2.2).

Uniqueness and continuity. Let &,& € HL(0, T;R>9). Let (p;, 2, Ui)ie{m} be two
solutions to (2.2)-(2.3) for &, & respectively with the difference (p, 2,9) := (p1, 21, v1) —
(p2, 22, v2). We integrate Z : 0, ({1 — &) over {2 and obtain from a calculation similar to

(2.29)
ZjKA@%@r@>

|6-a
:/Ot/gg:at(gl_@):/ngat(cz—ﬁw)
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_1d
24t Jq

+ /Q [(21(t,w) = B(w)pr(t,w)) = (22(1,w) = B(w) pa(t,w))] (Gip1 — 9ipa) -

(p: (Bp) +2:(C%))

From the monotonicity of OV (Lemma 2.3 (ii)) and (2.2); 2, we find

;g/Qz:<g1—g2>:—/0t/gatz:<&—sz>

for every t € (0,7). Compactness of the embedding H'(0,T;R%4) c C([0, T]; R%*4)
and boundedness of 9,2 provide the weak continuity of the mapping £ — (z,p,v). At
the same time, it implies uniqueness of solutions, i.e. (p,z,0) = (0,0,0) for & = &.
This completes the proof of Theorem 2.1.

3 [0 B+ (C2)

3 Proof of the main theorem

3.1 Preliminaries

Lemma 3.1 (A time dependent ergodic theorem). Let f € LP(0,T;LP(R2)), 1 <
p < oo and f,(t,x) := f(t,7mw). Then, for almost every w € S0, there holds f, €
LP(0,T; LY (RY)). Furthermore, for almost every w € Q, there holds

loc

lim/OT/Qf(t,Tzw) dar dt = \Q!/OT/Qf(t,w) dP(w) dt (3.1)

e—0

Proof. Since the mapping (z,w) + 7,w is measurable, we find that f(w,t,x) =
f(t,7pw) is P ® L ® L%measurable. Since the mappings 7, :  — Q are measure
preserving, we find for every x € R?

/OT/Q!f(t,w)‘p dp(w)dt:/oT/Q’f(wmw)‘p P ()t

Integrating the last equation over Q C R? and applying Fubini’s theorem, we obtain

@ ' | apwa = [ | ' /Q (b mow)? e dt dP(w)

Thus, f has the integrability f € LP(Q; L?(0,T; L*(Q))) and f,, € L?(0,T; L*(Q)) for
almost every w € . In particular, f, € L'(0,T; L'(Q)). Setting F(w) := fOTf(t,w) dt,
we find as a consequence of Theorem 1.3:

T T
lim/ / ft,T2w)dxdt =lim | F(r2w)dzr =|Q| / Fdp = |Q|/ / fdPdt.
e—0 0 Q € e—0 Q € Q 0 Q

This was the claim in (3.1). O
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Lemma 3.2. (Div-curl-lemma) Let U C R? be open and bounded with Lipschitz-
boundary OU. For a sequence ¢ — 0 we consider sequences of functions u® and v°
as follows:

u® € L*(0,T; L*(U;RY))  with V-u(t) =0 in D' (U) for a.e. t €[0,T],
v® € L2(0,T; L*(U; R™)) | v (t,z) == v(t, Tzw) for v e L*0,T;V5,(Q)

and some w € ). We assume the boundedness ||u®| 2 .2y < Co. Then, for almost

every w € €1, there holds
T
lim/ /u&‘:va:o. (3.2)
e—0 0 U

Proof. In this proof, we omit the time-dependence of u° and v for simplicity of notation,
i.e. we consider u® € L*(U; R™) and v € V2 ,(€2). In the time dependent case, one has
to apply Lemma 3.1 instead of the ergodic theorem 1.3.

We consider a compact set K C U and a cut-off function ¢ € C*(R?) with ¢» = 1 on
K,¢¥=0on RN\U, and 0 < ¢ < 1. We fix w € Q such that z — v(r,w) € L2, ,.(RY)
and such that the assertion of Theorem 1.3 holds. Furthermore, we make use of ¢, ,

of Lemma 2.8 and observe the limit behavior

[t = [ (oo = [0 Ve Gt = [ 5 G V)

- /U (Gonsn ® Vath) = 0 (3.3)

as € — oo due to ¢, , — 0 of Lemma 2.8 and the boundedness of Vi) and u°.
Concerning the integral over u® : v*(1 — %), we find by the ergodic theorem 1.3

1
[0 0= 0] £ Gl = Colvllsgmens VKT (3)

as € = 0. Choosing K C U large we obtain (3.2). O

3.2 The averaging property of X

Theorem 3.3 (Averaging property). Let the coefficients B(w), C(w), V(-; w) be as
in Assumption 1.4 and let realizations C., B., V. be defined by (1.10). Then, for

a.e.w € (), the coefficients allow averaging in sense of Definition 1.7 with the operators
Y and I of (2.5).

Proof. We will prove a slightly stronger result: Given ¢ € H(0,T; R™%), let (p, 2, v)
be the unique solution of (2.2)—(2.3) (which exists by Theorem 2.1). Let w € € be such
that p,(t, x) = p(t, T,w), 2,(t,z) := 2(t, ,w) and v, (t, z) := v(t, T,w) satisfy

Puw € Hl(o T Lloc(Rd;Rng))7 Zw € Hl(o T L (Rd))7 Uy € Hl(o T; Lpot loc(Rd)) :

sol,loc

This regularity is valid for a.e. w as can be seen applying Lemma 3.1 to time derivatives.
Furthermore, we choose w as in Assumption 1.4. For any € > 0 let p°(¢,z) :=p (t, Tgw),
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ZE(t,x) =z (t,Tgw), 0% (t,x) == (t,Tgw) be realizations. Let 7 C R? be a simplex
and let u®, p°, 0° be the unique solution to

—V.0°=0,
Véu® = C.o® +pf (3.5)
o € OV (0° — Bp®; )

on 7 with boundary condition
u(x)=&-x  ondT (3.6)

and initial condition p*(0,-) = 0 (we recall OV, (0; x) := 0¥(0; Tzw)). We will prove
that the realizations of the stochastic cell solutions and the plasticity solutions on 7T
coincide in the limit ¢ — 0; more precisely, we claim that

lim (1107 = 2 oo ary) + I0° = Fll o zaecn) =0 (3.7)

Let us first show that (3.7) indeed implies Theorem 3.3: The ergodic theorem in
the version of Lemma 3.1 and the definition of ¥ and II in (2.5) imply that £ 2°(.) —

Joz() = 2(€)() and £-5°(.) — [,p(.) = I(£)(.) holds in the space L*(0,T;R).
Equation (3.7) therefore yields f.0° — X(£) and £ p® — II(£) in L*(0,T; R%*Y). This
provides the averaging property (1.19) of Definition 1.7 (at first, for a subsequence
e — 0 for almost every ¢t € (0,7, then, since the limit is determined, along the original
sequence € — 0).

Let us now prove (3.7). We will use a testing procedure and energy-type estimates.
Due to (2.2)-(2.3), 2%, p° and 0° satisfy the following system of equations on 7 x (0,7T)
-V.z =0,
g = ngs +ﬁ€ - (i}e)s ) (38)
Op° € OV (2 — Bp™; . ).

In what follows we use the notation |C|QBE :=(: B.( and \C\a = ( : C.¢. We take the
difference of (3.5); and (3.8);, multiply the result by (0;u® — J; (£ - x)) and integrate
over 7. We integrate by parts and exploit that boundary integrals vanish due to (3.6),

oz—Ljf—aﬂmavsa4m>

:/}f—fy@@wwmﬂwﬁf—af—ﬁ)

T

_ld

C2dt Jr
T /F (0 — 0°) : (= B.¥) — (o° — Bup)) .
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1d
€5 | [ —ole. + 1 — I3 ] +/(2€—as):at@6
2dt |, .

+ / (8\118 (28 - Bsﬁs) - 8\115 (UE - nga)) : ((25 - Bsﬁs) - (06 - Bsps)) : (39)
T

In the second line, we used (3.5)2 and (3.8)3. In the third line we used the symmetry
of 0¢ and Z° to replace (0°)® by 0°
Concerning the second 1ntegra1 on the right hand side of (3.9), note that fg Jrz

0,0 — [ I+ Joz : 0w = 0 by Lemma 3.1 and orthogonality of L2,(€2) and V2,,().

Furthermore, fot J70° : 90° — 0 by Lemma 3.2. By monotonicity of 0., the last
integral on the right hand side of (3.9) is positive. An integration over (0,t) therefore
provides

e—0 e—0

limsup/ []25—05|20€+|155—p5|3 <hmsup/ / 22 —0%)00° =0, (3.10)
T

where we used that initial data vanish, °[,=9 = 0 by (3.8) and 0°|;=o = 0 by (3.5) for
vanishing p® and ¢ in ¢ = 0. We have thus shown (3.7) and hence Theorem 3.3. [

3.3 Admissibility of X

Theorem 3.4 (Admissibility). Let the coefficients B(w), C(w), V(-; w) and data U,
f be as in Assumption 1.4. Then the causal operator 3 of Definition 2.2 satisfies the
sufficient condition for admaissibility of Definition 1.10.

Proof. We have to study solutions wu, of the discretized effective problem with the
discretized boundary data U, — U strongly in H'(0,T; H'(Q)) as h — 0. With X
given through (2.5), let u, € H'(0,T; H(Q)) be a sequence with u;, € U,+H'(0,T;Y3),
satisfying the discrete system

/OT/Qz(vswl);vSO:/oT/Qf.@ Vo€ I2(0.1-Y). 1)

We furthermore have the weak convergence u, — u € HY(0,T; H(Q;RY) as h — 0
for some v € U + HY(0,T; H}(Q;R?)). Our aim is to show that u solves the effective
problem

/OT/QE(VSU) : VSDZ/OT/wa Ve € L2(0,T; HX(Q)). (3.12)

Step 1. For every x € ), we denote by pp(t,z,-), zn(t,x,), vp(t,z,-) the solutions
of (2. ) (2.3) corresponding to £(t) = VPu(t,z). By definition of ¥, there holds
Y(Vouy) fﬂ zp(w . The a priori estimate of Theorem 2.1 prov1des

th“v&o + thHv&O + thHv&O < CIVPullgr o ryz2q)) »
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where Vj, = H'(0,T; L*(Q; L*(;R**%))). By this estimate, we obtain the weak
convergence in (V&O)3 of a subsequence, again denoted (pp, zn, vp,), weakly converging
to some limit (p, z,v). The limit satisfies again the linear law (2.3),

Cz=Vu+v°—p. (3.13)

Equation (3.11) can be rewritten as

/// (t,z,w) dP(w) : VSO(Ji)dfCZ/OT/Qf-so Vo € L*(0,T:Y3),

and the limit A — 0 provides

/OT/CQAZ:V¢—/OT4f'¢ Vo € L2(0,T; Hy(Q)) (3.14)

Step 2. It remains to verify [,z = 3(V*u). We use ¢ = 0 (u, — Uy,) as a test
function in (3.11) and exploit the orthogonality 0 = [, 0 Jo 2n = Oyvp. We follow the lines
of the calculation in (2.29) to obtain

/f O (up, — Up) + //Zh Vo,Uy,
://zh:atvsuh://[zh:C'atzh+zh:8tph—zh:8tvh]
2dt<//ph Bph+//2h C'Zh) // * (Opn) + ¥ (2, — Bpr)) -

(3.15)

Taking weak limits in (3.15) yields

[ ][ o swe-sm
Lo o (L o).

Relations (3.13) and (3.14) allow to perform the calculations of (3.15) also for the
limit functions. We obtain from the last inequality

/OT/Q/QOIJ*(@pH\If(z—Bp))s/OT/Q/Qatp:<z—Bp>.

The Fenchel inequality of Lemma 2.3 (iii) yields O;p : (2 — Bp) < V* (O;p) + V¥ (2 — Bp)
pointwise. We can therefore conclude from the Fenchel equality

O € OV (o — Bp) . (3.16)

Relations (3.13) and (3.16) imply that z is defined as in the definition of ¥, hence
Jo 2z, ) = S(Vou)(t,z, .) for every t € [0,7] and a.e. z € Q. Therefore, (3.14) is
equivalent with (3.12) and the theorem is shown. O
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3.4 Conclusion of the proof

We can now conclude the proof of our main result, Theorem 1.2. Theorem 3.4 implies
that ¥ of (2.5) is admissible. Theorem 3.3 yields that, for almost every w € €2, the
coefficients C. ,(z), Beo(x), V. (0; x) allow averaging with limit operator ¥. We can
therefore apply Theorem 1.9 and obtain

u® —u weakly in H'(0,T; H'(Q;R%))
p° = I(Viu), o = %N(Vu) weakly in H*(0,T; L*(Q; R™%)),

where u is the unique weak solution to the homogenized problem
=V -2(Vu)=f

with boundary condition U as in Definition 1.8. Theorem 1.2 is shown.

A An example for the stochastic setting

Our aim here is to describe briefly a non-trivial example for a stochastic setting: the
checker board construction of i.i.d. random variables. Our main goal is to show that
the compactness assumption on € is not too restrictive and still permits the analysis of
interesting problems.

We use Y := [0, 1[¢ with the topology of the torus and the partition of R? with unit
cubes C, := z + Y for z € Z*. We consider the sets

Q:={ue LR |ule, = c,, for some c:Z* = [0,1],z+ c,}
Q= {ueLOO( |3 €Y st ul. —€) eQ} .
For u € Q we denote a shift £ from the above definition as £(u). Since L'(RY) is

separable, we infer from [4], Theorem I11.28, that L>°(R?) with the weak-*-topology is
metrizable: With a countable and dense subset (¢;),.y of L'(R?), a metric d on By is

given by
= 1
22— u—v, ;) .

We infer that By, := B;(0) € L>®°(R%) with the weak-*-topology is a compact metric
space. The sets 2 and Q are closed subsets of (Bso,d) and thus compact metric spaces.
The probability measure on €2 corresponding to i.i.d. random variables can be defined
with the help of elementary subsets. For an open set U C Y, a number £ € N, and
relatively open intervals I, := ((a.,b,) N[0,1]) C [0,1], z € Z¢ and a, < b,, the sets

AU, (L) zeze, k) = {u € Q[E(u) € U, ul. = &(u))le. € LVz, [2] <k} (A1)

are open and form a basis of the topology in €. For any such set A(.) we define

P (AU (1).czn. K)) = U] T 1o~ a2].

|z|<k
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We finally introduce 7, : Q — Q for every x € R? through 7,u(.) = u(z +.). It is

easy to check that the family (7,), s is a dynamical system. Since P(A) = P(r,A) for
A asin (A.1) and x € RY, the dynamical system is measure preserving.
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