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Abstract: A first order model for the transmission of waves
through a sound-hard perforation along an interface is derived.
Mathematically, we study the Neumann problem for the Helmholtz
equation in a complex geometry, the domain contains a periodic
array of inclusions of size ε > 0 along a co-dimension 1 manifold.
We derive effective equations that describe the limit as ε → 0. At
leading order, the Neumann sieve perforation has no effect; the cor-
rector is given by a Helmholtz equation on the unperturbed domain
with jump conditions across the interface. The corrector equations
are derived with unfolding methods in L1-based spaces.
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1 Introduction

Our aim is to describe the transmission of waves through a Neumann sieve. Studies
of this and related homogenization problems are available since the 1980ies, for early
contributions see [18, 7]. Many different boundary conditions and many different
scalings can be studied, which led to a large body of literature in this field. Our
setting is very elementary: We study the homogeneous Neumann problem with ε-size
inclusions that are situated with ε-periodicity along a manifold of co-dimension 1.
We provide effective equations with a direct proof, analyzing quite general settings
in arbitrary dimension.

We fix a frequency ω > 0 and a source f ∈ L2(Ω) and study the Helmholtz
equation

−∆pε = ω2pε + f in Ωε . (1.1)

We may supplement (1.1) with a homogeneous Dirichlet boundary condition on ∂Ω,
we always use homogeneous Neumann boundary condition on ∂Ωε \ ∂Ω.

The domain Ωε is constructed from a Lipschitz domain Ω ⊂ Rd by removing
inclusions of size ε > 0 along a (d− 1)-dimensional manifold Γ0. More precisely, we
set Ωε := Ω \ Σε, where Σε is the disjoint union of small obstacles. The number of
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Figure 1: The Neumann sieve. The domain Ω is perforated along a lower dimensional
manifold. The perforated domain Ωε (gray) is obtained by removing the union Σε of
obstacles. The Helmholtz equation is solved on Ωε with a homogeneous Neumann
condition on ∂Σε.

obstacles is of the order ε−(d−1), the single obstacle is denoted by Σε
k, where k ∈ Zd−1

is used to number the obstacles. Each obstacle Σε
k has a diameter of order ε and is

obtained as a scaled copy of a Lipschitz domain Σ ⊂
(
−1

2
, 1

2

)d
. The obstacles are

periodically distributed along Γ0 ⊂ Ω, see Figure 1.
Let p ∈ L2(Ω) be a weak limit of the solution sequence pε (after a trivial extension

of the solution sequence across the obstacles). The effective problem in leading order
is to determine an equation for p. The result for the leading order problem is trivial
in the sense that the effect of the perforation gets lost: The equation for p is the
Helmholtz equation

−∆p = ω2p+ f in Ω . (1.2)

For a proof see Theorem 1 of [11].
The fact that, to leading order, the perforation has no effect, is well-known

to experts in the field. Let us take an analytical perspective and sketch why the
above result is quite clear: The solution sequence pε is bounded in H1(Ωε) and can
be extended to a bounded sequence in H1(Ω). A weak limit of this sequence lies
in H1(Ω) and has therefore no jump across Γ0. On the other hand, no source is
introduced by the inclusions, since homogeneous Neumann boundary conditions are
used. This leads to the fact that also the normal derivative of p has no jump across
Γ0. The combination of these two continuity statements yields that p solves the
Helmholtz equation in the whole domain Ω.

Interesting equations occur at first order. For pε solving (1.1) and p solving (1.2)
we study the corrector

vε :=
pε − p
ε

(1.3)

and weak limits v of the sequence vε (in appropriate function spaces). Since pε and
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p solve the Helmholtz equation on the domain Ω \ Γ0, also v solves the equation on
Ω \ Γ0. The main result of the work at hand concerns the jump conditions for v
across Γ0. We denote a normal vector on Γ0 by ν. We obtain that the jump [v] is
given in terms of ∇p along Γ0. Similarly, the jump [∂νv] is given in terms of second
derivatives of p, see (1.10).

Let us make a remark concerning the structure of the limiting system. An
approximation of the solution pε for a fixed parameter ε > 0 is given by p + εv.
This quantity can be calculated in two steps, since the equations for p and v are
decoupled: In a first step, the zero order approximation p can be calculated by
solving (1.2), i.e. by neglecting the Neumann sieve. The first order approximation
v can be calculated on the domain Ω (and not in a complex geometry) by solving
(1.10). The jump conditions for v across Γ0 are determined by p.

The same limit equations have been obtained in [9] in two dimensions and in a
radially symmetric setting. Our result is valid in arbitrary dimension, the construc-
tions allow to treat very general geometries and general conditions on the macro-
scopic boundaries. An important feature of our contribution is that we split the
derivation of the effective system into two parts: In the two Sections 3 and 4 we
derive the effective system under the assumption that the solution sequence vε is
bounded in W 1,1(Ωε). In Section 5 we present sufficient conditions on the domain
and the macroscopic boundary conditions such that the W 1,1-boundedness assump-
tion on vε is satisfied. This splitting of the proof makes each piece quite accessible.
Furthermore, we can formulate the following loose interpretation: Whenever a limit
system can be derived, it must have the form (1.10) of Theorem 1.2.

The literature on the subject is discussed in Section 1.2 below.

1.1 Setting and main result

Let Ω ⊂ R3 be a bounded domain with Lipschitz boundary, containing the origin.

Let the obstacle shape Σ be a Lipschitz domain Σ ⊂
(
−1

2
, 1

2

)d
such that the com-

plement
(
−1

2
, 1

2

)d \Σ is connected. We restrict to obstacles of maximal height 1 for

notational convenience; the case Σ ⊂
(
−1

2
, 1

2

)d−1 × (−M,M) for some M > 1
2

is
covered by a change of notation.

We use k ∈ Zd−1 to label the different obstacles and set

Σε
k := ε (Σ + (k, 0)) for k ∈ Zd−1 , Iε :=

{
k ∈ Zd−1| Σ̄ε

k ⊂ Ω
}
. (1.4)

The number of elements of Iε is of order ε−(d−1). We denote the union of all obstacles
as Σε and denote the perforated domain as Ωε,

Σε :=
⋃
k∈Iε

Σε
k , Ωε := Ω \ Σ̄ε . (1.5)

Let n = nε(x) be the outer normal of Ωε on ∂Ωε. In our construction, the perforation
Σε is located along the submanifold Γ0 :=

(
Rd−1 × {0}

)
∩ Ω. The interface Γ0 =:

Γ× {0} with Γ ⊂ Rd−1 has the upward pointing normal ν = ed.
We assume that f ∈ L2 (Ω) is a given source. The weak form of (1.1) with the

indicated boundary conditions is the following: We search for pε ∈ Hε := {qε ∈
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H1(Ωε)|qε = 0 on ∂Ω} such that∫
Ωε

∇pε · ∇ϕ =

∫
Ωε

ω2pεϕ+

∫
Ωε

fϕ ∀ϕ ∈ Hε . (1.6)

In what follows, we denote by Pε : L2(Ωε) → L2(Ω) the extension operator that
extends a function by 0 to all of Ω.

We will assume that ω2 is not an eigenvalue of the operator −∆ on Ω under the
imposed boundary conditions on ∂Ω, in short: ω2 6∈ σ (−∆).

Theorem 1.1 (Theorem 1 of [11]). Let Ω ⊂ Rd, ω with ω2 6∈ σ (−∆), f ∈ L2(Ω),
and Ωε be as above. Let pε be solutions to (1.6) and let the dimension be d = 3.

With the unique weak solution p ∈ H1
0 (Ω) of (1.2) holds

Pεpε → p and Pε∇pε ⇀ ∇p in L2(Ω) . (1.7)

Let f have the regularity H1 ∩Cα, α ∈ (0, 1), in an open neighborhood of Γ0 and let
∂Ω be of class C3 in a neighborhood of Γ̄0 ∩ ∂Ω. For a constant C = C(f) holds

‖p− Pεpε‖L2(Ω) + ‖∇p− Pε∇pε‖L2(Ω) ≤ Cε1/2 . (1.8)

Theorem 1.1 establishes that the limit of the Neumann sieve solutions is given by
the function p. In particular, the limit problem does not contain any contribution
from the perforation. We remark that the claims of Theorem 1.1 remain true for
d ≥ 2, the proofs of [11] work in any dimension.

The aim of this contribution is to characterize the corrector vε that was defined
in (1.3). Our main result is the derivation of the limit system (1.10), in which
the jump [v] of v and the jump [∂νv] of its normal derivative across Γ0 are used.
Comments on the two expressions are given after the theorem. The theorem uses
the following boundedness on the solution sequence as an assumption: For some
C > 0, independent of ε, there holds

‖vε‖W 1,1(Ωε) ≤ C . (1.9)

This boundedness can be verified in relevant cases: Theorem 5.3 provides (1.9) in a
periodic problem, Theorem 5.4 in a Dirichlet problem.

Different boundary conditions on ∂Ω can be treated. One choice is to consider
homogeneous Dirichlet conditions in all problems: in equation (1.1) for pε, in (1.2)
for p, and in (1.10) below for v.

Theorem 1.2 (Effective system for the corrector). Let Ω and Ωε in dimension d ≥ 2
be as above, let ω > 0 satisfy ω2 6∈ σ (−∆). Let pε be solutions to (1.1) and let p
be a solution to (1.2). We assume that f ∈ L2(Ω) allows the regularity p ∈ C2 in
a neighborhood of Γ0 and the convergence estimate (1.8). Let the correctors vε be
given by (1.3), we assume the a priori bound (1.9).

In this situation, Pεvε → v holds in the sense of measures on Ω and in L1
loc(Ω),

the limit function v ∈ W 1,1(Ω \ Γ0) is characterized by the system:

−∆v = ω2v in Ω \ Γ0 ,
[v] = J · ∇p on Γ0 ,

[∂νv] = ∇ · (G∇p) on Γ0 .
(1.10)

Here, G ∈ Rd×d and J ∈ Rd are given by cell problems, see (2.6) and (2.7).
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Theorem 1.2 is a direct consequence of Proposition 4.3.
Remarks on jump quantities. For a piecewise continuous function v and x ∈ Γ0,

we set [v](x) := limδ↘0(v(x+ δν)− v(x− δν)). For v ∈ H1(Ω \Γ0), the jump is well
defined in the sense of traces. For pieceswise C1 functions v, the jump of the normal
derivative [∂νv] is defined accordingly. In our setting, the condition for [∂νv] must
be written in a weak form: First and third equation of (1.10) are written combined
as ∫

Ω

∇v · ∇ϕ−
∫

Ω

ω2v ϕ = −
∫

Γ0

[∇ · (G∇p)] ϕ ∀ϕ ∈ C∞c (Ω) . (1.11)

On the right hand side, we can separate tangential and normal components,
using the tangential derivatives ∇̃ = (∂1, ..., ∂d−1) on Γ0. With the tangential parts
Gτ of G and Jτ of J as in (2.8), we can write

∇ · (G∇p) = ∇̃ · (Gτ∇̃p) + ∇̃ · (Jτ∂νp)− |Σ| ∂2
νp .

Assuming reflection symmetry for the obstacle shape Σ, the equations simplify
further. We consider, for 1 ≤ j ≤ d− 1, the reflection Rj : Rd → Rd, which is given
as the linear function with Rjej = −ej and Rjei = ei for i 6= j.

Corollary 1.3 (Limit system for symmetric obstacles). Let the obstacle shape Σ
be invariant under all reflections Rj, 1 ≤ j ≤ d − 1. In this case, the effective
coefficients are given by real coefficients βj > 0 for 1 ≤ j ≤ d− 1 and γ > |Σ| in the
form G = diag(β1, ..., βd−1,−|Σ|) and J = (0, ..., 0, γ). The effective system (1.10)
takes the form

−∆v = ω2v in Ω \ Γ0 ,
[v] = γ∂νp on Γ0 ,

[∂νv] =
∑d−1

j=1 βj∂
2
j p− |Σ| ∂2

ν p on Γ0 .
(1.12)

The corollary is shown in Section 4.2.

Remark on scalings. We study a very natural scaling of the geometry: the size
of the obstacles and the periodicity are both of order ε > 0. The corrector vε is
formally of order ε−1, see its definition in (1.3) or the characterizing equations (3.1),
which contain the factor ε−1. As a consequence, |∇vε| is of order ε−1 in the vicinity
of the obstacles. Despite this fact, by decay properties away from the interfaces, the
L1(Ωε)-norms can be bounded; the work at hand is based on exacly this observation.
We note that, in general, the Lq(Ωε)-norm of |∇vε| is unbounded for every q > 1.

1.2 Literature

The literature offers two different ways to formulate effective limit equations. The
analytical literature such as [9] or the contribution at hand derives limit models in
the form that the first terms in the expansion of the solution in the small parameter
are calculated. In the more applied literature, one finds effective equations which
use a transmission impedance parameter. The transformation of the first system to
the second system is part of the work in [9], the properties of the limit model in the
context of electromagnetism are studied in [10].
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Let us compare [9] to the work at hand. The authors of [9] treat the Helmholtz
equation in two dimensions with a perforation along a circle. The solution is ex-
panded in powers of δ (δ is our ε). Equation (118) in that analysis determines the
first order corrector u1 (our v) by a system in which the lowest order solution u0 (our
p) prescribes jump conditions. Our results can be compared with their main result,
formulated as Proposition 11, which provides uδ ≈ u0 + δu1. The proof is based on
asymptotic expansions to second order. The fact that the solution can be expanded
provides both, estimates and approximation properties. As indicated above, we take
a quite different route here: Assuming that bounds are satisfied, we obtain the limit
equation by tools that are close to two-scale convergence and periodic unfolding.
In order to obtain the bounds, we construct approximate solutions in the spirit of
asymptotic expansions – but the expansions can be of lower order.

The preceeding work [11] introduced the approach that we use here: Convergence
of vε and ∇vε in the sense of measures is assumed and equations for the limiting
measures are extracted. The second theorem of [11] works with the assumption
µ = α[v]νHd−1 for some α (the limit measure µ is introduced in Section 4). The
work at hand does not yield this relation: In the case of symmetric inclusions we
do find ν · µ = |Σ|∂νpHd−1 = (|Σ|/γ)[v]Hd−1, which suggests α = |Σ|/γ, but the
tangential components of µ are, in general, not vanishing.

A study where the obstacles are replaced by highly oscillatory coefficients can
be found in [6]. In [15], a parabolic problem within the separating layer is studied;
a non-trivial lowest order behavior is obtained by an appropriate scaling of the
coefficients of the parabolic equation. The article [5] is devoted to unfolding methods
to analyze more general transmission problems where the obstacle scaling can be
different from the periodicity. The authors are particularly interested in Dirichlet
obstacles that are so small compared to the periodicity ε that a non-trivial effective
description for the interface occurs. The method of Γ-convergence for functional of
elasticity in the nonlinear Neumann sieve problem are studied in [1].

A quite different perspective is taken in [2]. The paper contains the statement
about the vanishing effect of the perforation for ε → 0, but the main focus is on
radiation conditions in the case of unbounded domains and in transmission losses
for coated inclusions.

Besides [9] and [6], also the following works use asymptotic expansions. Electro-
magnetic scattering is studied in [10] and [8]. The work [17] deals essentially with
our setting. In [20], the authors are interested, in particular, in the end-points of the
perforation. We recall at this point the loose interpretation of our result: We show
that our effective equations (1.10) hold whenever a priori estimates are satisfied. In
this sense, our equations are also valid in geometries in which the perforation ends
inside the domain.

There are many works in which related geometries are studied: [3] analyzes
Robin boundary conditions in cases where the scale of the inclusion is smaller than
ε; nontrivial effective equations are obtained for appropriate (exponential) scalings.
For the case that there is no perforation inside the domain, but rather the boundary
∂Ω is perturbed in a periodic fashion, results are available in [14]: As in our case,
the lowest order approximation of the solution is given by a trivial limit problem,
the first order corrector solves a modified macroscopic problem.
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Resonant inclusions are studied, e.g. in [16] and [13]. Resonant perturbations of
∂Ω are described in terms of the spectrum of the perturbed domain in [4]. Resonant
inclusions in the entire domain are studied in [12], see [19] for an overview.

2 Cell-problem

The periodicity cell is a cylinder that contains a single inclusion. We set

Y :=

(
−1

2
,
1

2

)d−1

per

× R , Z := Y \ Σ , (2.1)

and recall that we assumed that Σ ⊂
(
−1

2
, 1

2

)d
is a compactly contained Lipschitz

domain. The subscript “per” indicates that all functions on Y are understood as
functions on the flat torus; solutions to elliptic equations on Z must be periodic on
∂Y and the equation must be satisfied on ∂Y , which means that also derivatives are
periodic in the sense of traces.

The cell problem is a system of equations for a function w ∈ H1
loc(Z), it uses a

parameter ξ ∈ Rd, and reads

−∆w = 0 in Z ,
∂nw = n · ξ on ∂Σ ,

(2.2)

where n : ∂Σ→ Rd is the exterior normal of Z.

Lemma 2.1 (Existence and uniqueness for cell problem). For every ξ ∈ Rd, there
exists a solution w to problem (2.2) in the space

w ∈ Ḣ(Z) :=
{
w ∈ H1

loc(Z)
∣∣∇w ∈ L2(Z)

}
, (2.3)

‖w‖2
Ḣ

:=

∫
Z∩{|yd|<1}

|w|2 +

∫
Z

|∇w|2 . (2.4)

We recall the periodicity of functions w ∈ Ḣ(Z) in lateral directions is imposed by
definition of Z. The solution w is unique up to additive constants.

Proof. We consider the functional

I(w) :=
1

2

∫
Z

|∇w|2 −
∫
∂Σ

ξ · n w (2.5)

on Ḣ(Z), restricted to the subspace of functions with vanishing integral over the set
Z ∩ {|yd| < 1}. The functional I is coercive by the Poincaré inequality. The direct
method can be applied and provides a solution w to the cell problem. Uniqueness
on the chosen subspace follows from strict convexity.

With the help of the cell problem, we define a coefficient matrix G ∈ Rd×d; the
name indicates that gradients are averaged. We set, for arbitrary ξ ∈ Rd and a
solution w = wξ of (2.2),

Gξ :=

∫
Z

∇w ∈ Rd . (2.6)
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We note that, if the integral is well defined, the right hand side is a vector in Rd

that depends linearly on ξ. Therefore, (2.6) can define a matrix G ∈ Rd×d.
We next define a coefficient vector J ∈ Rd; the name indicates that a jump-value

of w is extracted. Since we are in a rescaled setting, the jump-value is given by the
difference of values of w at ±∞. For arbitrary ξ ∈ Rd we use w = wξ and set

J · ξ := − lim
ζ→∞

∫
{yd=ζ}

w + lim
ζ→−∞

∫
{yd=ζ}

w ∈ R . (2.7)

Lemma 2.2. The matrix G and the vector J are well defined. They have the form

G =

(
Gτ Jτ
0 −|Σ|

)
, J =

(
Jτ
γ

)
, (2.8)

for a symmetric and positive definite matrix Gτ ∈ R(d−1)×(d−1), a vector Jτ ∈ Rd−1,
and a number γ ∈ R with γ > |Σ|.

Proof. Step 1: Properties of ∇w. Each derivative ∂iw is a harmonic function in
Z ∩ {yd > 1/2}. We consider, for |ζ| > 1/2, and i ∈ {1, ..., d}, the averages
ai(ζ) :=

∫
{yd=ζ} ∂iw. The averages ai(ζ) vanish for i ≤ d − 1 by periodicity of w.

The average ad(ζ) :=
∫
{yd=ζ} ∂dw satisfies ∂ζad(ζ) =

∫
{yd=ζ} ∂

2
dw = 0 because of

∆w = 0 and periodicity. We find that ad(ζ) is independent of ζ. On the other hand,
because of w ∈ Ḣ(Z), the function ad(.) is square integrable. It therefore vanishes
identically for |ζ| ≥ 1/2.

Step 2: G and J are well defined. Since averages along horizontal planes (not
intersecting Σ) vanish, we see that the definition of G in (2.6) is equivalent to

Gξ :=

∫
(− 1

2
, 1
2

)d\Σ
∇w .

This is a well defined element of Rd.
The fact that ad(ζ) vanishes for ζ ≥ 1 implies that the averages of the values,

b(ζ) :=
∫
{yd=ζ}w, is independent of ζ for ζ ≥ 1. This implies that J is well-defined

and indeed identical with the number

J · ξ = −b(1/2) + b(−1/2) = −
∫
{yd=1/2}

w(y) +

∫
{yd=−1/2}

w(y) .

Step 3: Properties of G. We define the “tangential” part of the matrix G as the
sub-matrix Gτ ∈ R(d−1)×(d−1), (Gτ )i,j = Gi,j for i, j ≤ d− 1.

Let w be a cell solution for ξ ∈ Rd. We consider the function F : Y → Rd,

F (y) :=

{
∇w(y) for y ∈ Z
ξ else.

(2.9)

By the properties of w, the function F has a vanishing divergence in Y . As noted
in Step 1, averages of F over planes {yd = ζ} vanish for |ζ| > 1/2. The fact that F
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has a vanishing divergence implies that integrals of the component Fd over planes
{yd = ζ} vanish for every ζ ∈ R. This allows to calculate, for ξ = ed,

0 =

∫
Y

Fd =

∫
Σ

Fd +

∫
Z

Fd =

∫
Σ

1 +

∫
Z

ed · ∇w = |Σ|+Gd,d ,

which provides Gd,d = −|Σ|.
We consider now ξ = ei with i < d and the corresponding flux function F of

(2.9). We calculate as above and find

0 =

∫
Y

Fd =

∫
Σ

Fd +

∫
Z

Fd =

∫
Σ

ed · ei +

∫
Z

ed · ∇w = 0 +Gd,i ,

which provides Gd,i = 0.
Let now wi be a cell solution for ξ = ei and wj be a cell solution for ξ = ej. In

the case j < d we can calculate

Gj,i = ej ·
∫
Z

∇wi =

∫
Z

∇ · (wi ej) =

∫
∂Σ

n · (wi ej) =

∫
∂Σ

n · ej wi

=

∫
∂Σ

n · ∇wj wi =

∫
Z

∇wj · ∇wi .

Since the right hand side is symmetric in i and j, the matrix Gτ is symmetric. The
formula also implies that Gτ is positive definite.

We can use the above calculation also to find some information on Gj,d, j < d.
With the cell solutions wj and wd to ξ = ej and ξ = ed we calculate

Gj,d =

∫
Z

∇wj · ∇wd =

∫
∂Σ

wj n · ∇wd =

∫
∂Σ

wj n · ed

=

∫
Z

∇ · (wj ed)−
∫
{yd=1/2}

wj +

∫
{yd=−1/2}

wj

= Gd,j + J · ej = J · ej .

We can therefore write G as in (2.8). Concerning the value of γ, we calculate

−|Σ| = Gd,d =

∫
Z∩{|yd|<1/2}

ed · ∇wd

=

∫
{yd=1/2}

wd −
∫
{yd=−1/2}

wd +

∫
∂Σ

wd n · ed

= −J · ed +

∫
∂Σ

wd n · ∇wd = −γ +

∫
Z

|∇wd|2 .

This provides γ > |Σ| and concludes the characterization of G and J .

Lemma 2.3. Let w be the cell solution to ξ ∈ Rd. There holds

ej ·
∫
∂Σ

nw =

{
ej ·Gξ for j < d ,

ed ·Gξ + J · ξ for j = d .
(2.10)

Proof. The claim follows with an integration by parts. For j = d we calculate

ed ·Gξ = ed ·
∫
Z

∇w = −J · ξ + ed ·
∫
∂Σ

nw .

For j < d one calculates accordingly (without a jump contribution).
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3 Elementary unfolding operations

In the setting of Theorem 1.2, we are given a function p ∈ H1
0 (Ω), which solves a

Helmholtz equation with a right hand side f ∈ Cα ∩H1. By elliptic regularity, p is
of class H3 and of class C2,α in a neighborhood of Γ0. Our aim is to analyze limits
of solutions vε to the following corrector problem:

−∆vε = ω2 vε in Ωε ,
∂nv

ε = −ε−1 n · ∇p on ∂Σε ,
vε = 0 on ∂Ω .

(3.1)

System (3.1) has the following weak formulation: The function vε ∈ H1(Ωε) satisfies
vε|∂Ω = 0 and∫

Ωε

∇vε · ∇ϕ = −
∫
∂Ωε

1

ε
n · ∇pϕ+

∫
Ωε

ω2vεϕ ∀ϕ ∈ H1
0 (Ω) . (3.2)

In this and the next section, we derive a limit system for vε.

3.1 Estimates for rescaled averaged functions

We use the cell problem domain Z := Y \ Σ as in the last section and, for M > 1,
the truncated domain ZM := Z ∩ {|yd| < M}.
Lemma 3.1 (Estimates for rescaled averaged functions). Let vε be a sequence of
functions vε : Ωε → R with the property

‖vε‖L2(Ωε) + ‖∇vε‖L2(Ωε) ≤ C0 ε
−1/2 . (3.3)

Let ϕ be a test function, ϕ ∈ C∞c (Ω). We introduce a rescaled averaged function on
Z by setting, for y ∈ Z,

V ε
ϕ (y) :=

1

|Iε|
∑
k∈Iε

vε(ε(k + y))ϕ(ε(k + y)) . (3.4)

Then the function V ε
ϕ satisfies, with C1 = C1(C0) and C2 = C2(M,C0) independent

of ε, the estimates ∫
Z

|∇yV
ε
ϕ |2 ≤ C1 , (3.5)∫

ZM

|V ε
ϕ |2 ≤ C2 ε

−1 . (3.6)

Proof. Step 1: Estimate (3.5). The gradient can be estimated with a direct cal-
culation, using an arbitrary number M > 1 and Jensen’s inequality in the second
line. ∫

ZM

|∇yV
ε
ϕ |2 =

∫
ZM

∣∣∣∣∣ 1

|Iε|
∑
k∈Iε

∇y[v
ε(ε(k + y))ϕ(ε(k + y))]

∣∣∣∣∣
2

dy

≤ 1

|Iε|
∑
k∈Iε

∫
ZM

|∇y[v
ε(ε(k + y))ϕ(ε(k + y))]|2 dy

≤ 1

|Iε|
∑
k∈Iε

∫
ZM

ε2 |(∇xv
ε ϕ)(ε(k + y)) + (vε∇xϕ)(ε(k + y))|2 dy
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=
1

|Iε|
∑
k∈Iε

∫
ε(k+ZM )

ε2 |(∇xv
ε ϕ)(x) + (vε∇xϕ)(x)|2 ε−d dx

=
ε2−d

|Iε|

∫
Γ×(−εM,εM)

|(∇xv
ε ϕ)(x) + (vε∇xϕ)(x)|2 dx

≤ Cε

∫
Γ×(−εM,εM)

|∇xv
ε|2 + |vε|2 dx ≤ C1

by (3.3). The constant is independent of M , we therefore obtain (3.5). To be
formally correct in the above calculation, we agree that all functions are extended
by zero to the outside of Ω.

Step 2: Estimate (3.6). We first investigate a boundary integral. We estimate
the integral of the function V ε

ϕ over the upper boundary of ZM , the set {yd = M}.

∣∣∣∣∫
Z∩{yd=M}

V ε
ϕ (y) dy

∣∣∣∣ =

∣∣∣∣∣
∫
Z∩{yd=M}

1

|Iε|
∑
k∈Iε

(vε ϕ)(ε(k + y)) dy

∣∣∣∣∣
≤ C

∣∣∣∣∫
Ω∩{xd=εM}

(vε ϕ)(x) dx

∣∣∣∣ ≤ C‖vε ϕ‖H1(Ωε) ≤ Cε−1/2 .

In the last line we used a trace theorem for the domain Ω ∩ {xd > εM}.
Step 1 provides a bound for the L2(ZM)-norm of ∇yV

ε
ϕ . The Poincaré inequality

on ZM for functions with a controlled boundary integral implies (3.6). We exploit
here that Z = Y \ Σ is connected.

3.2 Limits of rescaled averaged functions

Lemma 3.2 (Limits of an averaged and rescaled version of vε). Let vε be a sequence
of solutions to (3.1) satisfying

‖vε‖L2(Ωε) + ‖∇vε‖L2(Ωε) ≤ C0 ε
−1/2 . (3.7)

Let ϕ be a test function, ϕ ∈ C∞c (Ω). We use the function V ε
ϕ : Z → R that was

defined in (3.4). We set V ε
ϕ,0 := V ε

ϕ − cε, where cε ∈ R is chosen in such a way that
V ε
ϕ,0 has a vanishing average in Z1. Then there holds

V ε
ϕ,0 ⇀ w in Ḣ1(Z) (3.8)

as ε→ 0, where w is the cell-problem solution to

ξ := − 1

|Γ0|

∫
Γ0

∇pϕ ∈ Rd . (3.9)

Furthermore, there holds

ej ·
∫
∂Σε

n vε ϕ→ |Γ0|ej ·
∫
∂Σ

nw . (3.10)
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We note that the right hand side of (3.10) can be expressed with the help of
(2.10). For j < d we conclude from (3.10)

ej ·
∫
∂Σε

n vε ϕ→ |Γ0|ej ·G ·
(
− 1

|Γ0|

∫
Γ0

∇pϕ
)

= −
∫

Γ0

ej ·G∇pϕ . (3.11)

For j = d we conclude

ed ·
∫
∂Σε

n vε ϕ→
∫

Γ0

|Σ| ∂νpϕ−
∫

Γ0

J · ∇pϕ . (3.12)

Proof. Step 1. Bounds and weakly convergent subsequence. Lemma 3.1 can be
applied. Estimate (3.5) implies that gradients of V ε

ϕ,0 are bounded in L2(Z). Since
the average of V ε

ϕ,0 vanishes on Z1 by construction, the sequence V ε
ϕ,0 is bounded in

Ḣ1(Z). We select a subsequence ε→ 0 and a limit function w such that

V ε
ϕ,0 ⇀ w in Ḣ1(Z) . (3.13)

Step 2. Equations for w. Let ψ be a compactly supported C∞-function on
Y . Since Y has a torus structure in the first components, this implies that the
periodic extension of ψ is again a C∞-function. In the following, we identify ψ with
its periodic extension in the lateral directions e1 to ed−1. By compactness of the
support we can choose M > 0 large enough to have the support of ψ contained in
YM := Y ∩ {|yd| < M}.

We calculate, in the limit ε→ 0,∫
Z

∇yw · ∇yψ ←
∫
ZM

∇yV
ε
ϕ,0 · ∇yψ (3.14)

=

∫
ZM

1

|Iε|
∑
k∈Iε

ε[(∇xv
ε ϕ)(ε(k + y)) + (vε∇xϕ)(ε(k + y))] · ∇yψ(y) dy

=
ε

|Iε|εd

∫
Γ×(−εM,εM)

∇xv
ε(x)ϕ(x) · ∇yψ(x/ε) dx

+

∫
ZM

1

|Iε|
∑
k∈Iε

ε(vε∇xϕ)(ε(k + y)) · ∇yψ(y) dy

=
ε−(d−1)

|Iε|

∫
Γ×(−εM,εM)

ε∇xv
ε(x) · ∇x(ϕ(x)ψ(x/ε)) dx

− ε−(d−1)

|Iε|

∫
Γ×(−εM,εM)

ε∇xv
ε(x) · ∇xϕ(x)ψ(x/ε) dx

+

∫
ZM

ε
1

|Iε|
∑
k∈Iε

(vε∇xϕ)(ε(k + y)) · ∇yψ(y) dy .

We claim that the second and third integral on the right hand side vanish in the
limit ε → 0. For the second term, this is clear because of |Iε| = O(ε−(d−1)) and
ε‖∇xv

ε‖L2(Ωε) ≤ Cε1/2. Concerning the third term, we observe that the function

F ε(y) :=
1

|Iε|
∑
k∈Iε

(vε∇xϕ)(ε(k + y))
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is of the form that was analyzed in Lemma 3.1; we only have to interpret the
derivatives of ϕ as new weights. Estimate (3.6) implies ‖F ε‖L2(YM ) ≤ Cε−1/2. We
use this to evaluate the last integral: Because of the factor ε, the integral containing
F ε vanishes in the limit ε→ 0.

We continue the calculation (3.14), keeping only the first integral and exploiting

|Iε|εd−1 → |Γ0| .

We use equation (3.2) for vε in the second equality to find

|Γ0|
∫
Z

∇yw · ∇yψ = lim
ε→0

∫
Γ×(−εM,εM)

ε∇xv
ε(x) · ∇x(ϕ(x)ψ(x/ε)) dx

= − lim
ε→0

∫
∂Σε

n(x) · ∇p(x)ϕ(x)ψ(x/ε) dHd−1(x)

= − lim
ε→0

∑
k∈Iε

εd−1

∫
∂Σ

n(y) · (ψ(y)(ϕ∇p)(ε(k + y))) dHd−1(y)

= −
∫

Γ0

(ϕ∇p)(x) dx ·
∫
∂Σ

n(y)ψ(y) dHd−1(y) .

The last equality follows from the Lipschitz continuity of ϕ and ∇p. We conclude
that w solves the cell problem with ξ from (3.9).

Step 3. Convergence (3.10). We can perform a direct calculation, exploiting that
an integral over ∂Σ of the normal vector n (multiplied with a constant), vanishes.∫

∂Σε

n vε ϕ =
∑
k∈Iε

εd−1

∫
∂Σ

n(y) (vε ϕ)(ε(k + y)) dHd−1(y)

= |Iε| εd−1

∫
∂Σ

n(y)V ε
ϕ,0(y) dHd−1(y)→ |Γ0|

∫
∂Σ

nw

by the trace theorem in Ḣ1(Z). This shows the claim.

4 Effective equations

Lemma 4.1. Let Ωε be as described in Section 1.1 and let vε be a sequence of solu-
tions to (3.1) satisfying the W 1,1(Ωε)-bound (1.9). Then there exists a subsequence
ε→ 0, a limit function v ∈ W 1,1(Ω \ Γ0), and a measure µ ∈M(Ω), supp(µ) ⊂ Γ0,
such that the following convergences hold for ε→ 0:

Pεvε
∗
⇀ v and Pε∇vε

∗
⇀ ∇v + µ (4.1)

weakly-∗ in the sense of measures on Ω, the first convergence also in L1
loc(Ω).

Proof. The sequences Pεvε and Pε∇vε are both bounded in L1(Ω) by (1.9). By com-
pactness in the space M(Ω) of signed Borel measures on Ω, we find a subsequence

ε → 0 and limit measures m, ν ∈ M(Ω) such that Pεvε
∗
⇀ m and Pε∇vε

∗
⇀ ν. We

decompose the limit measures in their absolute continuous and their singular part
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with respect to the Lebesgue measure Ld as m = v dLd + msing and ν = g dLd + µ.
The densities v and g are of class L1(Ω) by construction.

Let Ω̃ ⊂ Ω\Γ0 be a compactly contained subset. The sequence vε is L1-bounded
and solves a homogeneous elliptic equation in a neighborhood of Ω̃. This implies
that vε is H2-bounded in Ω̃. The improved regularity of vε away from Γ0 has two
consequences: (i) msing and µ are supported on Γ0. (ii) g = ∇v in Ω \ Γ0. With
these observations we have v ∈ W 1,1(Ω \Γ0) and the statement on the support of µ.

It remains to show msing = 0. Essentially, this property follows from the embed-
ding W 1,1 ⊂ Lq for sufficiently small q > 1. The details are technical, we therefore
present the proof of msing = 0 in the appendix, see Lemma A.1. Let us empha-
size that the proof cannot be trivial: the statement is wrong if no connectedness
properties of Ωε are imposed.

Lemma 4.2 (Limit of an integral that is independent of vε). For a smooth test
function ϕ and p of class C2 in a neighborhood of Γ0, there holds, as ε→ 0,

−
∫
∂Ωε

1

ε
n · ∇pϕ→ |Σ|

∫
Γ0

[
∂2
νpϕ+ ∂νp ∂νϕ

]
. (4.2)

Proof. The full proof is contained in [11], see (25) in Section 4; there, the calculation
is performed for d = 3, but the dimension is not relevant in the proof. The essential
part is the following calculation, which uses that the boundary of the inclusions Σε

is the union of the single inclusion boundaries, ∂Σε =
⋃
k∈Iε ∂Σε

k:

−
∫
∂Ωε

1

ε
n · ∇pϕ = −

∑
k∈Iε

∫
∂Σε

k

1

ε
n · (∇pϕ) =

∑
k∈Iε

∫
Σε

k

1

ε
∇ · (∇pϕ)

=
∑
k∈Iε

ε−1|Σ|εd −
∫

Σε
k

[∆pϕ+∇p · ∇ϕ]→ |Σ|
∫

Γ0

[∆pϕ+∇p · ∇ϕ] .

An integration by parts on Γ0 implies (4.2).

4.1 The limit system

Proposition 4.3 (Equations for weak limits). Let vε be a sequence of solutions to
(3.1) satisfying (1.9) and (3.7), let v and µ be limits as in Lemma 4.1, p of class
C2 in a neighborhood of Γ0. Then v satisfies the system (1.10). The limit measure
µ is given by

µ = −G∇pHd−1bΓ0 . (4.3)

Proof. In all subsequent calculations, ϕ ∈ C∞c (Ω) is an arbitrary test function.
Step 1: Limits in an integration by parts formula. For an index j < d, we use

the identity ∫
Ωε

∂jv
ε ϕ+

∫
Ωε

vε ∂jϕ = ej ·
∫
∂Σε

n vε ϕ .

In the limit ε → 0, the two integrals on the left hand side converge by (4.1). The
limit of the right hand side was determined in (3.11). We find∫

Ω

∂jv ϕ+

∫
Ω

ej ϕ · dµ+

∫
Ω

v ∂jϕ = −
∫

Γ0

ej ·G∇pϕ . (4.4)
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An integration by parts is possible in this limit equation, the first and the third
integral cancel. The remaining terms provide

ej · µ = −ej ·G∇p Hd−1bΓ0 , (4.5)

which is the tangential part of the claim (4.3).

Step 2: Limits in the weak form of the equation. We take the limit ε→ 0 in the
original equation (3.2):∫

Ω\Γ0

∇v · ∇ϕ+

∫
Ω

∇ϕ · dµ (4.1)←−
∫

Ωε

∇vε · ∇ϕ

= −
∫
∂Ωε

1

ε
n · ∇pϕ+

∫
Ωε

ω2vε ϕ
(4.2)−→ |Σ|

∫
Γ0

(
∂2
νpϕ+ ∂νp ∂νϕ

)
+

∫
Ω

ω2v ϕ .

If we consider functions ϕ that are supported on Ω \ Γ0, we obtain −∆v = ω2v in
Ω\Γ0. Having established this fact, we can also insert arbitrary functions ϕ ∈ C∞c (Ω)
that vanish on Γ0 and obtain, since ∂νϕ on Γ0 can be chosen arbitrarily,

ed · µ = |Σ| ∂νp Hd−1bΓ0 . (4.6)

In view of (2.8), this is the part of (4.3) that was not verified in Step 1.

We will exploit the above identity of limits further. We can now cancel the
factors of ∂νϕ in Γ0-integrals. In the second equality we insert (4.5) and integrate
by parts on Γ0, in the last equality, we exploit once more (2.8):∫

Ω

∇v · ∇ϕ−
∫

Ω

ω2v ϕ = −
∫

Ω

d−1∑
j=1

∂jϕdµj + |Σ|
∫

Γ0

∂2
νpϕ

=

∫
Γ0

ϕ

{
−

d−1∑
j=1

∂j(ej ·G∇p) + |Σ|∂2
νp

}
= −

∫
Γ0

ϕ∇ ·G∇p .

As we have made precise in (1.11), this relation encodes the jump condition

[∂νv] = ∇ ·G∇p , (4.7)

which is the third equation in the limit system (1.10).

Step 3: The jump of values. We start again from an integration by parts formula
as in Step 1. Now, we consider the index j = d and ν = ed to find∫

Ω

v ∂νϕ+

∫
Ω

∂νv ϕ+

∫
Ω

ϕ dµd
(4.1)←−

∫
Ωε

vε ∂νϕ+

∫
Ωε

∂νv
ε ϕ

= ed ·
∫
∂Σε

n vε ϕ
(3.12)−→

∫
Γ0

|Σ| ∂νpϕ−
∫

Γ0

J · ∇pϕ .

Relation (4.6) shows that the integral containing µ cancels with the first integral on
the right hand side. We obtain, with the jump [v] defined in the sense of traces,∫

Γ0

[v]ϕ =

∫
Γ0

J · ∇pϕ .

Since ϕ is arbitrary, this yields [v] = J ·∇p of (1.10). The limit system is derived.
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4.2 Inclusions with symmetry

In this short subsection we prove Corollary 1.3. We therefore assume that the
inclusion shape Σ is symmetric under all reflections Rj, j ≤ d− 1.

We fix a direction j ≤ d − 1 and study the reflection Rj : (x1, ..., xd) 7→
(x1, ...,−xj, ..., xd). Let wξ be the solution to the cell problem for ξ = ej. By
symmetry of the inclusion, the reflected function w̃ := w ◦ Rj is a solution to the
cell problem with ξ̃ := Rjξ = −ξ. We calculate for i 6= j in (2.6)

Gi,j = ei ·Gξ = ei ·
∫
Z

∇w = ei ·
∫
Z

∇w̃ = ei ·G ξ̃ = −ei ·Gξ ,

and obtain Gi,j = 0. Similarly, we calculate in (2.7)

J · ξ = − lim
ζ→∞

∫
{yd=ζ}

w + lim
ζ→−∞

∫
{yd=ζ}

w

= − lim
ζ→∞

∫
{yd=ζ}

w̃ + lim
ζ→−∞

∫
{yd=ζ}

w̃ = J · ξ̃ = −J · ξ ,

and obtain J · ej = 0. The two results imply that G is a diagonal matrix and that
Jτ vanishes. Corollary 1.3 is shown.

5 A priori bounds for vε

In this section, we study solutions vε to System (3.1) with regard to a priori bounds.
Under appropriate assumptions, we derive the a priori estimate (1.9).

The derivation of the a priori estimate is based on an explicit construction using
solutions of cell problems on Z := Y \Σ of (2.1). We consider, for j ∈ {1, ..., d}, the
cell solutions wj of Section 2, solving

∆wj = 0 in Z , ∂nwj = nj on ∂Σ . (5.1)

For i, j ∈ {1, ..., d} we use additionally the higher order cell solutions ψi,j solving

∆ψi,j = −2∂iwj in Z , ∂nψi,j =
−2

|∂Σ|
Gi,j on ∂Σ , (5.2)

where Gi,j =
∫
Z
∂iwj is as in Section 2. The existence theory for ψi,j can be per-

formed along the same lines as that for wj. For the existence of solutions, one has
to exploit the integrability condition

∫
Z

∆ψi,j =
∫
Z

(−2∂iwj) = −2Gi,j =
∫
∂Σ
∂nψi,j.

Our methods require additional regularity assumptions on the inclusion shape
Σ. We demand that the solutions of the cell problems (5.1) and (5.2) have the
regularity

wj, ψi,j ∈ H2(Z) , wj,∇wj, ψi,j,∇ψi,j ∈ L∞(Z) . (5.3)

This is the case, e.g., if ∂Σ is of the regularity class C2. We note that the solution
wi satisfies additionally the L1(Z)-estimate

∇wj ∈ L1(Z) . (5.4)
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This estimate can be concluded by expanding, for arbitrary j ≤ d, the function(
−1

2
, 1

2

)d−1

per
3 ỹ 7→ ∂jwi(ỹ, yd) in a Fourier-series. Averages of this function vanish as

was observed in the proof of Lemma 2.2. Since wi is harmonic, all Fourier coefficients
are exponentially decaying in yd. The exponential decay provides (5.4).

Proposition 5.1 (Construction of W 1,1-bounded sequences). Let R := (−1, 1)d−1×
(−h, h) be a cuboid with height 2h > 0 and let g ∈ C2(R̄) ∩ H3(R) be a function
that prescribes boundary data. Let Σ ⊂ Y satisfy the regularity property demanded in
(5.3). For a sequence 1/N 3 ε→ 0, we consider the perforated domains Rε := R\Σε.

There exists a sequence uε : Rε → R of class H2(Rε) such that the three functions

uε ∈ L2(Rε) ∩W 1,1(Rε) , (5.5)

σε :=

(
∂nuε −

1

ε
g · n

)∣∣∣∣
∂Σε

∈ L∞(∂Σε) , (5.6)

ρε := ∆uε ∈ L∞(Rε) , (5.7)

are bounded in the indicated function spaces. The functions uε can be chosen 1-
periodic in the directions ej, j = 1, ..., d− 1, if g has this periodicity property.

Proof. We can provide uε with an explicit formula. Using Einstein’s summation
convention (summing over repeated indices) we set

uε(x) := wj(x/ε)gj(x) + εψi,j(x/ε)∂igj(x) . (5.8)

We note that, by the boundedness (5.3) of wj and ψi,j, the sequence uε is uniformly
bounded, hence also bounded in L2 and in L1.

Step 1: W 1,1-bound. We start with the highest order term in the gradient of uε
and calculate its L1-norm. We use rescaled cylinders Zε

k = ε(k + Z), k ∈ Iε, where
Iε is the index set corresponding to the domain R. For fixed j ≤ d we find∫

Rε

1

ε
|∇ywj(x/ε)gj(x)| dx ≤ C

∫
Rε

1

ε
|∇ywj(x/ε)| dx

≤ C
∑
k∈Iε

∫
Zε
k

1

ε
|∇ywj(x/ε)| dx = C

∑
k∈Iε

εd−1

∫
Z

|∇ywj(y)| dy ≤ C0

by (5.4).
The terms |wj(x/ε)∇gj(x)|, |∇yψi,j(x/ε)∂igj(x)|, and ε|ψi,j(x/ε)∇∂igj(x)| are

bounded by the uniform bounds in (5.3). This shows (5.5).

Step 2: Residuals. In order to show (5.6) we calculate for x ∈ ∂Σε, exploiting
nl ∂lwj = nj,

σε(x) = ∂nuε(x)− 1

ε
g(x) · n(x)

=
1

ε
nl ∂lwj(x/ε)gj(x) + wj(x/ε)nl ∂lgj(x) + nl ∂lψi,j(x/ε)∂igj(x)

+ εψi,j(x/ε)nl ∂l∂igj(x)− 1

ε
nj gj(x)

= wj(x/ε)nl ∂lgj(x) + nl ∂lψi,j(x/ε)∂igj(x) + εψi,j(x/ε)nl ∂l∂igj(x) ,
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which is a bounded sequence of functions.
Similarly, we show (5.7) with a direct calculation, using ∆wj = 0 and ∆ψi,j =

−2∂iwj in the last equality:

ρε(x) = ∆uε

=
1

ε2
∆wj(x/ε)gj(x) +

2

ε
∂iwj(x/ε)∂igj(x) + wj(x/ε)∆gj(x)

+
1

ε
∆ψi,j(x/ε)∂igj(x) + 2∂lψi,j(x/ε)∂l∂igj(x) + εψi,j(x/ε)∆∂igj(x)

= wj(x/ε)∆gj(x) + 2∂lψi,j(x/ε)∂l∂igj(x) + εψi,j(x/ε)∆∂igj(x) .

With (5.3) we obtain that ρε is a bounded sequence.

The following lemma is related to spectral properties of the Neumann sieve do-
main: If ω2 is not an eigenvalue of the negative Laplace operator on Ω, then also
the Neumann-sieve problem has no eigenvalues in the vicinity of ω2. We show the
following boundedness statement, which is used in the derivation of uniform bounds
for the corrector.

Lemma 5.2. Let Ω be a bounded Lipschitz domain, we impose homogeneous and/or
periodicity conditions on the boundary. Let ω > 0 be a number with ω2 6∈ σ (−∆).
Let Ωε be the sequence of perforated domains as in (1.5). Then there exists a constant
C such that every pair wε, fε : Ωε → R solving

−∆wε = ω2wε + fε (5.9)

satisfies
‖wε‖H1(Ωε) ≤ C‖fε‖L2(Ωε) . (5.10)

Sketch of proof. The proof uses a contradiction argument and the convergence state-
ment of Theorem 1.1 (convergence to a solution without interface). Let us assume
that (5.10) does not hold for any C. Exploiting Poincaré’s inequality, we find a
sequence of pairs wε, fε : Ωε → R solving (5.9) and satisfying∫

Ωε

|∇wε|2 = 1 ∀ε , ‖fε‖L2(Ωε) → 0 as ε→ 0 . (5.11)

Testing (5.9) with wε, we find∫
Ωε

|∇wε|2 = ω2

∫
Ωε

|wε|2 +

∫
Ωε

wε fε . (5.12)

This implies ‖wε‖2
L2(Ωε) → 1/ω2 6= 0.

The convergence of Theorem 1.1 (which is valid also for a sequence fε → 0 and
for other boundary conditions) provides the convergence Pεwε ⇀ w, where w is
the unique weak solution w ∈ H1

0 (Ω) of the limiting Helmholtz problem −∆w =
ω2w. By the eigenvalue assumption, there holds w = 0. With the help of Rellich’s
compactness (using H1-bounded extensions of wε across the perforation), we obtain
that Pεwε converges strongly in L2(Ω) to w = 0. This is in contradiction with
‖wε‖2

L2(Ωε) 6→ 0.
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Theorem 5.3 (Uniform bounds in a periodic problem). Let Ω ⊂ Rd be a bounded
Lipschitz domain with the property Ω ∩ (Rd−1 × (−h, h)) = (−1, 1)d−1 × (−h, h).
We consider periodicity boundary conditions on the corresponding lateral parts of
(−1, 1)d−1 × (−h, h), any homogeneous boundary conditions on the rest of ∂Ω.

Let 1/N 3 ε→ 0 be a sequence, Σ an inclusion with the regularity properties (5.3)
and (5.4), and Ωε be the perforated domain as in (1.5). For f ∈ L2(Ω) let pε be a
sequence of solutions to the original problem (1.1), pε → p for p ∈ C3(Ω̄) ∩H4(Ω).
Then the corrector vε defined by (1.3) satisfies the W 1,1-bound (1.9).

Proof. We set g(x) := −∇p(x) and recall that vε is characterized by system (3.1).
We choose uε as in Proposition 5.1 in a strip around the perforation Σε. After a
multiplication with a cutoff function we may assume that uε is defined in all of Ω.

We introduce a further auxiliary function ϕε ∈ H1(Ωε) by solving −∆ϕε = 0 in
Ωε with ∂nϕε = −σε on ∂Σε, periodicity boundary conditions on the lateral parts
of (−1, 1)d−1× (−h, h). The sequence ϕε is uniformly bounded in H1(Ωε) as can be
seen by testing the equation with ϕε and exploiting a trace theorem.

The difference ψε := vε − uε − ϕε satisfies

−∆ψε − ω2ψε = ρε + ω2 (uε + ϕε) in Ωε ,

∂nψε = 0 on ∂Σε ,
(5.13)

and periodicity boundary conditions. We invoke Lemma 5.2, which yields the bound-
edness of ψε in H1(Ωε). We conclude that vε = uε + ψε + ϕε is a sum of functions
that are bounded in W 1,1(Ωε); this shows the assertion.

Theorem 5.4 (Uniform bounds in a Dirichlet problem). Let Ω = (0, 1)d−1×(−h, h)
be a cuboid with height 2h > 0, let Σ, ε→ 0, Ωε, f , pε, and p be as in Theorem 5.3.
We consider homogeneous Dirichlet boundary conditions on ∂Ω.

Let Σ ⊂
(
−1

2
, 1

2

)d−1 × R possess reflection symmetry in every direction ej, j =
1, ..., d− 1. Then the corrector vε defined by (1.3) satisfies the W 1,1-bound (1.9).

Proof. We define an extended cuboid by setting Ω̃ = (−1, 1)d−1 × (−h, h) and
extend the functions f and pε in an antisymmetric way to all of Ω̃ by setting
f(x1, ...,−xj, ..., xd) = −f(x1, ..., xj, ..., xd) for j ∈ {1, ..., d − 1}, pε and vε accord-
ingly. The antisymmetric extensions are periodic solutions to the extended problem
on Ω̃. An application of Theorem 5.3 provides the boundedness of vε.

A Bounded sequences in W 1,1(Ωε)

We conclude here the proof of Lemma 4.1 by showing the following statement.

Lemma A.1 (Limits of W 1,1(Ωε)-bounded sequences are functions). Let Ωε be as in
Section 1.1, see (1.5). For some sequence ε → 0, let (vε)ε be bounded in W 1,1(Ωε).

For a measure m ∈M(Ω) we assume the convergence of trivial extensions: Pεvε
∗
⇀

m in the weak-∗ sense of measures on Ω. Then m is given by a function, m = v dLd
with v ∈ L1(Ω). Furthermore, v ∈ Lqloc(Ω) and Pεvε → v in L1

loc(Ω).
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The proof is inspired by the following observation: Let us assume that the uni-
form Sobolev embedding estimate ‖u‖Lq(Ωε) ≤ C‖u‖W 1,1(Ωε) holds on Ωε. Under this
assumption, the sequence Pεvε is bounded in Lq(Ω); it therefore possesses, along a
subsequence, a weak limit v ∈ Lq(Ω). Compactness of the embedding can imply
additionally the strong convergence.

We emphasize that the Sobolev embedding estimate does not hold when the
obstacle set Σ has a complement with a bounded connected component. Also the
statement of the lemma is wrong in this case, since m can have a singular part which
is supported on Γ0.

Proof. We choose q > 1 with 1− d
1
> −d

q
or, equivalently, q < d/(d− 1). We recall

the inclusion property Σ ⊂ Id =
(
−1

2
, 1

2

)d
and the fact that the complement Id \ Σ

is connected.
The limit measure m can be decomposed into an absolute continuous part and a

singular part (with respect to the Lebesgue measure Ld), we write m = v dLd+msing

with v ∈ L1(Ω). One of our aims is to show msing = 0.

Step 1: Estimate in a strip near the perforation. In this step we want to estimate
the L1-norm of vε in the vicinity of the perforation. We select arbitrary subsets Γ̃ ⊂
Γ̂ ⊂ Γ, each subset open and compactly contained in the next larger set. We define
a thin strip as S+

ε := Γ̂× (ε, 2ε) ⊂ Ωε. For h > 0 sufficiently small, we introduce a
cylindrical domain of order one, overlapping with the strip: Q+

ε := Γ̂×(ε, h+ε) ⊂ Ωε.
In the domain Q+

ε , the Sobolev embedding results can be used since, up to a vertical
shift of length ε, the domains Q+

ε are independent of ε. The Sobolev embedding
implies boundedness of vε ∈ Lq(Q+

ε ). In particular, we find for the strip S+
ε and the

dual exponent p = q/(q − 1) with Hölder’s inequality the bound∫
S+
ε

|vε| ≤
(∫

S+
ε

|vε|q
)1/q

|S+
ε |1/p ≤ Cε(q−1)/q . (A.1)

Step 2: Poincaré estimate. Let Y =
(
−1

2
, 1

2

)d−1

per
× R and Z = Y \ Σ be defined

as in the cell-problem, see (2.1). We furthermore set Z+ := Z ∩ {yd ∈ (1, 2)} and
Z0 := Z∩{yd ∈ (−1, 1)}. By connectedness of Z, for some constant CP , there holds
the Poincaré estimate ∫

Z0

|u| ≤ CP

{∫
Z+

|u|+
∫
Z+∪Z0

|∇u|
}

(A.2)

for every u ∈ W 1,1
loc (Z).

The estimate (A.2) can be scaled to domains Zε
k := ε(k + Z), Z0,ε

k := ε(k + Z0),
Z+,ε
k := ε(k+Z+). We sum the scaled estimate over all k ∈ Zd−1 with (Γ̃×{0})∩Zε

k 6=
∅ and obtain, for ε > 0 sufficiently small,∫

(Γ̃×(−ε,ε))∩Ωε

|vε| ≤
∑
k

∫
Z0,ε
k

|vε| ≤ CP
∑
k

{∫
Z+,ε
k

|vε|+ ε

∫
Zε
k∩{|xd|<2ε}

|∇vε|

}

≤ CP

∫
S+
ε

|vε|+ CP ε‖∇vε‖L1(Ωε) .
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Combining this with estimate (A.1) of Step 1 we find∫
(Γ̃×(−ε,ε))∩Ωε

|vε| → 0 (A.3)

as ε → 0. This verifies that the contributions of vε in an ε-strip around the perfo-
rations is small (measured in L1).

Step 3: Conclusion. Let Ω̃ ⊂ Ω be a compactly contained subset. We cover the
set Ω̃ with four sets: The strip S0

ε := (Γ̃ × (−ε, ε)) for a sufficiently large subset
Γ̃ ⊂ Γ, the two sets Q±ε := Γ̂× (±h± ε,±ε), and an ε-independent subset Q0 ⊂ Ωε.
We consider the truncated variable ṽε : Ω → R, defined as ṽε(x) := 0 for x ∈ S0

ε

and ṽε(x) = vε(x) else.
As observed in Step 1, the function ṽε is bounded in Lq(Q±ε ) and in Lq(Q) by the

Sobolev embedding. Since ṽε vanishes in the strip S0
ε , the sequence ṽε is bounded

in Lq(Ω̃). Because of the bound (A.3), the measure-valued limit of ṽε is identical

with that of vε, hence ṽε
∗
⇀ m. The Lq(Ω̃)-boundedness of ṽε implies that the

limit measure m is given by an Lq(Ω̃)-function on Ω̃. This shows msing = 0 and
v ∈ Lqloc(Ω).

The compactness of the Sobolev embedding also shows vε → v in Lq(Q) and in
Lq(Q±ε ). For the latter result we use that ε-translations of v converge in Lq locally
to v. Since the strip S0

ε has only a small L1-contribution, we conclude also vε → v
in L1(Ω̃).
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