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Abstract: We consider the one-dimensional degenerate two-phase flow
equations as a model for water-drive in oil recovery. The effect of oil
trapping is observed in strongly heterogeneous materials with large vari-
ations in the permeabilities and in the capillary pressure curves. In such
materials, a vanishing oil saturation may appear at interior interfaces
and inhibit the oil recovery. We introduce a free boundary problem that
separates a critical region with locally vanishing permeabilities from a
strictly parabolic region and give a rigorous derivation of the effective
conservation law.
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1 Introduction

The equations of two-phase flow describe the motion of two immiscible fluids in
a porous medium, e.g. the flow of oil and water in rock. The equations are a
challenging subject of modern analysis, in particular due to the nonlinear and
degenerate coefficient functions, the permeabilities of the two phases and the
capillary pressure.

Oil trapping is an effect in media with large variations in the coefficients.
Well-known to experimentalists [13, 14], the mathematical analysis of this effect
was initiated in [5] and [10, 9]. Let us consider the process of oil recovery from
a medium that consist of a mixture of fine and coarse material. Starting with a
high oil saturation u and a high oil pressure p, after some time, the oil pressure
falls below the entry pressure of oil in the fine material. From this point on,
despite a positive saturation in the coarse material, oil can be trapped in regions
that are surrounded by fine material.
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In this work we analyze a one-dimensional medium that consists of two ma-
terials, distributed periodically with period ε > 0 and with different permeabil-
ities k and different capillary pressures pc. We denote the saturation function of
the corresponding solutions by uε. Our aim is to find a macroscopic or effective
equation, i.e. an equation that characterizes weak limits u0 of the family uε for
ε → 0. An effective equation allows to determine, e.g. in a numerical scheme,
the averaged profile of the solution uε without resolving the scale ε > 0.

With the method of two-scale convergence developed in [1] and measure-
theoretic tools from [3] we rigorously derive the macroscopic equation

∂tu
0 + div F(u0, ∂xu

0) = 0

with a nonlinear function F that is determined by the coefficient functions
through a finite dimensional nonlinear problem. The effective flux function
reflects the effect of oil trapping: it satisfies F(u, v) = 0 for all v ∈ R and all
u ≤ u∗/2, where u∗ is the residual oil saturation in the coarse material. Our
contribution continues the analysis of [10] and [9], where effective equations were
formally derived with an asymptotic expansion. In [10], which contains various
scalings and treats our scaling as the “capillary limit”, the authors mention
the specific difficulties in the homogenization of nonlinear equations and do
not attempt a rigorous derivation of the effective equations. In fact, in [9] a
different law is derived by starting with another ansatz; our analysis recovers
the nonlinear function of [9]. For rigorous homogenization results of nonlinear
equations we refer to [7] for a double porosity model, to [6] for a stochastic
setting, and to [4] and [17] for models of capillary hysteresis. All these results
concern the case of non-degenerate coefficients.

We want to highlight two difficulties in the homogenization process. The
first concerns the nonlinear structure of the equations: loosely speaking, fluxes
are of the form g(uε)∂xu

ε. In order to pass to the two-scale limit in such a
term, we need a strong convergence of the argument in the nonlinear function.
The strong convergence is usually obtained from estimates for first derivatives.
This procedure can not be performed in our case, since uε is an oscillatory
function with jumps, and certainly not strongly convergent. The key point in
the derivation of macroscopic equations in Proposition 1 is the compactness
result of (3.14).

The second difficulty regards the degeneracy of the permeabilities. A strictly
positive permeability k results in L2-estimates for spatial derivatives and allows
to use the compactness result. But the effect of oil trapping appears precisely in
the case that, in parts of the domain, the saturation vanishes. In this situation,
a vanishing permeability appears and no estimate for gradients is available. Our
analysis uses the technique of a free boundary description in order to proceed.
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Figure 1: Oil saturation uε, zoomed view. Due to different capillary pressure curves
in fine and coarse material, the saturation has jumps and oil is trapped in the coarse
material. The saturation vanishes at some points. At these points, the permeability
degenerates, but the infinite slope ∂xuε = −∞ makes transport of oil still possible.
The above figure is an unpublished numerical result and courtesy of I.S. Pop.

We decompose the domain into a “good” region G of strictly positive saturation
and a “bad” region B. We then derive the effective equations separately: in
region G we use two-scale convergence (Proposition 1) to find the effective
equations in Corollary 2. In region B, instead, the limit equations are trivial
and are derived in the form of two-sided a priori estimates. The main point is
then the continuity condition across the free boundary shown in Proposition 2.
This condition allows to combine the equations again to a single equation on
the whole domain. The method exploits that oscillations of the free boundary
do not appear; this is ensured by the boundary and initial conditions which
imply a monotonicity of the free boundary.

As a by-product of our description, we learn more about qualitative features
of solutions. We may define an experimentally observable free boundary Xε

0 :
(0, T )→ R as the smallest function such that in all points (x, t) with x > Xε

0(t)
the saturation uε is strictly positive. We now ask about properties of the limiting
function X̃0

0 (t) := limε→0X
ε
0(t). We prove in Lemma 6 that the corresponding

limit curve {(x, t) : x = X̃0
0 (t)} is contained in the critical domain B ⊂ Ω̄T .

Thus, the effective solution provides bounds for the experimentally observable
free boundary. In particular, if it can be shown that the limit equation allows
only solutions u0 with u0 > u∗/2 on ΩT , then the experimentally observable
free boundary must vanish in the limit ε→ 0.
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Figure 2: A free boundary separating the critical region from a region of uniformly
positive saturation and permeability. The graph illustrates that the free boundary is
discontinuous for ε > 0.

Oil trapping in one-dimensional domains

We denote pressure and saturation of the oil-phase by p = p1 = poil and u = uoil,
the corresponding quantities of the water-phase by p2 = pwater and uwater =
1 − u. The absolute permeability is denoted by k, the relative permeabilities
by kr,1 = krel,oil and kr,2 = krel,water. The equations in primary variables are
the conservation laws for oil and water combined with the Darcy law for the
velocities, and the capillary pressure relation.

∂tu = ∇ · (k(x)kr,1(u)∇p1) (1.1)

−∂tu = ∇ · (k(x)kr,2(u)∇p2) (1.2)

p1 − p2 = pc(u) (1.3)

Summing the conservation laws and inserting the relation between the pressure
functions yields, withK(x, u) = k(x)(kr,1(u)+kr,2(u)) and writing now p instead
of p1,

∇ · (K(x, u)∇p− k(x)kr,2(u)∇[pc(u)]) = 0. (1.4)

One may regard this as an elliptic equation for p that defines the relation be-
tween p and u. Together with this relation, at least formally, (1.1) is an evolution
equation for u.

In this work we study only the one dimensional case with spatial domain
x ∈ Ω = (0, L). Equation (1.4) then implies that the expression in parenthesis
is constant in space. Physically, the constant describes the total flux and we
write

K(x, u)∂xp− k(x)kr,2(u)∂x[pc(x, u)] = −q0. (1.5)
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In order to describe imbibition from the left, we assume q0 > 0. The value of q0
is given to us by the boundary conditions.2 In order to find a single evolution
equation, we solve (1.5) for ∂xp. With the short hand ki(x, u) = k(x)kr,i(u) we
find

∂xp = −q0
1

K(x, u)
+
k2(x, u)

K(x, u)
∂x[pc(x, u)]. (1.6)

Inserting into (1.1) yields

∂tu = −∂x (f(u)− k(x)λ(u)∂x[pc(x, u)]) (1.7)

with

f(u) := q0
kr,1(u)

kr,1(u) + kr,2(u)
, λ(u) :=

kr,1(u)kr,2(u)

kr,1(u) + kr,2(u)
.

Equation (1.7) is an evolution equation of the form ∂tu+ ∂xF = 0, where F is
given by

F (x, u) := f(u)− k(x)λ(u)∂x[pc(x, u)].

The qualitative shape of solutions is shown in Figure 3. We emphasize that the
coefficient functions are degenerate,

kr,1(s)→ 0, f(s)→ 0, λ(s)→ 0 for s→ 0.

Less critical is in this context an additional degeneracy ∂spc(s)→ 0 for s → 0.
Regarding high oil saturation we have kr,2(s) → 0 and λ(s) → 0 for s → 1.
Our interest here is in the degeneracies for s → 0 and we consider a physical
situation where the saturation remains bounded away from 1 for all times.

Oscillatory coefficient functions.

In this work we are interested in oscillatory coefficients kε
i = k0

i (x/ε, u) and
pc

ε = pc
0(x/ε, u). To simplify, we consider oscillations between two different

coefficient functions. We distinguish the subdomains Γε
− := ε(2Z+(0, 1))∩(0, L)

and Γε
+ := ε(2Z + (1, 2)) ∩ (0, L). For later use we additionally introduce

Γε := Γε
+ ∪ Γε

− for the spatial domain without the interfaces.

2One choice of the boundary conditions is the following. At the inlet x = 0 pure water en-
ters the medium at a given rate, hence we have u = 0 at the left boundary and q0 > 0 given. At
the right boundary x = L only the non-wetting fluid oil can exit, hence k2(L, u(L))∂xp2(L) = 0
or, equivalently, −k1(L, u(L))∂xp1(L) = q0. Notationally simpler is to impose a fixed satura-
tion at the right boundary; we will therefore work with u(0) = 0 and pc(u(L)) = pmax in the
sequel.
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Figure 3: Typical solutions for homogeneous materials. Left: The typical shape
of oil saturation u, oil pressure p1 and water pressure p2. Right: Shape of oil flux
q1 = −k1(x, u)∂xp1 and water flux q2 = −k2(x, u)∂xp2 for the chosen boundary
conditions. The curves illustrate the shape for the standard equations with spatially
homogeneous coefficient functions. The solutions of the effective equations in oil
trapping problem look similar, but they exhibit a residual oil saturation u ≥ u∗/2.
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Figure 4: Interfaces inside the material, Γε
− is a region with a fine material, Γε

+ is
a region with a coarse material. The permeabilities satisfy k+ > k−, the capillary
pressure curves pc

+(s) < pc
−(s) for all s.

We study the coefficients

kε(x) =

{

k+ for x ∈ Γε
+

k− for x ∈ Γε
−

pc
ε(x, u) =

{

pc
+(u) for x ∈ Γε

+

pc
−(u) for x ∈ Γε

−

(1.8)

The minimal pressure in Γε
− with a positive saturation is p−min = limuց0 pc

−(u).
Of importance is the residual oil saturation u∗ in the coarse material, i.e. in
Γε

+. It is defined by the relation pc
+(u∗) = p−min.

Our aim is to study solutions of (1.7) for this choice of coefficients. Un-
derstanding the equations in the distributional sense means to demand at the
interfaces ξ ∈ εZ the continuity of flux and capillary pressure. Since the capil-
lary pressure curves are multi-valued in general, we demand for all ξ ∈ εZ

F (ξ − 0, u(ξ − 0)) = F (ξ + 0, u(ξ + 0)), (1.9)

pc(ξ − 0, u(ξ − 0)) ∩ pc(ξ + 0, u(ξ + 0)) 6= ∅. (1.10)
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Figure 5: a) The graphs pc
+ and pc

−. b) Typical shape of a solution uε(., t) in a small
interval (2kε, 2kε + 2ε). The pressures pi and the fluxes qi are almost constant, the
capillary pressure pc

ε(x, uε(x, t)) is continuous in x, hence the saturation uε jumps
from high values on Γε

+ to low values on Γε
−.

Here, we use the notation h(x ± 0) for lim±δց0 h(x + δ), or, if h ∈ H1, for the
corresponding trace. Relation (1.10) is a compact way to write the standard
interface condition for the capillary pressure which was rigorously derived in
[5]. We use set-valued capillary pressure functions that assign to the saturations
s = 0 and s = 1 an interval, e.g. pc

−(ξ, 0) := (−∞, p−min] for ξ ∈ Γε
−. In this

way, if the saturation vanishes at one side of the interface, the pressure at the
other side must be below the entry pressure pmin, but the exact value is not
determined. The classical description of (1.10) is that we necessarily are in one
of the following situations: a) at both sides, the saturation is strictly between
0 and 1, and the capillary pressures on both sides coincide. b) we have s = 0
at side A, s ∈ (0, 1) at side B, and there holds pc ≤ pmin, where pc is evaluated
at side B and pmin at side A. c) we have s = 0 at both sides. d) an analogous
case with s = 1 on one side.

In the next step we write the equations in a compact and symmetric form.
The conservation law (1.7) is recovered in (1.11) with g±(u) := k± λ(u) ∂upc

±(u)
and f±(u) := f(u).

Mathematical description and main result.

We assume that the coefficients are x-independent on each set Γε
±,

gε(x, u) :=

{

g+(u) for x ∈ Γε
+

g−(u) for x ∈ Γε
−

f ε(x, u) :=

{

f+(u) for x ∈ Γε
+

f−(u) for x ∈ Γε
−
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We study the conservation law

∂tu
ε + ∂xF

ε = 0 on Γε,

F ε = f ε(x, uε)− gε(x, uε)∂xu
ε,

F ε and pc
ε(x, uε) are continuous in Zε.

(1.11)

Here, the continuity is understood in the classical sense for F ε, and in the
sense of (1.10) for pc

ε. From now on, we study solution sequences uε to this
equation, complemented with the initial condition pc

ε(uε)|t=0 = pmax on (0, L)
for some initial pressure value pmax ∈ (pc

−(0), pc
+(1)). As boundary condi-

tions we impose uε(0, t) = 0 and pc
ε(uε(L, t)) = pmax for all t ∈ (0, T ). We

assume throughout the following monotonicity and regularity of the coefficient
functions.

Assumptions. On flux and diffusivity we assume 0 ≤ f± ∈ C0([0, 1],R),
0 ≤ g± ∈ C0,1([0, 1],R), f−(0) = g−(0) = 0. Furthermore, f± ≤ cg± on the
interval [0, (pc

+)−1(pmax)] for some constant c > 0, and f± > 0 on (0, 1). On
the capillary pressure we assume pc

+ ≤ pc
− with strictly monotone functions

pc
± ∈ C1([0, 1],R).

Our main Theorem is the rigorous derivation of effective equations. They
are characterized by a nonlinear flux function F : [0, 1]×R→ R, which is con-
structed below in equations (3.1)–(3.7). For the particular choice of coefficients
considered there, our flux function F coincides with that of [9].

Theorem 1. Let (uε, F ε) be a family of entropy solutions to (1.11) on ΩT =
(0, L)×(0, T ) as in Definition 1 of Section 2, satisfying the above boundary con-
ditions. Then, for a subsequence ε → 0 and for appropriate limiting functions
we find

uε ⇀ u0 in L∞(ΩT ) weak-⋆ , F ε ⇀ F 0 in L2(ΩT ) weakly.

The limits satisfy the conservation law

∂tu
0 + ∂xF

0 = 0 (1.12)

in the distributional sense on ΩT . The limit u0 ∈ L∞(ΩT ) has the distributional
derivative ∂xu

0 ∈ L1(ΩT ). The flux satisfies the relation

F 0 = F(u0, ∂xu
0) almost everywhere in ΩT , (1.13)

with the nonlinear function F(u, ∂xu) = F0(u)−D(u)∂xu defined in (3.1)–(3.7)
below.
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The remaining sections are devoted to the proof of Theorem 1 and are orga-
nized as follows. In Section 2 we construct entropy solutions and derive compar-
ison and monotonicity results. Section 3 is devoted to a two-scale homogeniza-
tion result for regions with a strictly positive saturation. The homogenization
in the general situation with degenerate solutions is performed in Section 4.
We introduce a description with a free boundary, derive the effective equations
in the critical region, and determine the continuity condition across the free
boundary.

The analysis of the limit problem (1.12), (1.13) is not the aim of this
contribution. Interesting questions concern the existence and uniqueness of
solutions to this degenerate problem, and the position of the free boundary
X(t) := sup{x : u0(x, t) = u∗/2}. We note that the results of [2] can not be ap-
plied to the equations in the above form, since, for a degenerate function D(u),
the ellipticity assumption 1.1 (3) of [2] is not satisfied. But the special struc-
ture F(u, ∂xu) = F0(u)−D(u)∂xu allows to introduce formally a new variable U
with ∂xU = D(u)∂xu such that with u = b(U) and a(u, ∂xU) = −F0(u) + ∂xU ,
results of [2] and [15] may be applicable. The appearance of free boundaries is
well known in porous media type equations; we refer to [11] for results on the
one-dimensional degenerate Cauchy problem ∂tu = ∂2

x[a(u)]+∂x[b(u)] regarding
existence, uniqueness, regularity, and speed of propagation of the free boundary.

Notation: The value of the constant C in estimates may change from one
line to the next. For a set Q the function 1Q denotes the characteristic function
1Q(x) = 1 for x ∈ Q and 1Q(x) = 0 for x 6∈ Q.

2 Entropy solutions and monotonicity

2.1 Entropy solutions and regularity

In this section we sketch a solution concept that allows to derive comparision
principles for solutions. For other existence and uniqueness results we refer to
[8] and [12], where methods of [2] are extended to two-phase flow. An existence
proof that uses a smoothing of the jump condition is performed in [5]. We refer
to [16] for a discussion of approximation schemes to degenerate equations that
are also used below.

We always assume pmax ∈ (pc
−(0), pc

+(1)) and consider only boundary con-
ditions as described above. We use the notion of a family of regularized equa-
tions: We assume that, for a sequence η ց 0, we have coefficient functions
g±η ∈ C1([0, 1],R), f±

η = f±, and pc
±,η ∈ C1([0, 1],R) that are strictly mono-

tone and satisfy the same inequalities as the original coefficients. The equa-
tions are regularized in the sense that g±η ≥ η, that pc

±,η is single valued, and
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that pc
−,η(0) = pc

+,η(0). They approximate the original equation in the sense
that pc

+,η = pc
+ on (0, 1), that g±η → g± uniformly on [0, 1] and pc

−,η → pc
−

uniformly on compact subsets of (0, 1]. By an appropriate choice of the regu-
larization we can additionally achieve that the family g±η ∂upc

±,η is uniformly
bounded on [0, 1].

In the following definition we use the primitive Gε(x, u) of gε, i.e. the
function with ∂uG

ε(x, u) = gε(x, u) and Gε(x, 0) = 0. Since gε(., u) is
piecewise constant, we can interpret the term gε(uε)∂xu

ε as the distribution
∂xG

ε(x, uε)|Γε×(0,T ). Since we will work with ∂xG
ε(x, u) 1Γε(x) ∈ L2(ΩT ), we

have well-defined traces Gε(x, uε)|∂Γε×(0,T ). Since Gε(x, .) is invertible, this de-
fines also traces of uε and gives a precise meaning to the interface conditions.

We write the interface condition (1.10) in a more reader-friendly form, con-
sidering pc

− as multi-valued and pc
+ as a function.

Definition 1. A saturation-flux pair (uε, F ε) is a weak solution of (1.11) on
ΩT = (0, L)× (0, T ), if uε ∈ L∞(ΩT , [0, 1]) and F ε ∈ L2(ΩT ) satisfy

∂tu
ε + ∂xF

ε = 0 in D′(ΩT ),

F ε = f ε(uε)− ∂x[G
ε(uε)] in D′(Γε × (0, T )),

pc
+(uε(2kε− 0)) ∈ pc

−(uε(2kε+ 0)) ∀k ∈ Z, 2kε ∈ (0, L),

pc
+(uε(2kε+ ε+ 0)) ∈ pc

−(uε(2kε+ ε− 0)) ∀k ∈ Z, 2kε ∈ (0, L).

A weak solution (uε, F ε) is called an entropy solution if there exists a family
of regularized equations and a corresponding family of solutions (uε

η, F
ε
η ) with

uε
η → uε in L2(ΩT ) and F ε

η ⇀ F ε in L2(ΩT ) for η → 0.

Lemma 1 (Existence and a priori estimate). For every ε > 0, there exists
an entropy solution (uε, F ε). With a constant C independent of ε there holds
‖F ε‖L2(ΩT ) ≤ C and the following regularity on the domain of positive satura-
tion: For all δ > 0 exists Cδ independent of ε such that

∫ T

0

∫ L

0

|∂xu
ε|21{uε≥δ}1Γε ≤ Cδ. (2.1)

Proof. The regularized system (η > 0) is a parabolic problem with finitely many
transmission points and can be solved by standard methods. The maximum
principle implies the bounds 0 ≤ uε

η ≤ 1. They allow to select a subsequence
η → 0 and a weak L2(ΩT )-limit uε. The monotonicity in t, shown in Lemma 3,
implies the boundedness of ∂tu

ε
η ∈ L1(ΩT ). Estimate (2.1) for η > 0 provides

uniform bounds for the positive part (uε
η − δ)+ ∈ L2((0, T ), H1(Γε)), hence the

sequence (uε
η − δ)+ is pre-compact in L2(ΩT ) for every δ > 0. Choosing a

diagonal sequence we find a subsequence with uε
η → uε strongly in L2(ΩT ).
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Below we derive an estimate for the sequence F ε
η ∈ L2(ΩT ) and thus, by

boundedness of f ε, also a uniform bound for ∂xG
ε
η(x, u

ε
η) 1Γε ∈ L2(ΩT ). We

can choose a weakly convergent subsequence F ε
η ⇀ F ε in L2(ΩT ) and find also

Gε
η(u

ε
η) → Gε(uε) by the strong convergence of uε

η. This implies that the pair
(uε, F ε) solves the conservation law and the characterization of F ε of the second
equation.

The solutions of the regularized problems satisfy the interface inclusions
as equalities and we have a weak convergence of ∂xG(uε

η). The trace theorem
implies that the limit uε satisfies again the interface conditions and hence that
it is a weak solution of (1.11).

We now verify the a priori estimates, omitting everywhere the index η > 0.
We multiply the conservation law

∂tu
ε + ∂x[f(uε)− gε(uε)∂xu

ε] = 0 on Γε

with the continuous function pc
ε(uε) − pmax and integrate by parts. Interior

boundary integrals vanish due to the continuity of the flux. The right boundary
integral vanishes because of the boundary condition pc

ε(L, uε(L, t)) = pmax. We
obtain
∫ T

0

∫

Γε

[pc
ε(uε)− pmax]∂tu

ε +

∫ T

0

∫

Γε

gε(uε)∂xu
ε ∂x[pc

ε(uε)]

=

∫ T

0

∫

Γε

f ε(uε) ∂x[pc
ε(uε)] +

∫ T

0

[f(uε)− gε(uε)∂xu
ε]x=0 (pc

−,η(0)− pmax).

For the flux at the left boundary, which appears in the last integral, we calculate,
using ϕ(x, t) = L− x,

− L
∫ T

0

[f(uε)− gε(uε)∂xu
ε]x=0 =

∫ T

0

∫ L

0

∂x([f(uε)− gε(uε)∂xu
ε]ϕ)

=

∫ T

0

∫ L

0

∂x[f(uε)− gε(uε)∂xu
ε]ϕ−

∫ T

0

∫ L

0

[f(uε)− gε(uε)∂xu
ε]

= −
∫ T

0

∫ L

0

∂tu
εϕ−

∫ T

0

∫ L

0

[f(uε)− gε(uε)∂xu
ε]

≤ L2 + C +

∫

ΩT

gε(uε)|∂xu
ε|.

We continue the above calculation exploiting that pc
ε(uε)∂tu

ε is the time deriva-
tive of a bounded function, use the uniform positivity ∂upc

ε ≥ c0 > 0, and the
bound f± ≤ cg±.

∫ T

0

∫

Γε

gε(uε)∂upc
ε(uε)|∂xu

ε|2 ≤ C + C

∫ T

0

∫

Γε

gε(uε)∂upc
ε(uε)|∂xu

ε|.
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An application of the Cauchy-Schwarz inequality yields, by the boundedness of
gε ∂upc

ε, a bound for the left hand side, independent of ε and η. Exploiting
once more ∂upc

ε ≥ c0 and g± > 0 on (0, 1], this implies (2.1). It furthermore
shows that the family F ε = [f(uε)− gε(x, uε)∂xu

ε]1Γε is uniformly bounded in
L2(ΩT ).

2.2 Comparison principles and monotonicity

In this subsection we derive results for entropy solutions of (1.11) and assume
always the above boundary conditions and the initial condition pc

ε(uε(., 0)) =
pmax on (0, L) for pmax ∈ (pc

−(0), pc
+(1)).

Lemma 2 (Lower bound for uε). There exist δ0 > 0 and ε0 > 0 such that for all
δ ∈ (0, δ0), ε ∈ (0, ε0) the following holds. Let (a, b) ⊂ (0, L) with a, b ∈ 2εZ+ε,
let uε be an entropy solution of (1.11) with

uε(a− 0, t) ≥ δ, uε(b− 0, t) ≥ δ ∀t ∈ (0, t0).

Then there holds uε ≥ δ on (a, b)× (0, t0).

Proof. It is sufficient to show the claim for the regularized solutions uε
η and to

take the limit η → 0. We therefore perform all calculations for the more regular
solutions uε

η, but we omit in the sequel the fixed index η.
Our aim is to construct a 2ε-periodic stationary subsolution U(y) = U ε

δ (y) ≥
δ for y ∈ [a, b]. For a parameter q ∈ R+ which denotes the constant flux of the
subsolution, we define U = U(., q) : [0, 2ε]→ R, y 7→ U(y), as the solution of

f ε(y, U(y))− gε(y, U(y)) ∂yU(y) = q in (0, ε) ∪ (ε, 2ε), (2.2)

U(ε − 0) = δ, U(ε+ 0) = (pc
+)−1(pc

−(δ)). (2.3)

We note that, by the positivity of gε, equation (2.2) is an ordinary differential
equation which can be solved locally with the boundary condition (2.3). The
smallness of ε > 0 and the fact that q − f ε(y, δ) becomes positive for δ → 0
imply that solutions can be defined on the whole intervals (0, ε) and (ε, 2ε).
The solution operator defines a family of functions U(., q) and the continuous
function G = Gδ : R+ → R.

G(q) := pc
+(U(2ε− 0))− pc

−(U(0 + 0)).

Our aim is to choose the parameter q = q∗ with G(q∗) = 0, such that the
function U = U(., q∗) can be extended to a 2ε-periodic stationary solution of
(1.11).
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For two special values of q we can evaluate the sign of G(q). For q1 = f−(δ),
the solution U(., q1) = δ is constant on the interval (0, ε). On the interval (ε, 2ε)
the derivative ∂yU is positive by the positivity of f+(u∗); here we exploit the
continuity of f±, f−(0) = 0, and the smallness of δ and ε. We find that

G(q1) ≥ pc
+(U(ε+ 0))− pc

−(δ) = 0.

On the other hand, for q2 = f+(U(ε + 0)), the solution U(., q2) is constant
on the interval (ε, 2ε) and decreasing on (0, ε). Monotonicity of pc

± implies
G(q2) ≤ 0. By continuity, there is a critical value q∗ = q∗(δ, ε) ∈ [q1, q2] with
G(q∗) = 0, and we use U = U(., q∗) in the sequel.

We now define the subsolution Uε(x, t) as the 2ε-periodic continuation of
Uε

δe−λt(x), where we replaced δ by δe−λt for a small constant λ > 0. We claim
that uε can never touch the subsolution Uε. Because of ∂tU

ε < 0, this is the
standard comparison principle for all points x that are not contained in εZ. Let
us assume that t > 0 is the first time instance at which the solutions touch and
that, for a point x ∈ εZ, we have uε(x + 0, t) = Uε(x + 0, t). Since uε and Uε

both satisfy the pc-jump condition, there also holds uε(x− 0, t) = Uε(x− 0, t).
Then, because of uε(., t) ≥ Uε(., t), we have ∂xu

ε(x+ 0, t) ≥ ∂xU
ε(x+ 0, t) and

∂xu
ε(x − 0, t) ≤ ∂xU

ε(x − 0, t). The subsolution Uε has the continuous flux
q∗(δe−λt, ε) and uε also has a continuous flux; since also f(uε) = f(Uε) and
the same for g in the point x, the derivatives must coincide, ∂xu

ε(x + 0, t) =
∂xU

ε(x+ 0, t). As a consequence, also the fluxes of uε and Uε coincide in x. In
(x+ 0, t) holds

−∂x[f
ε(uε)− gε(uε) · ∂xu

ε] = ∂tu
ε < 0 = −∂x[f

ε(Uε)− gε(Uε) · ∂xU
ε],

hence ∂2
xu

ε < ∂2
xU

ε, in contradiction to uε ≥ Uε.

Lemma 3 (Monotonicity of uε). Let uε be an entropy solution of (1.11) as
above. Then the following holds.

1. Decay in time. The map t 7→ uε(x, t) is monotonically non-increasing
for almost every x.

2. Monotonicity in space. The map k 7→ uε(2kε + y, t) is monotonically
non-decreasing for every t ∈ (0, T ) and every y ∈ [0, 2ε].

Proof. As in the last proof, it suffices to verify the monotonicity for the approx-
imate solutions u = uε

η. We therefore study, for the strictly positive coefficient
g = g(x, u) ≥ η and the strictly monotone single-valued function pc = pc(x, u)
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solutions u of

∂tu+ ∂x (f(x, u)− g(x, u)∂xu) = 0,

[pc(x, u)] = 0,

[f(x, u)− g(x, u)∂xu(x)] = 0,

where the last two relations hold in points x ∈ Zε. By regularity theory for
strictly parabolic equations we may assume that u is a classical solution of the
above system.

Proof of part 1. Decay in time. We claim that ∂tu ≤ 0 holds on G. Indeed, the
function v = −∂tu is non-negative at t = 0 and the equations are, with κ = 0,

∂tv + ∂x (fu(x, u) · v − gu(x, u) · v∂xu− g(x, u)∂xv) = κ,

[∂upc(x, u) · v] = 0,

[fu(x, u) · v − gu(x, u) · v∂xu(x)− g(x, u)∂xv(x)] = 0.

The boundary conditions are v(0, t) = v(L, t) = 0 for all t ∈ (0, T ). In order to
show that v remains non-negative, it suffices to show that the solutions vκ of
the above system with small right hand side κ ∈ R, κ > 0, remain non-negative.

Let t > 0 be the first time instance such that vκ(., t) has a zero in x. By the
standard comparison principle, the zero can not be in (0, L)\εZ. Let us therefore
assume x ∈ εZ. The first jump condition implies that, with vκ vanishing on
one side of x, it vanishes on both sides. Continuity implies vκ(., t) ≥ 0, hence
we have the geometric conditions ∂xvκ(x − 0, t) ≤ 0 and ∂xvκ(x + 0, t) ≥ 0.
The second jump condition then implies that ∂xvκ = 0 from both sides. The
geometric condition ∂tvκ(x, t) ≤ 0 together with κ > 0 imply

∂x (fu(x, u) · vκ − gu(x, u) · vκ∂xu− g(x, u)∂xvκ) > 0

in the vicinity of x. We conclude ∂2
xvκ < 0 and thus a contradiction to vκ ≥ 0.

Proof of part 2. Monotonicity in space. We claim that the function v(x, t) =
u(x+2ε, t)−u(x, t), defined on (0, L−2ε)× [0, T ], is non-negative for all times.
Indeed, v(., 0) = 0 initially, and there holds v(0, t) ≥ 0 and v(L− 2ε, t) ≥ 0 for
all t ∈ (0, T ). With u+(x, t) := u(x+ 2ε, t), the equations for v = u+ − u read

∂tv + ∂x (f(x, u+)− f(x, u)− g(x, u+)∂xu+ + g(x, u)∂xu) = 0,

[pc(x, u+)− pc(u)] = 0,

[f(x, u+)− g(x, u+)∂xu+(x)− f(x, u) + g(x, u)∂xu(x)] = 0,
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the last two lines indicate again jumps over the interface points. With appro-
priate evaluation points ζj(x, t) between u(x, t) and u+(x, t) we may write this
as

∂tv + ∂x (fu(., ζ1)v − gu(., ζ2)v∂xu+ − g(., u)∂xv) = 0,

{∂upc(., ζ3)v} (kε+ 0) = {∂upc(., ζ4)v} (kε− 0),

{fu(., ζ5)v − gu(., ζ6)v∂xu+ − g(., u)∂xv} (kε+ 0)

= {fu(., ζ7)v − gu(., ζ8)v∂xu+ − g(., u)∂xv} (kε− 0)

for x = kε with k ∈ Z. Starting from this system for v, the non-negativity of v
follows as in part 1.

Lemma 4 (Bounds for averages of uε). Let uε be a family of entropy solutions
of (1.11) as above.

1. Lower bound for averages. There exists c ∈ R such that for all ε > 0,
all k ∈ Z with (2kε− ε, 2kε+ ε) ⊂ (0, L), there holds

∫ 2kε+ε

2kε−ε

uε(., t) ≥ ε(u∗ − cε). (2.4)

2. Upper bound for averages. For every ρ > 0 there exists τ > 0, δ > 0,
and ε0 > 0 such that for all ε ∈ (0, ε0), k ∈ Z with (2kε − ε, 2kε + ε) ⊂
(0, L), and t > τε2

uε(2kε+ ε− 0, t− τε2) ≤ δ ⇒
∫ 2kε+ε

2kε−ε

uε(., t) ≤ ε(u∗ + ρ). (2.5)

Proof. We consider again approximate solutions uε
η from the definition of en-

tropy solutions.
Proof of part 1. Lower bound. We approximate additionally the boundary

condition at the left boundary by the artificial condition uε
η(0, t) = δ. The

subsolutions Uε of Lemma 2 satisfy Uε ≥ u∗ − O(ε) on Γε
+, independent of

δ > 0, such that uε
η ≥ Uε provides (2.4).

Proof of part 2. Upper bound. We assume the contrary. Then, for some ρ > 0,
for arbitrary τ > 0, δ > 0, there exists a sequence εm → 0 such that inequality
(2.5) fails to hold for some k and t. Let now ρ > 0 be such a value. Below
we give an explicit choice of τ and δ that leads to a contradiction. We study
now sequences of points km and time instances tm ≥ τε2

m at which (2.5) fails
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for the sequence uεm, which we continue up to time 2T . We define the rescaled
solutions

Ũm : (−1, 1)× (0, T/ε2
m)→ R,

Ũm(y, s) := uεm(2kmεm + εmy, tm − τε2
m + ε2

ms),

and recall that we assume the failure of (2.5), that is,

Ũm(1− 0, s = 0) ≤ δ,

∫ 1

−1

Ũm(y, τ) dy > u∗ + ρ.

We now construct a function Um which serves as an upper bound for Ũm. We
define Um as the solution of the system

∂sU
m + ∂y (εmf(Um)− g(Um)∂yU

m) = 0 on (−1, 1) \ {0},
Um(1− 0) = δ, Um(−1 + 0) = (pc

+)−1(pc
−(δ)),

pc
+(Um(0− 0)) = pc

−(Um(0 + 0)),

[εmf(Um)− g(Um)∂yU
m](0− 0) = [εmf(Um)− g(Um)∂yU

m](0 + 0),

but now augmented with the initial condition pc(U
m(., s = 0)) ≡ pmax. As

in the above proofs, exploiting Ũm(1 − 0, 0) ≤ δ and the monotonicity of Ũm,
one derives the comparison principle Ũm ≤ Um. The limit U∞ := limm→∞ Um

exists and solves the above system with εm replaced by 0. The solution U∞

approaches, as s→∞, the stationary solution

Ū∞(y) =

{

(pc
+)−1(pc

−(δ)) for y ∈ (−1, 0),

δ for y ∈ (0, 1).

We can now derive a contradiction. Given ρ > 0, we choose δ > 0 such that
∫ 1

−1
Ū∞(y) dy < u∗ + ρ/3. We then choose a time instance τ > 0 such that

∫ 1

−1
(U∞(y, τ)− Ū∞(y)) dy < ρ/3. With these choices we have

u∗ + ρ <

∫ 1

−1

Ũm(y, τ) dy ≤
∫ 1

−1

Um(y, τ) dy →
∫ 1

−1

U∞(y, τ) dy ≤ u∗ + 2ρ/3,

a contradiction.

3 Homogenization for a positive saturation

We next define the nonlinear flux function F(u0, v0) that maps an average oil-
saturation u0 with an average slope v0 to the effective flux. The continuity of
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the capillary pressure imposes a restriction on the values of u0. Let U ∈ [0, 1]
solve pc

−(U) = pc
+(1). Then, with u0

max := (1 + U)/2, the flux function is a
map

F : [0, u0
max]× R 7→ R, (u0, v0) 7→ F(u0, v0).

We set F(u0, v0) := 0 for all (u0, v0) with u0 ≤ u∗/2 and construct F for other
values with the help of nonlinear equations. For (u0, v0) ∈ (u∗/2, u0

max]×R, the
following system determines (u+, u−) ∈ [0, 1]2, representing typical values of uε

in Γε
±.

u+ + u− = 2u0 (3.1)

pc
+(u+) = pc

−(u−) (3.2)

The monotonicity of pc
± assures the unique solvability of (3.1)–(3.2). We intro-

duce auxiliary real numbers u+,x and u−,x that will describe the average slope
of u+ and u− on a macroscopic scale. They are determined by

u+,x + u−,x = 2v0 (3.3)

∂upc
+(u+) u+,x = ∂upc

−(u−) u−,x (3.4)

This linear system has a unique solution u±,x that depends linearly on v0. We
note that, for v0 ≥ 0, the average slopes satisfies 0 ≤ u±,x ≤ 2v0. We next
introduce the pair (v+, v−) ∈ R

2 which describes the typical derivatives of uε

inside a single interval of Γε
±. They are determined by

f+(u+)− g+(u+)v+ = f−(u−)− g−(u−)v− (3.5)

∂upc
+(u+)v+ + ∂upc

−(u−)v− = ∂upc
+(u+) u+,x + ∂upc

−(u−) u−,x (3.6)

The unique solution v± depends in an affine way on u±,x. We now define the
effective flux function F as

F(u0, v0) := f+(u+)− g+(u+)v+, (3.7)

where (u+, v+) is determined by system (3.1)–(3.6) of nonlinear equations. For
fixed u ∈ [0, u0

max], the map F(u, .) is affine. We may therefore also write F in
the form

F(u0, v0) = F0(u
0)−D(u0)v0.

A flux function of this form appears also in [10] and [9]. We note that F is
continuous: For u0 = u∗/2, the solution of system (3.1)–(3.2) is u− = 0 and
u+ = u∗, hence f−(u−) = g−(u−) = 0, and (3.5) yields F(u0, v0) = 0.
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Proposition 1 (Homogenization). Let G = (a, b) × (0, t0) be a subdomain of
ΩT = (0, L)× (0, T ), δ, ε0 > 0 positive real numbers, uε a family of solutions of
(1.11) with

uε ≥ δ on G, ∀ε ≤ ε0, (3.8)

uε ⇀ u0, F ε ⇀ F 0 weakly in L2(G). (3.9)

Then u0 ∈ L2(G) solves ∂tu
0 + ∂xF

0 = 0 in the distributional sense on G, has
a space derivative ∂xu

0 ∈ L2(G), and, with F from (3.7), almost everywhere
holds the flux relation

F 0 = F(u0, ∂xu
0). (3.10)

Proof. The distributional conservation law is satisfied by the weak convergences.
Exploiting the strictly positive diffusivity, (2.1) provides an estimate for the
regular part of the derivative, ∂xu

ε(x, t)1Γε(x) is bounded in L2(G). In the
subsequent proof we will define various two-scale limits for the above functions.
For them we derive the relations (3.1)–(3.6), F 0 = f+(u+) − g+(u+)v+, and
∂xu

0 = v0 ∈ L2(G). With these verifications, the proof is complete.

Step 1. Two-scale limits and (3.1). The uniform L2(G)-bounds allow to con-
sider the two-scale limits

uε ⇀ u0(x, t, y) two-scale,

∂xu
ε1Γε(x) ⇀ v0(x, t, y) two-scale.

The L2(G)-estimate for ∂xu
ε immediately implies that u0 is independent of y

on the sets (0, 1) and (1, 2). Indeed, let y 7→ ϕ(y) be smooth with support
contained in one of the two sets. We find, for Φε(x) = εψ(x)ϕ(x/ε),

0←
∫

G

∂xu
εΦε =

∫

G

uε∂xΦ
ε →

∫

G

∫ 2

0

u0(x, t, y)ψ(x)∂yϕ(y) dy dx dt.

We conclude that u0 has the special form

u0(x, t, y) = u−(x, t)1(0,1)(y) + u+(x, t)1(1,2)(y). (3.11)

The weak limit u0 of the sequence uε coincides with the y-average of u0, hence
(3.11) implies relation (3.1).

We claim that also v0 is piecewise constant. To see this, we use the test
function Φε(x, t) = εψ(x, t)ϕ(x/ε) with ψ ∈ C∞

0 (G) and exploit the equation.
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We assume here that ϕ is supported in (1, 2). We will verify the limit of the
second line (marked with an exclamation mark) in the next step of the proof.

0←
∫

G

∂tu
εΦε =

∫

G

f ε(uε)∂xΦ
ε −

∫

G

gε(uε)∂xu
ε∂xΦ

ε

!→
∫

G

∫ 2

1

f+(u+(x, t))ψ(x, t)∂yϕ(y) dy dx dt (3.12)

−
∫

G

∫ 2

1

g+(u+(x, t))v0(x, t, y)ψ(x, t)∂yϕ(y) dy dx dt.

The first integral vanishes since ϕ is compactly supported in (1, 2) and we
conclude that v0 is independent of y, since u+ is positive by the lower bound
on uε. We can perform the same calculations with ϕ supported in (0, 1) to find
the same equality with + replaced by −,

v0(x, t, y) = v−(x, t)1(0,1)(y) + v+(x, t)1(1,2)(y). (3.13)

In particular, the quantities u± = u±(x) and v± = v±(x) that appear in (3.1)–
(3.6) are now defined. For brevity, we will often suppress the dependence on t
in the following.

Step 2. Compactness. To abbreviate notations we write I = (a, b) for the
spatial interval and set 1k := 1(2kε,2kε+2ε), 1−

k := 1(2kε,2kε+ε), and 1+
k :=

1(2kε+ε,2kε+2ε). We furthermore set 1ε
+ :=

∑

k 1+
k and 1ε

− :=
∑

k 1−
k . Our aim in

this step of the proof is the following result. Let h : [0, 1]→ R be a continuous
function. Then

h(uε(x))1ε
−(x)− h(u−(x))1ε

−(x)→ 0 strongly in L2(G), (3.14)

and likewise for − replaced by +. We note that this result justifies, with h = g+,
the convergence in (3.12). We emphasize that (3.14) is not a consequence of
the previous results. For its proof we must control variations of uε on points in
2Zε. Loosely speaking, it must jump down in 2kε + 2ε as much as it jumped
up in 2kε+ ε.

In order to derive (3.14) we consider the capillary pressure function P ε(x) =
pc

ε(x, uε(x)). This function has no jumps across interfaces, hence the spatial
derivative has no singular parts. On Γε we have the estimate |∂xP

ε| ≤ C|∂xu
ε|

and therefore a uniform estimate for P ε ∈ L2((0, t0), H
1(I)).

We have seen in Lemma 3 that t 7→ uε(x, t) is monotone for almost ev-
ery x ∈ I. By the monotonicity of pc

±, this implies the monotonicity of
t 7→ P ε(x, t). For the strong solutions of the strictly parabolic equations of
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the proposition we therefore have |∂tP
ε| = −∂tP

ε, and an integration yields
‖∂tP

ε‖L1(G) ≤ L‖P ε‖L∞(G), which is uniformly bounded. The spatial and the
temporal regularity together provide the boundedness of P ε in W 1,1(G), hence
the pre-compactness of P ε in L1(G). Exploiting once more the uniform bound
in L∞(G), we find a subsequence that converges strongly in L2(G) and almost
everywhere in G to a limit P 0 ∈ L2(G).

The convergence almost everywhere can be exploited to conclude the strong
convergence of uε as claimed in (3.14). Since (P ε − P 0)1ε

− → 0 pointwise, also

uε1ε
− − (pc

−)−1(P 0)1ε
− → 0 (3.15)

pointwise almost everywhere and, by the uniform boundedness, also strongly
in L2(G). In order to identify the limit function we recall that uε1ε

− →
u−(x)1(0,1)(y) in the sense of two scale convergence. On the other
hand, again in the sense of two scale convergence, (pc

−)−1(P 0(x))1ε
−(x) →

(pc
−)−1(P 0)(x)1(0,1)(y), hence (pc

−)−1(P 0) = u−.
We can now also apply a nonlinear continuous function h to both expressions

in (3.15) and find h(uε)1ε
− − h(u−)1ε

− → 0 pointwise almost everywhere. By
the uniform bounds for uε, this provides (3.14).

Step 3. Derivation of the continuity conditions (3.2) and (3.5) and the flux
equality. With the help of (3.14) it is not difficult to derive the continuity
conditions. The strong convergence P ε → P 0 in L2(G) together with P 0 ∈
L2((0, t0), H

1(I)) implies

pc
ε(uε)1ε

+ − pc
ε(uε)1ε

− = P ε1ε
+ − P ε1ε

− ⇀ 0 in L2(G).

On the other hand, by (3.14) and the two-scale convergences,

pc
ε(uε)1ε

+ − pc
ε(uε)1ε

− = pc
+(uε)1ε

+ − pc
−(uε)1ε

−

= pc
+(u+)1ε

+ − pc
−(u−)1ε

− + o(1)

⇀
1

2
(pc

+(u+)− pc
−(u−)).

Comparison of the two limits yields (3.2).
For the derivation of (3.5) we consider a test-function ϕ ∈ C∞

0 ((0, 2),R) and
Φε(x) = εψ(x, t)ϕ(x/ε) as above. Exploiting (3.14) we find

0←
∫

G

∂tu
εΦε =

∫

G

f(uε)∂xΦ
ε −

∫

G

gε(uε)∂xu
ε∂xΦ

ε

→
∫

G

∫ 1

0

f−(u−)ψ ∂yϕdy +

∫

G

∫ 2

1

f+(u+)ψ ∂yϕdy

−
∫

G

∫ 1

0

g−(u−)v− ψ∂yϕdy −
∫

G

∫ 2

1

g+(u+)v+ ψ∂yϕdy
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=

∫

G

ψ
[

f−(u−)− f+(u+)
]

ϕ(1)−
∫

G

ψ
[

g−(u−)v− − g+(u+)v+

]

ϕ(1).

Since ψ was arbitrary, this yields (3.5). In order to derive the flux equality, we
exploit once more (3.14) and calculate

F ε = f ε(uε)− gε(uε)∂xu
ε

= [f+(uε)− g+(uε)∂xu
ε]1ε

+ + [f−(uε)− g−(uε)∂xu
ε]1ε

−

⇀
1

2
[f+(u+)− g+(u+)v+] +

1

2
[f−(u−)− g−(u−)v−]

which, because of (3.5), is the result for F 0.

Step 4. The quantities u±,x and relation (3.3). Our aim is to derive u−,x :=
∂xu− ∈ L2(G). Loosely speaking, we need an estimate for the oscillations of uε

on Γε
−. Such an estimate is the consequence of the corresponding estimate for

the capillary pressures P ε. Our construction serves also as a preparation for
Step 5.

We introduce a function P̂ ε as a piecewise affine approximation of P ε,

P̂ ε(2kε) =
1

ε

∫ 2kε+ε

2kε

P ε ∀k,

P̂ ε affine on (2kε, 2kε+ 2ε) ∀k.

Exploiting the L2((0, t0), H
1(I))-regularity of P ε we find P̂ ε → P 0. Further-

more, as a projection of P ε onto the space of piecewise affine functions, the pro-
jections P̂ ε are again bounded in L2((0, t0), H

1(Ω)). Choosing a subsequence,
we may assume

∂xP̂
ε =

∑

k

1k
1

2ε2

∫ 2kε+ε

2kε

[P ε(. + 2ε)− P ε(.)] ⇀ ∂xP
0 in L2(G).

We can now relate the function P̂ ε with a piecewise linear function ûε that
approximates u−,

ûε(2kε) =
1

ε

∫ 2kε+ε

2kε

uε ∀k,

ûε affine on (2kε, 2kε+ 2ε) ∀k

with derivative

∂xû
ε =

∑

k

1k
1

2ε2

∫ 2kε+ε

2kε

[uε(. + 2ε)− uε(.)].
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We claim that the sequence ∂xû
ε is uniformly bounded in L2(G). Our aim

is to compare ∂xP̂
ε with ∂upc

−(u−) · ∂xû
ε. To this end we write the pressure

derivative with the fundamental theorem and the function ξ(x, λ) := λuε(x +
2ε) + (1− λ)uε(x) as

∂xP̂
ε =

∑

k

1k
1

2ε2

∫ 2kε+ε

2kε

{
∫ 1

0

∂upc
−(ξ(x, λ)) dλ

}

[uε(x+ 2ε)− uε(x)] dx.

The non-negativity of the integrand provided by Lemma 3 and the lower bound
for ∂upc

− imply a uniform bound for ∂xû
ε ∈ L2(G). In particular, we may

assume that ûε strongly converges in L2(G), the limit is easily identified with
the weak limit u−. Furthermore, choosing a subsequence, we may assume that
∂xû

ε converges weakly in L2(G). Denoting the limit function by u−,x we have

∂xû
ε ⇀ u−,x := ∂xu− in L2(G).

In a similar way one contructs functions ũε that approximate u+, with ∂xũ
ε

bounded in L2(G). We may assume that also this sequence converges weakly,
∂xũ

ε ⇀ u+,x := ∂xu+ in L2(G).
The weak convergences ûε ⇀ u− and ũε ⇀ u+ together with (3.1) imply ûε+

ũε ⇀ 2u0. Then, also the distributional derivatives converge and we conclude
(3.3) with v0 = ∂xu

0 ∈ L2(G).

Step 5. Derivation of (3.4) and (3.6). We have seen that the capillary pressure
functions P ε are bounded in L2((0, t0), H

1(I)) and that we may therefore assume
∂xP

ε ⇀ ∂xP
0 in L2(G). In this last step of the proof we calculate the derivative

∂xP
0 in three different ways.
The most direct approach is to calculate with the chain rule, exploiting

(3.14) in the second equality

∂xP
0 ↼ ∂xP

ε = ∂upc
−(uε) ∂xu

ε 1ε
− + ∂upc

+(uε) ∂xu
ε 1ε

+

= ∂upc
−(u−) ∂xu

ε 1ε
− + ∂upc

+(u+) ∂xu
ε 1ε

+ + o(1)

⇀
1

2
∂upc

−(u−) v− +
1

2
∂upc

+(u+) v+

We will now calculate ∂xP
0 in a different way. We introduce the function

P ∗,ε := pc
−(ûε). The monotonicity of ûε in t implies a compactness and allows

to assume the strong and the pointwise a.e. convergence ûε → u−. We calculate
with the chain rule

∂xP
∗,ε = ∂upc

−(ûε) · ∂xû
ε ⇀ ∂upc

−(u−) · u−,x in L2(G).
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On the other hand, P ∗,ε = pc
−(ûε)→ pc

−(u−) = P 0 and therefore the distribu-
tional limits coincide,

∂xP
0 = ∂upc

−(u−) · u−,x.

With the same rights we can define P̃ via averages on the set Γε
+ and use

everywhere the plus sign. This calculation of ∂xP
0 demonstrates (3.4). In (3.6)

we use the symmetric version

∂xP
0 =

1

2
∂upc

+(u+)u+,x +
1

2
∂upc

−(u−)u−,x .

From our first calculation of ∂xP
0 we see that the weighted average of u+,x and

u−,x coincides with the weighted average of v+ and v−, as claimed in (3.6).

As a preparation for the investigation of the interface condition in the free
boundary value problem, we investigate the regularity of solutions in the region
of strictly positive saturation.

Lemma 5 (Hölder estimate). We consider a family of entropy solutions uε and
fix positive numbers C0 and δ. We assume that t ∈ (0, T ) is a time instance of
bounded energy in the sense that

∫

Γε

|∂xu
ε(., t)|2 1{uε≥δ/2} ≤ C2

0 . (3.16)

Then there exists a constant CL = CL(δ) independent of C0 and ε, and a con-
stant ε0 = ε0(δ, C0) such that the following holds.

1. Let a = 2kε+ε ∈ (0, L) with k ∈ Z and uε(a−0, t) ≥ δ, and let b ∈ 2Zε+ε,
b > a. Then

|uε(b− 0, t)− uε(a− 0, t)| ≤ CLC0

√

|b− a|. (3.17)

2. For all ε ≤ ε0(δ, C0) there holds

uε(2kε+ ε− 0, t) ≥ δ ⇒ uε(2kε− ε− 0, t) ≥ δ/2. (3.18)

Proof. Cell-wise estimate and (3.17). The monotonicity of Lemma 3 together
with the lower bound of Lemma 2 implies uε ≥ δ on (a, L)×(0, t0), hence (3.16)
provides an L2(Γε)-bound for the spatial derivative. We claim that locally,
across a single interval (2kε + ε, 2kε + 3ε), we can control differences of the
uε-values by the integral of the derivative. Indeed, with the variables

y0 := uε(2kε+ ε− 0, t), y1 := uε(2kε+ 2ε+ 0, t), y2 := uε(2kε+ 3ε− 0, t),

z0 := uε(2kε+ ε+ 0, t), z1 := uε(2kε+ 2ε− 0, t),
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we have the relations

y2 − y1 =

∫ 2kε+3ε

2kε+2ε

∂xu
ε(., t) =: ∆1,

z1 − z0 =

∫ 2kε+2ε

2kε+ε

∂xu
ε(., t) =: ∆2,

z0 = Φ(y0) and z1 = Φ(y1), for Φ(y) := (pc
+)−1(pc

−(y)).

Inserting yields

y2 = y1 + ∆1 = Φ−1 (z0 + ∆2) + ∆1 = Φ−1 (Φ(y0) + ∆2) + ∆1.

Since Φ and its inverse Φ−1 have a bounded derivative on {y ≥ δ} we conclude
the local estimate

|y2 − y0| ≤ CL(δ) (|∆1|+ |∆2|) ≤ CL

∫ 2kε+3ε

2kε+ε

|∂xu
ε(., t)|1Γε. (3.19)

Adding the inequalities (3.19) from k = (a − ε)/(2ε) to k′ = (b − ε)/(2ε)− 1,
we find

|uε(b− 0, t)− uε(a− 0, t)| ≤ CL

∫ b

a

|∂xu
ε(., t)|1Γε

≤ CL |b− a|1/2

(
∫ L

a

|∂xu
ε(., t)|21Γε

)1/2

.

This is estimate (3.17).

Implication (3.18) on jumps. Let C0 be fixed and t a time instance with
‖∂xu

ε(., t)1{uε≥δ/2}1Γε‖2L2 ≤ C0. As shown in (3.19), we have the estimate

|uε(2kε+ ε− 0)− uε(2kε− ε− 0)| ≤ c

(
∫ 2kε+ε

2kε−ε

|∂xu
ε(., t)|21Γε

)1/2√
ε

≤ cC0

√
ε,

at least if we can assume (for the last inequality), that the saturation satisfies
uε ≥ δ/2 in every point of the interval (2kε − ε, 2kε + ε). We choose ε0 =
ε0(δ, C0) such that cC0

√
ε0 ≤ δ/4. The arguments above can be repeated for

every point x in the interval (2kε, 2kε+ ε). Continuity of uε inside the interval
allows to conclude uε(2kε+ 0) ≥ 3δ/4. We repeat the argument on the interval
(2kε− ε, 2kε) and find the result.
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4 The free boundary problem

We study, for δ > 0 and ε > 0, the free boundary separating the region of
uniformly positive saturation from the rest.

Xε
δ (t) := inf {x ∈ (0, L) ∩ (2εZ + ε) : uε(x− 0, t) ≥ δ} , (4.1)

Xε
0(t) := inf

δ>0
Xε

δ (t). (4.2)

We set Xε
δ (t) = L if the infimum is taken over the empty set.

Lemma 6. There are sequences εk ց 0 and δm ց 0 such that, for every ε = εk

and every δ = δm we have

1. The maps t 7→ Xε
δ (t) and t 7→ Xε

0(t) are monotonically non-decreasing.

2. The following limits hold pointwise for almost every t, and the limits are
monotone functions.

X0
δ (t) = lim

k→∞
Xεk

δ (t), X0
0 (t) = lim

m→∞
X0

δm
(t),

Xε
0(t) = lim

m→∞
Xε

δm
(t), X̃0

0 (t) = lim
k→∞

Xεk

0 (t).

We can select an upper semicontinuous representative t 7→ X(t) of the
L1-function t 7→ X0

0 (t).

3. There holds X0
δ ≤ X0

δ′ for all δ ≤ δ′ and X̃0
0 ≤ X0

0 .

x

t

L

X0
0 X0

δ

Figure 6: Possible shapes of the free boundaries X0
δ and X0

0 . We know that they are
monotone and that X0

δ → X0
0 pointwise almost everywhere. With the above graphs

we illustrate that X0
0 may have jumps and that we can not expect X0

δ (t)→ X0
0 (t) for

every t > 0.



26 Ben Schweizer

Proof. Lemma 3 provides that the function t 7→ uε(x, t) is monotonically non-
increasing. This implies the monotonicity of the free boundaries stated in 1. The
monotonicity of the family of functions t 7→ Xε

δ implies the uniform boundedness
in BV ([0, T ],R), hence we can extract subsequences that converge strongly in
L1 and pointwise almost everywhere. Limits of monotone functions are again
monotone. Since BV-functions have only countably many jumps, we find an
upper semicontinuous representative.

The monotonicity in δ is an immediate consequence of the definition of Xε
δ .

It justifies the infimum of (4.2) and implies Xε
0 ≤ Xε

δ , which carries over in the
limit k →∞ as X̃0

0 ≤ X0
δ . The limit δm → 0 yields statement 3.

With the help of the limiting free boundaries we can transform the results
of Proposition 1 into the following statement.

Corollary 2 (Limit equations in region G). Let t 7→ X(t) be as in Lemma 6
and G the open domain

G := {(x, t) ∈ (0, L)× (0, T ) : x > X(t)} .

Let (u0, F 0) be limits of entropy solutions (uε, F ε) as in Theorem 1 and G′ ⊂⊂ G
a subset of G. Then there holds ∂xu

0 ∈ L2(G′) and F 0 satisfies on G′ the relation
F 0 = F(u0, ∂xu

0).

Proof. The function X is monotone and the closure of G′ is a compact subset
of G, hence G′ can be covered by a finite collection of sets G0 = (x0, L)× (0, t0)
with x0 > X(t0). It suffices to verify the statements on one such subset G0.
Our aim is to find ε0 > 0 and δ > 0 such that uε ≥ δ on G0 for all ε ≤ ε0. Once
this is done, the application of Proposition 1 yields the result.

We start by choosing η > 0 such that x0 − η > X(t0 + η), which is possible,
since X is upper semicontinuous and hence lim supηց0 X(t0 + η) ≤ X(t0) < x0.
We now choose δ > 0 such that

x0 −
η

2
> X0

δ (t0 +
η

2
). (4.3)

In order to verify that for a small δ > 0 relation (4.3) is satisfied, we exploit
that by monotonicity X(t) < x0 − η for all t ∈ (t0 + η/2, t0 + η). The strong
L2-convergence X0

δ → X and Egoroff’s theorem imply that, for δ > 0 small,
|X0

δ − X| < η/2 except for a set of t’s with measure less than η/2. For such
δ there necessarily exists s ∈ (t0 + η/2, t0 + η) with X0

δ (s) < x0 − η/2. By
monotonicity of X0

δ , relation (4.3) holds.
We finally want to choose, in a similar way, a number ε0 > 0 with x0 >

Xε
δ (t0). We have X0

δ (t) < x0 − η/2 for all t ∈ (t0, t0 + η/2). By Egoroff’s
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theorem we find ε0 > 0 such that, for all ε ≤ ε0, we find some s ∈ (t0, t0 + η/2)
such that Xε

δ (s) < x0. The monotonicity of Xε
δ (s) implies x0 > Xε

δ (t0) and thus
G0 ⊂ (Xε

δ (t0), L)× (0, t0). The definition of Xε
δ implies the desired lower bound

for the sequence uε on the left boundary of the domain (Xε
δ (t0), L) × (0, t0).

Lemma 2 yields the lower bound on the whole domain.

Proposition 2 (Limit equations in region B). In the domain

B := {(x, t) ∈ (0, L)× (0, T ) : x ≤ X(t)} ,

there holds that u0 ≡ u∗

2
and F 0 ≡ 0 almost everywhere. The function u0 has no

jump across ∂B ∩ΩT in the following sense: Let T0 ∈ (0, T ] be a time instance
with X(T0) < L, and let Ar, r > 0 be a family of averages of u0,

Ar :=
1

T0 · r

∫ T0

0

∫ r

0

u0(X(t) + s, t) ds dt. (4.4)

Then Ar satisfies

Ar →
u∗

2
for r → 0.

Proof. We select monotone sequences δj → 0 and εm → 0 with the convergences
of the free boundaries as in Lemma 6 and with uεm → u0 weakly in L2(ΩT ).
Almost all time instances t ∈ (0, T ) are points of continuity of the function
X(.) and of all functions X0

δj
(.), j ∈ N. Furthermore, in almost every point

t ∈ (0, T ) the convergences of Lemma 6 hold. In the following we consider only
time instances t with all these properties.

Step 1. On B holds u0 = u∗/2. We note that u0 ≥ u∗/2 follows immediately
from the lower bound in Lemma 4.

For the upper bound let (x, t) ∈ B be with t as above and with x < X(t).
Moreover, let ρ > 0 be arbitrary. We choose τ > 0 and an index j ∈ N such that,
for δ = δj , implication (2.5) of Lemma 4 holds. Since X has no jump in t we find
t′ < t with x < X(t′). By monotonicity in δ, we have x < X0

δ (t′). We choose
r > 0 smaller than 1

2
(X0

δ (t′)−x), for later use we also demand r < 1
2
(t− t′). We

find m0 > 0 such that, for all m ≥ m0, additionally r < Xεm

δ (t′)− x. We may
choose m0 large enough to satisfy additionally τε2

m0
< t − t′ − r and εm0

< ε0

of Lemma 4. The upper bound of Lemma 4 provides for ε = εm with m ≥ m0

uε(2kε+ ε− 0, t′) ≤ δ ⇒
∫ 2kε+ε

2kε−ε

uε(., t′ + τε2) ≤ ε(u∗ + ρ).
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By construction, the assertion is satisfied for all k ∈ Z with 2kε + ε ≤ x + r.
The monotone decay of uε in t implies

1

|Br((x, t))|

∫

Br((x,t))

uεm ≤ 1

2
(u∗ + ρ). (4.5)

This carries over to the weak limit u0. Since ρ was arbitrary, we have the upper
bound in B by the Lebesgue Differentiation Theorem.

Step 2. Boundary condition. We assume that a small number ρ > 0 is given,
our aim is to choose r > 0 small to have Ar ≤ u∗/2 + cρ for some universal
constant c. We recall that Ar is defined with an integration over the thin region

Ur := {(x, t) ∈ ΩT0
: X(t) < x < X(t) + r} .

We use the numbers δ0 > 0 and τ > 0 that appear in the upper bound for
averages in Lemma 4, and choose δ = δj < δ0/2. We consider the ε-dependent
set

E0 :=

{

(x, t) ∈ ΩT0
: x ∈ (0, L),

∫ L

0

|∂xu
ε(., t)|2 1{uε≥δ/2} > C2

0

}

,

where we denote by ∂xu
ε the regular part of the derivative. Choosing C0 large

enough we achieve |E0 ∩Ur| ≤ ρrT0 for all ε. This is possible since by estimate
(2.1) the time integral over the above spatial integral is bounded. We now choose
r > 0 small enough to satisfy, with CL = CL(δ/2) of Lemma 5, CLC0(4r)

1/2 ≤ δ.
In order to show the upper bound for Ar we may still choose ε > 0 small.

We define further ε-dependent exceptional sets as

E1 :=
{

(x, t) ∈ ΩT0
: x ∈ (0, L), |Xε

δ (t)−X0
δ (t)| ≥ r

}

,

E ′
1 :=

{

(x, t) ∈ ΩT0
: x ∈ (0, L), t ≥ τε2, |Xε

δ (t− τε2)−X0
δ (t− τε2)| ≥ r

}

,

E2 :=
{

(x, t) ∈ ΩT0
: Xε

δ (t− τε2) ≤ x ≤ Xε
δ (t)

}

,

E3 :=
{

(x, t) ∈ ΩT0
: |X(t)−X(t− τε2)| ≥ r

}

.

For the first set we acchieve |E1| ≤ ρrT0 for all small ε by the L1 convergence
Xε

δ → X0
δ . The set E ′

1 is obtained from E1 by a shift, hence this set also satisfies
|E ′

1| ≤ ρrT0. The set E2 is contained in a τε2-neighborhood of the free boundary

Σε
δ :=

{

(x, t) ∈ ΩT0
: lim

sրt
Xε

δ (s) ≤ x ≤ lim
sցt

Xε
δ (s)

}

.

The set Σε
δ is a curve of finite length, hence we acchieve |E2| ≤ ρrT0 for ε > 0

small. Finally, |E3| ≤ ρrT0 for ε > 0 small, since X is a BV-function. We may
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additionally impose on ε that ε < r and ε < ε0(δ, C0); the latter allows to use
the implication of Lemma 5 outside the set E0,

uε(2kε+ ε− 0, t) ≥ δ ⇒ uε(2kε− ε− 0, t) ≥ δ/2. (4.6)

We note that the set

E ′
0 :=

{

(x, t) ∈ (0, L)× (τε2, T0) :

∫ L

0

|∂xu
ε(., t− τε2)|2 1{uε(.,t−τε2)≥δ/2} > C2

0

}

also satisfies |E ′
0 ∩ Ur| ≤ ρrT0, since it is obtained by a shift of the set E0.

After these preparations, let us now consider an arbitrary point (x, t) =
(2kε+ ε, t) ∈ Ur \ (E0 ∪ E ′

0 ∪ E1 ∪E ′
1 ∪ E2 ∪ E3). We distinguish two cases.

Case (i). uε(x, t) is small, x = 2kε+ε < Xε
δ (t). Since (x, t) is not contained

in E2, we also have x < Xε
δ (t − τε2). Lemma 4 can be applied with the point

(2kε+ ε, t− ε2τ) and yields
∫ 2kε+ε

2kε−ε

uε(., t) ≤ ε(u∗ + ρ).

Case (ii). uε(x, t) is large, x = 2kε+ε ≥ Xε
δ (t). We will derive the smallness

of uε(x, t) with the help of the Hölder-type estimate of Lemma 5 and conclude
again with Lemma 4.

We start by setting t′ := t−τε2 and denote by k′ the integer with 2k′ε+ε =
x′ := Xε

δ (t
′). The definition ofXε

δ implies uε(x′−0, t′) ≥ δ, (x′, t′) 6∈ E ′
0 allows to

use (4.6) at the time instance t′ and we conclude that δ/2 ≤ uε(2k′ε−ε−0, t′) <
δ. The lower bound allows to apply the first part of Lemma 5 with a = 2k′ε− ε
and b = x = 2kε+ ε. We find

uε(x− 0, t′) ≤ uε(2k′ε− ε− 0, t′) + CL(δ/2)C0(4r)
1/2 ≤ δ + δ = 2δ.

We used here (x, t) 6∈ E3 and (x, t) 6∈ E ′
1 such that

x− x′ = (x−X(t)) + (X(t)−X(t′)) + (X(t′)−X0
δ (t′)) + (X0

δ (t′)−Xε
δ (t

′))

≤ r + r + 0 + r = 3r.

Another application of the upper bound of Lemma 4 yields also in this case
∫ 2kε+ε

2kε−ε

uε(., t) ≤ ε(u∗ + ρ).

In both cases we find the same estimate for averages of uε. Summation over
k and an integration over t ∈ (0, T0) yields

1

T0 · r

∫

Ur

uε ≤ u∗

2
+ cρ+O(ε)

1

T0 · r
.
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The factor c covers the error induced by the exceptional sets, the error term
O(ε) is induced by the integration over a boundary strip of width 2ε that is
necessary to cover Ur with intervals of the form (2kε, 2kε + 2ε). We take the
limit ε→ 0. Since ρ > 0 was arbitrary, we find (4.4).

Step 3. On B holds F 0 = 0. We have shown in Step 1 that u0 is constant in
B, hence the conservation law implies ∂xF

0 = 0 and we have F 0(x, t) = F 0(t)
for almost all (x, t) ∈ B. Our aim is to conclude F 0(t) = 0 for almost all t.

Inequality F 0 ≤ 0. For the approximate solutions uε, the boundary condition
uε(0, t) = 0 together with f(0) = 0, g ≥ 0, and uε ≥ 0 implies F ε(0, t) =
trace{f(uε)− g(uε)∂xu

ε} ≤ 0. This can be written in a weak form as

∫ T

0

∫ L

0

{uε · ∂tϕ+ F ε · ∂xϕ} ≥ 0 ∀ϕ ∈ C∞
0 ((0, T )× [0, L)), ϕ ≥ 0.

We can take the limit ε→ 0 in these integrals and conclude F 0 ≤ 0 on B from
∂tu

0 = 0.
Inequality F 0 ≥ 0. This inequality is not a consequence of the boundary

conditions but must be concluded with the help of the positivity of the global
convection term f(u). We consider an arbitrary rectangle U ⊂⊂ B and a
number q > 0 and show for some m0 that

F εm ≥ −q on U for all m ≥ m0.

Once this is shown, we have F 0 ≥ 0 almost everywhere on B.
We fix the rectangle U ⊂⊂ B and the number q > 0. We choose δ > 0

small compared to q · inf{x : (x, t) ∈ U} > 0 and refer to the end of the
proof for the precise choice. We now select m0 such that, for all m ≥ m0: (i)
x ≤ Xε

δ/2(t) for all (x, t) ∈ U , (ii) uε(x, t) ≤ δ for all (x, t) ∈ U with x ∈ Γε
−,

(iii) u∗/2 ≤ uε(x, t) ≤ (u∗ + 1)/2 for all (x, t) ∈ U with x ∈ Γε
−. The existence

of such an m0 follows from the BV-convergence Xε
δ/2 → X0

δ/2, the argument

of (3.18), and the lower bound for averages. We now assume that, for some
(x, t) ∈ U and some m ≥ m0,

F εm(x, t) = f εm(x, uεm(x, t))− gεm(x, uεm(x, t))∂xu
εm(x, t) < −q,

and derive a contradiction.
Since ∂xF

ε = −∂tu
ε is non-negative, F ε is monotonically increasing and we

have

−gε(x, uεm(x′, t))∂xu
ε(x′, t) = F ε(x′, t)− f ε(x, uεm(x′, t)) ≤ F ε(x′, t) ≤ −q
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for all x′ ∈ (0, x). This implies that uε(., t) is increasing on Γε
− ∩ (0, x), and on

Γε
+ ∩ (0, x) it is strictly increasing with a lower bound

∂xu
ε ≥ q

g∗
with g∗ := sup

ξ∈(u∗/2,(1+u∗)/2)

g(ξ) > 0.

The monotonicity of pc
± implies that uε is increasing on (0, x) ∩ 2εZ with an

average slope of at least q/2g∗. The boundary condition uε(0, t) = 0 leads to

uε(x, t) ≥ q

2g∗
x > δ,

if δ was chosen with δ < q inf{x : (x, t) ∈ U}/2g∗. This is in contradiction with
uε(x, t) ≤ δ of (ii). The proof of F 0 = 0 on B is complete.

Proof of Theorem 1. A priori estimates for uε and F ε are shown in Lemma 1
of Section 2, and we may therefore select weakly convergent subsequences. The
weak convergences allow to take the distributional limit in the conservation law
and we find (1.12).

In Lemma 6 we constructed a monotone function X : [0, T ] → R such that
G = {(x, t)|x > X(t)} ⊂ ΩT is an open set. In Proposition 2 we derived
u0 ≡ u∗/2 and F 0 = 0 almost everywhere on B := ΩT \ G; since F satisfies
F(u∗/2, ζ) = 0 for all ζ ∈ R, (1.13) holds pointwise almost everywhere on B.
Corollary 2 provides ∂xu

0 ∈ L2
loc(G) and equation (1.13) on G.

We already know that ∂xu
0 is a L2

loc function on ΩT \ Σ for Σ = ∂G ∩ ∂B.
Lemma 3 implies that ∂xu

0 is non-negative, the boundedness of u0 implies that
the derivative ∂xu

0 is a non-negative measure on ΩT . Each slice u0(., t) is a BV -
function, hence the singular part of the measure ∂xu

0 is concentrated on Σ and
regular with respect to the one-dimensional Hausdorff-measure. Proposition 2
shows that this singular part of the measure ∂xu

0 vanishes. We thus verified
the statement ∂xu

0 ∈ L1(ΩT ).
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