2. Übungsblatt zur Vorlesung Mathematische Methoden in der Biologie / SS 2012

Abgabetermin: 3. Mai 2012

Aufgabe 3: (Matrixexponentialfunktion und stabile Räume - 4 Punkte)

Wir betrachten das System

$$\dot{x} = Ax, \quad A := \begin{pmatrix} -2 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & -1 & 1 \end{pmatrix}. \tag{1}$$

- (i) Berechnen Sie die Matrixexponentialabbildung $\exp(tA)$ zunächst per Definition und dann mit Hilfe der Sätze aus der Vorlesung.
- (ii) Bestimmen Sie \mathcal{E}^u , \mathcal{E}^s und \mathcal{E}^c .

Aufgabe 4: (Lineare planare Systeme - 4 Punkte)

Es sei ein System $\dot{x}=Ax$ gegeben. Abbildungen $A:\mathbb{R}^2\to\mathbb{R}^2$ lassen sich in folgende drei Hauptkategorien unterteilen:

$$A_1 = \begin{pmatrix} \lambda & 0 \\ 0 & \mu \end{pmatrix}, \quad A_2 = \begin{pmatrix} \lambda & 1 \\ 0 & \lambda \end{pmatrix} \text{ und } \quad A_3 = \begin{pmatrix} \lambda & -b \\ b & \lambda \end{pmatrix}.$$

Betrachten Sie $\mu > 0$ und in jeder Hauptkategorie jeweils die Fälle $\lambda < 0$ und $\lambda > 0$. Skizzieren Sie die zugehörigen Phasenportraits.

Aufgabe 5: (Lösungsverhalten für lineare Systeme - 4 Punkte)

Behauptung:

Für jede Lösung y(t) des Systems $\dot{x}=Ax$ mit $A:\mathbb{R}^n\to\mathbb{R}^n$ lineare Abbildung trifft genau eine der folgenden Alternativen zu:

- (i) $\lim_{t \to \infty} y(t) = 0$ und $\lim_{t \to -\infty} |y(t)| = \infty$,
- (ii) $\lim_{t \to \infty} |y(t)| = \infty$ und $\lim_{t \to -\infty} y(t) = 0$,
- (iii) Es existieren reelle Zahlen M, N > 0, sodass M < |y(t)| < N für alle $t \in \mathbb{R}$ gilt.

Beweisen oder Widerlegen Sie die Behauptung

Aufgabe 6: (Travelling wave Lösungen - Linearisierung - 4 Punkte)

Es sei eine zu Beispiel 2.13 äquivalente 'travelling wave'-Formulierung durch das System

$$\begin{pmatrix} Z \\ U \\ W \end{pmatrix}' = \begin{pmatrix} -cZ + U - W + \gamma k U (1 - W) \\ Z \\ -\frac{k}{c} U (1 - W) \end{pmatrix}$$
 (2)

gegeben. Bearbeiten Sie folgende Arbeitsaufträge:

- (i) Approximieren Sie (2) in der Nähe des stationären Punktes (0,1,1) durch ein lineares System in den Variablen (Z, 1-U, 1-W).
- (ii) Bestimmen Sie für alle positiven Eigenwerte die zugehörigen verallgemeinerten Eigenvektoren. Welcher Eigenwert kann das Verhalten einer biologisch sinnvollen Lösung (also $0 \le U, W \le 1$) beschreiben?