Dr. Andreas Rätz

Partielle Differentialgleichungen

Blatt 13

Abgabe: 27. Januar 2010

Aufgabe 46 (4 Punkte). Seien $U_1, U_2 \subset \mathbb{R}^n$ offen und beschränkt, und sei $T \in C^{0,\alpha}(\bar{U}_1, \mathbb{R}^n)$ mit $T(U_1) \subset U_2$ und $\alpha \in (0,1]$. Außerdem sei $u \in C^{0,\beta}(\bar{U}_2), \beta \in (0,1]$. Zeigen Sie, dass dann $u \circ T \in C^{0,\alpha\beta}(\bar{U}_1)$ gilt mit

$$\text{h\"ol}_{U_1,\alpha\beta}(u \circ T) \leq (\text{h\"ol}_{U_2,\beta}u)(\text{h\"ol}_{U_1,\alpha}T)^{\beta}.$$

Aufgabe 47. Sei $p \in [1, \infty]$. Leiten Sie eine notwendige Bedingung an $\alpha \in (0, 1]$ für die folgende Aussage her: Es existiert eine Konstante C > 0, so dass für alle $u \in C_c^{\infty}(\mathbb{R}^n)$ die Abschätzung

$$\text{h\"{o}l}_{\mathbb{R}^n,\alpha}u \leq C\|\nabla u\|_{L^p(\mathbb{R}^n)}$$

gilt.

Hinweis: Betrachten Sie $u \in C_c^{\infty}(\mathbb{R}^n)$ und die skalierten Funktionen $u_{\lambda}(x) := u(\frac{x}{\lambda})$.

Aufgabe 48. Sei $U \subset\subset \mathbb{R}^n$ mit $\partial U \in C^{0,1}$.

(i) Sei $u \in C^{2,\alpha}(\bar{U})$, $\alpha \in (0,1]$. Zeigen Sie, dass dann zu jedem $\varepsilon > 0$ eine Konstante $C = C(U, n, \alpha, \varepsilon)$ existiert, so dass

$$||u||_{C^2(\bar{U})} \le \varepsilon ||u||_{C^{2,\alpha}(\bar{U})} + C||u||_{L^2(U)}$$

gilt.

(ii) Sei $u\in C^2(\bar U)$. Zeigen Sie, dass dann zu jedem $\varepsilon>0$ eine Konstante $C=C(U,n,\varepsilon)$ existiert, so dass

$$||u||_{C^1(\bar{U})} \le \varepsilon ||u||_{C^2(\bar{U})} + C||u||_{L^2(U)}$$

gilt.

Hinweis: Verwenden Sie das Ehrling-Lemma (siehe Vorlesung) und den Einbettungssatz für Hölderräume (Proposition 7.6 der Vorlesung).

Aufgabe 49. Seien $U \subset \mathbb{R}^n$ offen, $u: U \to \mathbb{R}, \ \theta \in (0, \frac{1}{2})$ mit

$$\operatorname{osc}_{B(y,\theta r)} u \leq \frac{1}{2} \operatorname{osc}_{B(y,r)} u < \infty$$
 für alle $B(y,r) \subset U$,

wobei $\operatorname{osc}_{B(y,r)}u:=\sup_{B(y,r)}u-\inf_{B(y,r)}u$ die Oszillation von u in B(y,r) bezeichnet. Zeigen Sie, dass für alle $V\subset\subset U$

$$u \in C^{0,\alpha}(\bar{V})$$
 mit $\alpha = -\frac{\log 2}{\log \theta}$

gilt.