TU DORTMUND PROF. DR. MATTHIAS RÖGER DR. ANDREAS RÄTZ

Partielle Differentialgleichungen

Blatt 8

Abgabe: 09. Dezember 2009

Aufgabe 27 (4 Punkte). Sei $U \subset \mathbb{R}^n$ offen, sei $B \in L^2(U \times U)$ und sei $\lambda > ||B||_{L^2(U \times U)}$. Zeigen Sie: Zu $f \in L^2(U)$ existiert genau ein $u \in L^2(U)$, so dass

$$\int_{U} B(x,y)u(y) dy = \lambda u(x) + f(x) \qquad \text{für fast alle } x \in U.$$

Hinweis: Betrachten Sie für $u, v \in L^2(U)$

$$a(u,v)\,:=\,-\int_U \Big(\int_U B(x,y)u(y)v(x)\,dy - \lambda u(x)v(x)\Big)\,dx$$

und benutzen Sie den Satz von Lax-Milgram.

Aufgabe 28 (4 Punkte). (Bemerkung 5.14 der Vorlesung)

(i) Sei X ein Vektorraum und $M\subset X$ ein affin linearer Unterraum von X. Sei $u_0\in M$. Zeigen Sie, dass

$$M_0 := \{ u - u_0 : u \in M \}$$

ein linearer Raum ist, und dass M_0 unabhängig von der Wahl von u_0 ist.

(ii) Sei $U \subset \mathbb{R}^n$ ein offenes und beschränktes Gebiet mit C^1 -Rand ∂U . Für $u_0 \in W^{1,2}(U)$ definieren wir dann

$$M_{u_0} := \{ u \in W^{1,2}(U) : u = u_0 \quad \mathcal{H}^{n-1}$$
-fast-überall auf $\partial U \}$.

Zeigen Sie, dass $M_{u_0} \subset W^{1,2}(U)$ ein affin linearer Unterraum ist, und dass

$$M_{u_0} = \{ u \in W^{1,2}(U) : u - u_0 \in W_0^{1,2}(U) \}$$

gilt.

Aufgabe 29 (4 Punkte). (Poincaré-Ungleichung)

(i) Betrachten Sie für $B_R := B(0,R) \subset \mathbb{R}^n$, R > 0 die Poincaré-Ungleichung

$$\|u\|_{L^2(B_R)} \leq C_{B_R} \|\nabla u\|_{L^2(B_R)} \quad \text{für} \quad u \in W^{1,2}_0(B_R)$$

mit der optimalen Konstanten $C_{B_R} > 0$. Finden Sie für beliebige R > 0 eine Relation zwischen C_{B_R} und C_{B_1} .

(ii) Sei $U \subset \mathbb{R}^n$ offen. Zeigen Sie, dass es keine Poincaré-Ungleichung der Form

$$||u||_{L^2(U)} \le C||\nabla u||_{L^2(U)}$$
 für $u \in W_0^{1,2}(U)$

geben kann, falls U beliebig große offene Kugeln enthält.

Aufgabe 30 (4 Punkte). Sei $U \subset \mathbb{R}^n$ und $u \in W_0^{1,2}(U) \cap L^{\infty}(U)$ eine schwache Lösung von $\nabla \cdot (A\nabla u) = 0$, wobei $A = A(x) = (a_{ij}(x))_{i,j=1,...,n}$ gleichmäßig elliptisch und $a_{ij} \in L^{\infty}(U)$, i, j = 1, ..., n sei. Sei $\phi \in C^{\infty}(\mathbb{R})$ eine konvexe Funktion. Zeigen Sie, dass dann $w := \phi(u)$ die Relation

$$\int_{U} A\nabla w \cdot \nabla v dx \leq 0 \quad \text{für alle} \quad v \in C_{c}^{\infty}(U) \quad \text{mit} \quad v \geq 0$$

erfüllt. Folgern Sie, dass w eine schwache Lösung der Ungleichung $\nabla \cdot (A \nabla w) > 0$ ist.