Dr. Andreas Rätz

Partielle Differentialgleichungen II

Blatt 1

Abgabe: 30. April 2010

Aufgabe 1 (4 Punkte). Lagrange-Funktion. Sei $U \subset \mathbb{R}^n$ offen, beschränkt und glatt berandet. Ferner seien $\phi, f : \overline{U} \to \mathbb{R}$ glatte Funktionen. Finden Sie eine Lagrange-Funktion L = L(p, z, x), $(p, z, x) \in \mathbb{R}^n \times \mathbb{R} \times U$, so dass die Gleichung

$$-\Delta u + \nabla \phi \cdot \nabla u = f \quad \text{in} \quad U$$

die Euler-Lagrange-Gleichung zum Funktional

$$I[w] := \int_{U} L(\nabla w, w, x) \, \mathrm{d}x$$

ist.

<u>Hinweis:</u> Suchen Sie eine Lagrange-Funktion, die einen Exponential-Term mit ϕ enthält.

Aufgabe 2 (4 Punkte). Sei $U \subset \mathbb{R}^n$ offen, beschränkt und glatt berandet. Die Lagrange-Funktion $L = L(p,z,x), (p,z,x) \in \mathbb{R}^n \times \mathbb{R} \times U$, habe die Eigenschaft, dass die Abbildung $(p,z) \mapsto L(p,z,x)$ für jedes $x \in U$ konvex ist. Für $g \in L^q(\partial U)$ sei

$$M := \{ w \in W^{1,q}(U) : w = g \text{ auf } \partial U \}$$

für $q \in (1, \infty)$ die zulässige Menge und $u \in M$ eine schwache Lösung von

$$-\sum_{i=1}^{n} (L_{p_i}(\nabla u, u, x))_{x_i} + L_z(\nabla u, u, x) = 0 \text{ in } U$$

u = q auf ∂U

Zeigen Sie: Dann ist u Minimierer von

$$I[w] := \int_{U} L(\nabla w, w, x) \, \mathrm{d}x$$

in M.

Aufgabe 3 (4 Punkte). Versagen der direkten Methode. Betrachten Sie für das Intervall $U = [0,1] \subset \mathbb{R}$ das Funktional

$$I[w] := \int_U \frac{1}{2} |w'|^2 \,\mathrm{d}x$$

und die zulässige Menge

$$M := \{ w \in W^{1,2}(U) : w'(0) = -1, w'(1) = 1 \}.$$

Bestimmen Sie $\inf_{w \in M} I[w]$, und finden Sie eine Minimalfolge, deren Grenzfunktion nicht in M liegt.