MAT-741

Modul: Numerik zeitabhängiger Differentialgleichungen MAT-741
Masterstudiengang: Master Mathematik, Master Technomathematik, Master Wirtschaftsmathematik
Turnus:
unregelmäßig
Dauer:
1 Semester
Studienabschnitt:
ab dem 6. Semester
Leistungspunkte:
5
Aufwand:
150
1 Modulstruktur
Nr Element/Veranstaltung Typ Leistungspunkte SWS
1 Vorlesung zu Numerik zeitabhängiger Differentialgleichungen V 3 2
2 Übung zu Numerik zeitabhängiger Differentialgleichungen Ü 2 1
2 Lehrveranstaltungssprache: Deutsch
3 Lehrinhalte
  • Lineare Systeme gewöhnlicher DGl: Anfangswertprobleme, numerische Verfahren

  • Parabolische DGl am Beispiel der Wärmeleitungsgleichung: Entwicklung nach Eigenfunktionenen, Variationsformulierung, Energieabschätzungen, Maximumprinzip

  • Finite-Differenzen-Verfahren für die Wärmeleitungsgleichung

  • Finite-Elemente-Verfahren für die Wärmeleitungsgleichung

Empfohlene Literatur

S. Larsson, V. Thomee: Partielle Differentialgleichungen und numerische Methoden, Springer, 2005

4 Kompetenzen

Die Studierenden

  • analysieren reine Anfangswertprobleme und Anfangsrandwertprobleme für parabolische DGl

  • diskretisieren die Modellgleichungen mit Finite-Differenzen- und Finite-Elemente-Verfahren

  • lösen Anfangswertprobleme für diskrete Lösungswerte mit einfachen Zeitschrittverfahren

  • untersuchen numerische Verfahren auf Stabilität und führen eine Fehleranalyse durch

  • beweisen relevante Maximumprinzipien für kontinuierliche und diskrete Probleme

5 Prüfungen

Prüfungsordnung 2019:

Benotete Modulprüfung.

Als Zulassungsvoraussetzung ist folgende Studienleistung zu erbringen:

Regelmäßige erfolgreiche Bearbeitung der Übungsaufgaben und aktive Teilnahme an den Übungen. Details werden durch die jeweilige Dozentin / den jeweiligen Dozenten in der Veranstaltungsankündigung bekannt gemacht.


Prüfungsordnung 2015:

Das Modul kann abhängig von den Regelungen der jeweiligen Prüfungsordnung in zwei verschiedenen Formen zum Abschluss gebracht werden:

  1. als unbenotetes Modul ohne Modulprüfung.
  2. als benotetes Modul mit Modulprüfung.

Zulassungsvoraussetzung für die Modulprüfung bzw. Nachweis des erfolgreichen Abschlusses bei Wahl als unbenotetes Modul ist die Erbringung folgender Studienleistung:

Regelmäßige erfolgreiche Bearbeitung der Übungsaufgaben und aktive Teilnahme an den Übungen. Details werden durch die jeweilige Dozentin / den jeweiligen Dozenten in der Veranstaltungsankündigung bekannt gemacht.

6 Prüfungsformen und -leistungen

Modulprüfung: mündliche Prüfung (ca. 30 Minuten). In Ausnahmefällen Klausur (120-180 Minuten).

7 Teilnahmevoraussetzungen

Solide Kenntnisse der Inhalte der Module MAT-405 (Numerik für partielle Differentialgleichungen) und MAT-203 (Numerik I) werden vorausgesetzt

8 Modultyp und Verwendbarkeit des Moduls
  1. Wahlpflichtmodul für Master Mathematik, Master Technomathematik, Master Wirtschaftsmathematik
  2. Angewandte Mathematik
  3. Wirtschaftsmathematisches Modul
9 Modulbeauftragte/r
Studiendekan/in Mathematik
Zuständige Fakultät
Fakultät für Mathematik

Veranstaltungen zu diesem Modul

Titel Semester Dozent
Numerik zeitabhängiger Differentialgleichungen WS1516 Dmitri Kuzmin
Numerik zeitabhängiger Differentialgleichungen SS17 Dmitri Kuzmin
Numerik zeitabhängiger Differentialgleichungen SS22 Dmitri Kuzmin
Numerical methods for time-dependent differential equations / Numerik zeitabhängiger Differentialgleichungen SS25 Dmitri Kuzmin