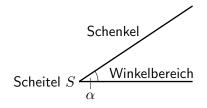
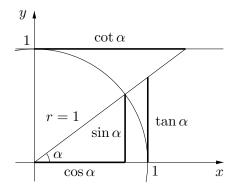
Kapitel 6 – Trigonometrie



Winkel werden in GRAD oder im BOGENMASS (auch RAD) angegeben: $360^{\circ} = 2\pi$.

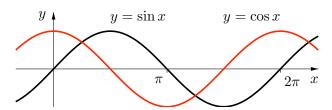


Durch diese Betrachtungen am Einheitskreis werden vier Funktionen definiert.

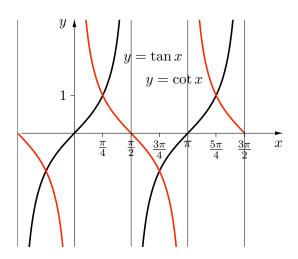
Definition 6.1 (Winkelfunktionen)

Name		D	W
Sinus	sin	\mathbb{R}	[-1, 1]
Cosinus	cos	${\mathbb R}$	[-1,1]
Tangens	tan	$\mathbb{R} \setminus \{ \frac{2k+1}{2} \pi k \in \mathbb{Z} \}$	${\mathbb R}$
Kotangens	cot	$\mathbb{R} \setminus \{k\pi k \in \mathbb{Z}\}$	${\mathbb R}$

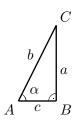
Die Graphen der Sinus- und Cosinusfunktionen



Die Graphen der Tangens- und Kotangensfunktionen:



Bemerkung 6.2 (Interpretation am rechtwinkligen Dreieck)



Mit diesen Bezeichnungen gilt dann

$$\sin\alpha = \frac{a}{b}\,,\quad \cos\alpha = \frac{c}{b}\quad {\it und}\quad \tan\alpha = \frac{a}{c}$$

Spezielle Werte der Winkelfunktionen:

\boldsymbol{x} in Grad	0	30°	45°	60°	90°
\boldsymbol{x} in Rad	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$
$\sin x$	0	$\frac{1}{2}$	$\frac{1}{2}\sqrt{2}$	$\frac{1}{2}\sqrt{3}$	1
$\cos x$	1	$\frac{1}{2}\sqrt{3}$	$\frac{1}{2}\sqrt{2}$	$\frac{1}{2}$	0
$\tan x$	0	$\frac{1}{3}\sqrt{3}$	1	$\sqrt{3}$	_
$\cot x$	_	$\sqrt{3}$	1	$\frac{1}{3}\sqrt{3}$	0

Eselsbrücke für die Sinus-Werte:

\boldsymbol{x} in Grad	0	30°	45°	60°	90°
$\sin x$	$\frac{\sqrt{0}}{2}$	$\frac{\sqrt{1}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{4}}{2}$

Definition 6.3 (Periodische Funktionen)

Es sei T>0. Eine Funktion $f:\mathbb{R}\to\mathbb{R}$ heißt T-PERIODISCH, wenn f(x+T)=f(x) für alle $x\in\mathbb{R}$.

Beispiele:

 \sin und \cos sind 2π -periodisch, \tan und \cot sind π -periodisch.

Definition 6.4 (Symmetrie von Funktionen)

Es sei $I \subset \mathbb{R}$ ein um 0 symmetrisches Intervall. Eine Funktion $f: I \to \mathbb{R}$ heißt ...

- 1. ... GERADE, wenn f(-x) = f(x) für alle $x \in I$.
- 2. ... UNGERADE, wenn f(-x) = -f(x) für alle $x \in I$.

Satz 6.5 (Eigenschaften der Winkelfunktionen)

- 1. \sin sowie \cos sind 2π und \tan sowie \cot sind π -periodisch.
- 2. $\sin(x + \pi) = -\sin x \text{ und } \cos(x + \pi) = -\cos x.$
- 3. $\sin(x + \frac{\pi}{2}) = \cos x \text{ und } \cos(x + \frac{\pi}{2}) = -\sin x.$
- 4. $\tan x = \frac{\sin x}{\cos x}$ und $\cot x = \frac{1}{\tan x}$.
- 5. cos ist eine gerade Funktion und sin, tan und cot sind ungerade Funktionen.
- 6. Für alle $x \in \mathbb{R}$ gilt $|\sin x| \le 1$ und $|\cos x| \le 1$.
- 7. $\sin(x) = 0$ genau dann, wenn $x = k\pi$ mit $k \in \mathbb{Z}$. $\cos(x) = 0$ genau dann, wenn $x = \frac{2k+1}{2}\pi$ mit $k \in \mathbb{Z}$.
- 8. $\sin^2 x + \cos^2 x = 1$ (Trigonometrische Pythagoras).
- 9. $\cos^2 x = \frac{1}{1 + \tan^2 x}$ und $\sin^2 x = \frac{1}{1 + \cot^2 x}$.

Bemerkung 6.6 (Einschränkungen der Winkelfunktionen)

Die folgenden Einschränkungen der Winkelfunktionen benutzt man zur Definition von Umkehrfunktionen:

- 1. $\sin\left|_{\left[-\frac{\pi}{2},\frac{\pi}{2}\right]}:\left[-\frac{\pi}{2},\frac{\pi}{2}\right]\to\left[-1,1\right]$ ist streng monoton wachsend.
- 2. $\cos |_{[0,\pi]} : [0,\pi] \to [-1,1]$ ist streng monoton fallend.
- 3. $\tan \left|_{\left(-\frac{\pi}{2},\frac{\pi}{2}\right)}:\left(-\frac{\pi}{2},\frac{\pi}{2}\right)\right. \to \mathbb{R}$ ist streng monoton wachsend.
- 4. $\cot|_{(0,\pi)}:(0,\pi)\to\mathbb{R}$ ist streng monoton fallend.

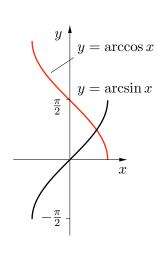
Man kann zeigen, dass diese Einschränkungen jeweils Umkehrfunktionen besitzen.

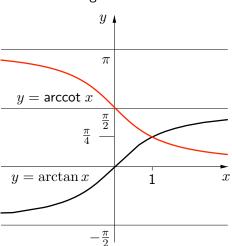
Definition 6.7 (Arcusfunktionen)

Die Umkehrfunktionen der Winkelfunktionen werden Arcusfunktionen genannt und sind

- 1. $\arcsin: [-1,1] \rightarrow \left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$
- 2. $\arccos: [-1,1] \to [0,\pi]$
- 3. $\arctan: \mathbb{R} \to \left] \frac{\pi}{2}, \frac{\pi}{2} \right[$
- 4. $\operatorname{arccot}: \mathbb{R} \to]0, \pi[$

Die Graphen der Arcusfunktionen sehen wie folgt aus:





Beim Rechnen mit Winkelfunktionen sind folgende Additionstheoreme sehr nützlich:

Satz 6.8 (Additionstheoreme)

- 1. $\sin(x \pm y) = \sin x \cos y \pm \sin y \cos x$
- 2. $\cos(x \pm y) = \cos x \cos y \mp \sin x \sin y$
- 3. $\tan(x \pm y) = \frac{\tan x \pm \tan y}{1 \mp \tan x \tan y}$

Daraus erhält man:

Folgerung 6.9 (Doppelte Winkel)

- $1. \sin(2x) = 2\sin x \cos x$
- 2. $\cos(2x) = \cos^2 x \sin^2 x$
- 3. $\tan(2x) = \frac{2\tan x}{1 \tan^2 x}$
- 4. $\cos^2 x = \frac{1}{2} (1 + \cos(2x))$ und $\sin^2 x = \frac{1}{2} (1 \cos(2x))$

Eine kleine Beweisskizze für die Additionstheoreme:

