
Page Page
Amin Safi | TU Dortmund

Introduction to Numerical General Purpose
GPU Computing with NVIDIA CUDA

Part 1:
Hardware design and programming model

Faculty of Mathematics, TU dortmund
 2016

Dirk Ribbrock

Page Page
Amin Safi | TU Dortmund

Table of Contents

Why parallel processing?

Parallel Proc. Implementations

CPU vs. GPU

Performance Optimization

GPU hardware model

GPU‘s programming model

Scientific App. On GPU

Page Page
Amin Safi | TU Dortmund

Isfahan University of Technology Our main challenge in scientific
computing
 Long simulation times on single Processors for large problems

 High computational cost to run on super computers

 Low or moderate grid resolutions to keep the cost low

Why Parallel Processing?

Page Page
Amin Safi | TU Dortmund

Isfahan University of Technology

“The complexity for minimum component costs has
increased at a rate of roughly a factor of two per year.
Certainly over the short term this rate can be expected to
Continue”

Gordon Moore (Intel), 1965

 Moore’s Law

“OK, maybe a factor of two every two
years.”

Gordon Moore (Intel), 1975 [paraphrased]

Why Parallel Processing

Page Page
Amin Safi | TU Dortmund

Isfahan University of Technology
 The Trend (1960-2005)

Why Parallel Processing

Page Page
Amin Safi | TU Dortmund

Isfahan University of Technology
 The Trend, (1970-2010)

Why Parallel Processing

Page Page
Amin Safi | TU Dortmund

 The Trend, (1960-2015)

Why Parallel Processing

Moor’s Extrapolation Actual Data

 Number of transistors and cores have keep increasing!
 Performance/core is only slightly increased.
 Frequency has remained constant to control heat/power.
 One must go for parallel implementations.

 Lesson’s learnt

Page Page
Amin Safi | TU Dortmund

Parallel Processing Implementations

Isfahan University of Technology

 Distributed Memory Message Passing Interface (MPI)

 Shared Memory OpenMP, Pthreads, Intel’s TBB,…

 GPGPU CUDA, OpenACC, OpenCL,…

 Major approaches

Page Page
Amin Safi | TU Dortmund

Parallel Design: CPU vs GPU

Isfahan University of Technology

 Single Instructions, Multiple Data (SIMD)

 Large data caching and flow control units
 Few number of ALUs (cores)
 Example: Intel Xeon E5-2670 CPU

 • 8 cores (16 threads)
 • 2.6 GHz
 • 2.3 billion transistors
 • 20 MB on chip cache
 • Flexible DRAM size

Page Page
Amin Safi | TU Dortmund

Isfahan University of Technology Single Instructions, Multiple Threads (SIMT)

 Small cache and control flow units
 Large number of ALUs (cores)
 Example: Kepler K20x GPU

 • 2688 (14 x 192) processor cores
 • 0.73 GHz
 • 28nm features
 • 7.1 billion transistors
 • 1.5 MB on-chip L2 cache
 • Only 6GB on chip memory

Parallel Design: CPU vs GPU

Page Page
Amin Safi | TU Dortmund

Isfahan University of Technology

GPUs are designed to apply the
same shading function

to many pixels simultaneously

GPUs could be used to apply the
same function

to many data simultaneously

This is what most scientific computing need!

GPU Processing Model

Page Page
Amin Safi | TU Dortmund

Isfahan University of Technology

 High floating point power (5.3 TFlops in SP, 1.5 TFlops DP)

 GPU Computational Capabilities

Parallel Design: CPU vs GPU

Page Page
Amin Safi | TU Dortmund

Isfahan University of Technology

 High Memory Bandwidth (more than 300 GB/s)

 GPU Computational Capabilities

Parallel Design: CPU vs GPU

Page Page
Amin Safi | TU Dortmund

GPU Architecture

 GPUs come in different generations, e. g., Tesla, Fermi, Kepler,…

 Each is labeled with a specific Compute Capability, e.g., 1.x, 2.x, 3.x, …

 nVIDIA GPU Generations

Kepler
7.0 billion

2688 @ 0.73 GHz

32

2

2688 FMA ops/clock

1344 FMA ops/clock

1.5 MB
Yes

Up to 32 + Dyn. Parallel
64-bit

Configurable 48 KB, 16
KB or 32 KB

512 @ 1.15 GHz

Configurable 48 KB, 16
KB or 32 KB

Page Page
Amin Safi | TU Dortmund

GPU Architecture

Isfahan University of Technology

 Set of SIMD Streaming Multiprocessors (SMX)

 Each Multiprocessor has its own set of computational resources.

GPU Hardware Architecture

Page Page
Amin Safi | TU Dortmund

Isfahan University of Technology

 2688 cores are divided among14 SMXs, each
having 192 processor cores.

 Each 3 cores serve as 1 double precision unit.

 Each SMX multiprocessor has a set of:
• 65 KB L1 / Shared memory
• 48 KB read-only caches
• Constant and texture caches
• Registers

 32 special function units.

 Kepler Architecture (Compute Capability 3.x)

GPU Architecture

Page Page
Amin Safi | TU Dortmund

Programming On GPUs

Isfahan University of Technology

 Using graphics instructions for scientific calculations

 Very hard to develop codes for non-expert programmers

 Unable to fully exploit the computational power of GPUs

 Low overall efficiency

 Graphical Languages, e.g., OpenGL, DirectX,…

Page Page
Amin Safi | TU Dortmund

Isfahan University of Technology

 Designed specifically for scientific programming.
 Relatively easy implementations.
 Can extract almost all the power of hardware.
 High numerical performances are then achievable.

 GPGPU Languages e.g. CUDA, OpenCL, OpenACC

Compute Unified Device Architecture

Programming On GPUs

Page Page
Amin Safi | TU Dortmund

CUDA Programming

 CUDA Toolkit

 CUDA Software Development Kit (SDK)

Page Page
Amin Safi | TU Dortmund

Isfahan University of Technology Programming Model of CUDA

 Fine-grained parallelization by launching
 many active threads via kernels

 Coarse grained parallelization via blocks and grid.

 Threads are grouped into blocks(1D, 2D or 3D)

 Blocks are organized into a grid(1D, 2D or 3D)

 Kepler supports max. 2048 active threads per SMX.

 Threads are lightweight:
 – Small creation overhead
 – “instant "switching
 – Efficiency achieved through1000’s of threads

 For a complete Device query see:
https://www.microway.com/hpc-tech-tips/nvidia-tesla-k20-gpu-accelerator-kepler-gk11
0-up-close/

CUDA Programming

https://www.microway.com/hpc-tech-tips/nvidia-tesla-k20-gpu-accelerator-kepler-gk110-up-close/
https://www.microway.com/hpc-tech-tips/nvidia-tesla-k20-gpu-accelerator-kepler-gk110-up-close/

Page Page
Amin Safi | TU Dortmund

Isfahan University of Technology Essential CUDA Extensions to C/C++

 Kernel execution directives
• myfunction<<<GridDim, BlockDim>>> (…)

 Built-in variables for grid/block size and block/thread index
• threadIdx.x , threadIdx.y , …
• blockIdx.x , blockIdx.y, … , blockDim.x, …

Function type qualifiers
• Specify where to call and execute a function
• __device__ , __global__ and __host__

 Variable type qualifiers
• __device__ , __constant__ and __shared__

CUDA Programming

Page Page
Amin Safi | TU Dortmund

Isfahan University of Technology

 Heterogeneous workflow

 kernels execute on a GPU and the rest of the C
 program executes on a CPU.

 CUDA threads execute on a physically separate
 device.

 Allows for asynchronous pre- and post-processing
 on CPU.

 CUDA assumes that both the host and the device
 maintain their own separate memory spaces in
 DRAM.

CUDA Programming

Page Page
Amin Safi | TU Dortmund

Isfahan University of Technology

 The memory hierarchy

 The grid of blocks in each kernel has access
 to global memory.

 Data dispatched from global memory is stored in
 fast L2 cache lines.

 Threads within a block can read from and
 write to shared memory asynchronously.

 Each thread has access to on-chip local memory.

 Different memories make up the so-called
 device memory.

CUDA Programming

Page Page
Amin Safi | TU Dortmund

Isfahan University of Technology What happens to a block?

 Software
 –Threads from one block may cooperate:

• using data in shared memory
• can get synchronized.

 Hardware
 – A block runs on one multiprocessor.
 – Hardware is free to schedule any block on any multiprocessor
 – More than one block can reside on one multiprocessor
 – A block is split into multiple warps of 32 threads (details given later).

CUDA Programming

Page Page
Amin Safi | TU Dortmund

Isfahan University of Technology
 How do threads perform calculations in parallel?

 In some numerical scientific applications, each thread is in
charge of one data element in your computational domain.

Block(0,0) Block(N-1,0)

Block(N-1,M-1)

Thread (0, 0) Thread (n-1, 0)

Your computational
Grid

Your CUDA
Grid

CUDA Programming

Page Page
Amin Safi | TU Dortmund

Isfahan University of Technology

 The nvcc compiler workflow

 GPU kernels are typically stored in files ending with .cu

 The rest of the code could be stored in the same .cu file or separately in other
 .cu, .c or .cpp files.

 nvcc separates the device code form the host code and:
 Automatically handles #include’s and linking libraries
 Compiles the device code into an assembly form (ptx code) and/or

binary form (cubin object).
 Modifies the host code to replace <<<…>>> (for kernel calls) with

associated CUDA-runtime directives in the ptx code.
 Uses the host compiler(C/C++) to compile CPU code.

 Application can then
 Either link to the compiled host code,
 Or ignore the modified host code (if any) and use the CUDA driver API to

load and execute the PTX code or cubin object.

CUDA Programming

Page Page
Amin Safi | TU Dortmund

Isfahan University of Technology A typical CUDA program includes:

 Explicitly managing host and device memory
• Allocatoin of data on CPU & GPU
• Transfers of data form CPU to GPU

 Setting the dimensions of blocks and grids.

 Launching kernels on GPU

 Copying the results back to CPU for post-processing.

 Freeing the memory on CPU & GPU.

CUDA Programming

Page Page
Amin Safi | TU Dortmund

Isfahan University of Technology How a kernel works?

An Element-wise Matrix Addition Code

CUDA Programming

Page Page
Amin Safi | TU Dortmund

Isfahan University of Technology How a kernel works?

An Elementwise Matrix Addition Code

CUDA Programming

Page Page
Amin Safi | TU Dortmund

 A rather complete example

const int N = 1024;
const int blocksize = 16;

__global__
void add_matrix(float* a, float *b, float *c,
int N)
{
int i = blockIdx.x * blockDim.x + threadIdx.x;
int j = blockIdx.y * blockDim.y + threadIdx.y;
int index = i + j*N;
if (i < N && j < N)
c[index] = a[index] + b[index];
}

CUDA Programming

Input data size and block size

Compute Kernel

Page Page
Amin Safi | TU Dortmund

float *a = new float[N*N];
float *b = new float[N*N];
float *c = new float[N*N];

for (int i = 0; i < N*N; ++i) {
a[i] = 1.0f; b[i] = 3.5f; }

float *ad, *bd, *cd;
const int size = N*N*sizeof(float);
cudaMalloc((void**)&ad, size);
cudaMalloc((void**)&bd, size);
cudaMalloc((void**)&cd, size);

cudaMemcpy(ad, a, size, cudaMemcpyHostToDevice);
cudaMemcpy(bd, b, size, cudaMemcpyHostToDevice);

dim3 dimBlock(blocksize, blocksize);
dim3 dimGrid(N/dimBlock.x, N/dimBlock.y);
add_matrix<<<dimGrid, dimBlock>>>(ad, bd, cd, N);

cudaMemcpy(c, cd, size, cudaMemcpyDeviceToHost);

cudaFree(ad); cudaFree(bd); cudaFree(cd);
delete[] a; delete[] b; delete[] c;

Allocation on GPU

Copy data
to GPU

Copy result back to CPU

Call the cuda kernels

Free the memory

Fill arrays

Allocation on
CPU

Page Page
Amin Safi | TU Dortmund

 Some key notes

 The size of blocks and grids are determined in accordance to
 the size of problem and device memory limitations

 Kernel calls are synchronous relative to each other

 Control returns to CPU after launching a kernel
 (asynchronous to CPU instructions)

 Memory transfers between GPU and CPU are completely
 synchronous

 Memory transfers using pinned memory are asynchronous

CUDA Programming

Page Page
Amin Safi | TU Dortmund

A CFD Example

Isfahan University of Technology Lattice Boltzmann Simulation

Distribution function

 ,

Page Page
Amin Safi | TU Dortmund

A CFD Example

Isfahan University of Technology Lattice Boltzmann Simulation

 We use the D2Q9 model for 2D flow with 9 velocities

 The Navier-Stokes Eqs are recovered for incompressible,
 isothermal flow in hydrodynamic limit

Page Page
Amin Safi | TU Dortmund

Isfahan University of Technology

3.6
96

380

977

1900

2834

 Flow past a column of cylinders (2010)

Velocity contour

CFD Examples

0

2

4

6

8

10

12

M
il

li
o

n
 L

a
tt

ic
e

 U
p

d
a

te
/s

e
c

 (
M

L
U

P
S

)

C
or

e2
D

uo
C

or
e2

D
uo

In
te

l X
eo

n

G
ef

or
ce

 9
80

0
G

T

T
ex

la
 C

10
60

2x
 T

es
la

 C
10

60

3x
 T

es
la

 C
10

60

Re = 100 , 128 x 512 Grid

Page Page
Amin Safi | TU Dortmund

Isfahan University of Technology

CFD Examples

GPU, Single Prec.

GPU, Double Prec.

32 core CPU,
Single and
Double Prec.

► Air flow segregates into its ingredients
► Multicompent, Entropic LB model

Page Page
Amin Safi | TU Dortmund

 2D and 3D two-phase flows (2015)

CFD Examples

2D
scaling

3D
scaling

Page Page
Amin Safi | TU Dortmund

Isfahan University of Technology

 Using different GPU generation, we achieved 10x-20x speedup.

 Almost real-time simulations for early stage evaluations.

 SP is 3-4 times faster than DP use this free speedup if possible!!

 These speedups are for an optimized version of our code.

 Otherwise, the speedup would drop drastically even on a most modern GPUs.

 Performance of our code

Optimization is Vital !

A CFD Example

Page Page
Amin Safi | TU Dortmund

Isfahan University of Technology

 Memory Access optimization

 Increasing Hardware Occupancy

 Control Flow Optimization

 Instruction Optimization

 4 Major Optimization Strategies

The first two are the most important ones

Performance Optimization

Page Page
Amin Safi | TU Dortmund

 Memory transfer accounts for the majority of simulation time in memory
bound applications (most large data scientific applications).

 Theoretical bandwidth between GPU DRAM and SMXs is more than 250
GB/s.

 Up to 85% of this bandwidths is achievable only and only if:

 Otherwise, the effective bandwidths drops to 10% of max value.

 Why so important?

The memory accesses are coalesced by threads in a warp

Memory Access Optimization

Page Page
Amin Safi | TU Dortmund

 Memory accesses by a warp (32 threads) are coalesced into as few as one
transaction when certain access requirements are met

 No. of transactions = number of cache lines necessary to service the warp.

 Cache line size: 128 byte L1 segments in Fermi, 32 byte L2 segments in Kepler.

 100% memory performance if all required data are found in one cache line

 Poorest performance if none of the other data items in the cache line
 are ever used (cache thrashing).

 Keep block sizes as multiples of 32.
 Avoid scattered, non-local data dependencies if possible!

 Memory access anatomy

Memory Access Optimization

Page Page
Amin Safi | TU Dortmund

 Efficiency =100%

Efficiency = 100%

Efficiency = 50%

 Access pattern examples:

Memory Access Optimization

Page Page
Amin Safi | TU Dortmund

 Efficiency =100%

Efficiency = (4/32)*100=12.5%

 Access pattern examples:

Memory Access Optimization

Page Page
Amin Safi | TU Dortmund

Increasing Occupancy

Isfahan University of Technology

 Each MP has a limited register and shared memory

 Each MP manages a maximum of 2048 threads simultaneously

 Each thread takes up a certain number of registers and shared memory

 Care must be taken to keep the Occupancy above 25%

 A 100% occupancy does NOT mean a high performance!!!!

 Multiprocessor Occupancy

Occupancy =
number of active threads per multiprocessor

maximum number of possible active threads

Page Page
Amin Safi | TU Dortmund

Isfahan University of Technology

 Use the compiling option: --ptxas-options=-v
 to probe your kernels for register and shared memory consumption

 Force a maximum number of register for each thread using: -maxrregcount=##

 Kernel’s shared memory consumption can not be forced explicitly,
 its all inaside your code

 Experiment with numbers to find a proper balance, using…..

CUDA Occupancy Calculator

 How to control Occupancy?

Increasing Occupancy

Page Page
Amin Safi | TU Dortmund

Isfahan University of Technology
 Occupancy calculator

Increasing Occupancy

Page Page
Amin Safi | TU Dortmund

Performance Optimization

 Always profile your kernels to evaluate:
• Memory access quality
• kernel Occupancy
• Each kernel’s contribution to the total time
 Use the Compute Visual Profiler to check these

 Profiling and final check

Page Page
Amin Safi | TU Dortmund

Thank You

Page Page
Amin Safi | TU Dortmund

Isfahan University of Technology

 Introduced to market by nVIDIA in 2006

 An Integrated computational architecture to exploit
 all the computational resource of GPUs.

 Comes with a compiler based on C and other scientific languages.

 Enables computing on low price, small GPUs Personal Super Computer

 CUDA Technology

Programming On GPUs

