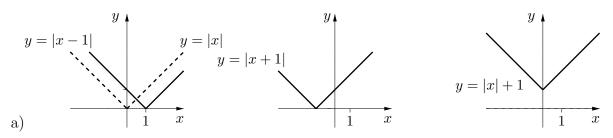
Mathematik Vorkurs NAT-ING I – Blatt 4 Lösung Themengebiet: Funktionen

Aufgabe 1)

- a) x = 0
- b) $\mathbb{L} = (-\infty, 1) \cup (2, \infty)$
- c) $\mathbb{L} = \emptyset$
- d) x > 3 oder x < -3


Aufgabe 2)

- a) Der Abstand r sollte sinnvollerweise > 0 sein, also $r \in (0, \infty)$. Mathematischer Fachbegriff: $D = (0, \infty)$ ist der Definitionsbereich von E.
- b) Es können Werte in $(0, \infty)$ angenommen werden. Mathematischer Fachbegriff: $W = (0, \infty)$ ist der Wertebereich von E.
- c) Für 10 < r. Mathematischer Fachbegriff: $E^{-1}((0, \frac{C}{100})) = (10, \infty)$ ist das Urbild von $(0, \frac{C}{100})$ unter E.

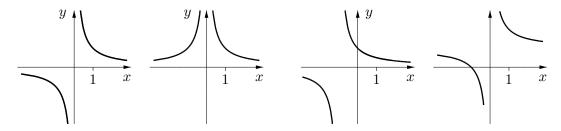
Aufgabe 3)

- a) Definitionsbereich D = [-1, 1] und Wertebereich W = [0, 1].
- b) Definitionsbereich D = [-1, 1] und Wertebereich W = [0, 1].
- c) Definitionsbereich $D = \emptyset$ und Wertebereich $W = \emptyset$.
- d) Definitionsbereich $D = \mathbb{R}$ und Wertebereich $W = [0, \infty)$.
- e) Definitionsbereich $D = \mathbb{R} \setminus \{1, -2\}$.

Aufgabe 4)

Der Definitionsbereich aller vier Funktionen ist $D = \mathbb{R}$. Für die Wertebereiche gilt:

i)
$$W = [0, \infty)$$
.


ii)
$$W = [0, \infty)$$

iii)
$$W = [0, \infty)$$

iv)
$$W = [1, \infty)$$

Weiterhin gilt $a^{-1}(\{3\}) = \{-3,3\}, b^{-1}(\{3\}) = \{-2,4\}, c^{-1}(\{3\}) = \{-4,2\}$ und $d^{-1}(\{3\}) = \{2,-2\}.$

b) Graphen von e, f, g, h

- i) Definitionsbereich $D = \mathbb{R} \setminus \{0\}$ und Wertebereich $D = \mathbb{R} \setminus \{0\}$.
- ii) Definitionsbereich $D = \mathbb{R} \setminus \{0\}$ und Wertebereich $W = (0, \infty)$.
- iii) Definitionsbereich $D = \mathbb{R} \setminus \{-1\}$ und Wertebereich $W = \mathbb{R} \setminus \{0\}$.
- iv) Definitionsbereich $D = \mathbb{R} \setminus \{0\}$ und Wertebereich $W = \mathbb{R} \setminus \{1\}$.

Weiterhin gilt

$$e^{-1}([-2,1]) = (-\infty, -\frac{1}{2}] \cup [1,\infty)$$

$$f^{-1}([-2,1]) = [-\infty, -1) \cup [1,\infty)$$

$$g^{-1}([-2,1]) = (-\infty, -\frac{3}{2}] \cup [0,\infty)$$

$$h^{-1}([-2,1]) = (-\infty, -\frac{1}{3}]$$

Aufgabe 5)

Die Symmetrieachse ist x = 5, also c = 5. Das entspricht auch der Position des Scheitelpunkts der Parabel.

Aufgabe 6)

Es ist $f(x) = f^+(x) - f^-(x)$ und $|f|(x) = f^+(x) + f^-(x)$.