Kapitel 11 – Vektoren

Definition 11.1 (Vektoren im Zahlenraum)

Ein Vektor (im Zahlenraum) mit n Komponenten ist ein n-Tupel reeller Zahlen, also ein Element aus \mathbb{R}^n . Wir schreiben die Komponenten eines Vektors in eine Spalte:

$$\vec{v} = \begin{pmatrix} v_1 \\ v_2 \\ \vdots \\ v_n \end{pmatrix}$$

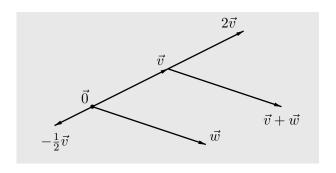
(Manchmal benutzt man die platzsparende $\vec{v} = \begin{pmatrix} v_1 \\ v_2 \\ \vdots \\ v_n \end{pmatrix} \qquad \begin{array}{l} \text{Schreibweise } \vec{v} = (v_1, v_2, \dots, v_n)^T \text{, wobei das} \\ T \text{ and eutet, dass man eigentlich einen Spaltenvektor meint)}. \end{array}$

Definition 11.2 (Rechnen mit Vektoren)

Für
$$\vec{v}=egin{pmatrix} v_1\\ \vdots\\ v_n \end{pmatrix}$$
 , $\vec{w}=egin{pmatrix} w_1\\ \vdots\\ w_n \end{pmatrix}$ und $\alpha\in\mathbb{R}$ definieren wir

$$\vec{v} + \vec{w} = \begin{pmatrix} v_1 + w_1 \\ \vdots \\ v_n + w_n \end{pmatrix}$$
 und $\alpha \cdot \vec{v} = \begin{pmatrix} \alpha v_1 \\ \vdots \\ \alpha v_n \end{pmatrix}$

Wir beschränken uns in den kommenden Betrachtungen auf n=2 oder n=3, obwohl alles auch im Höherdimensionalen richtig bleibt.



Satz 11.3 (Rechenregeln für Vektoren)

Es seien \vec{u}, \vec{v} und \vec{w} Vektoren und $\alpha, \beta \in \mathbb{R}$. Dann gilt:

- 1. $\vec{v} + \vec{w} = \vec{w} + \vec{v}$.
- 2. $\vec{u} + (\vec{v} + \vec{w}) = (\vec{u} + \vec{v}) + \vec{w}$.
- 3. Es gibt einen Nullvektor $\vec{0}$ mit $\vec{v} + \vec{0} = \vec{0} + \vec{v} = \vec{v}$.
- 4. Zu jedem Vektor \vec{v} gibt es einen Vektor $-\vec{v}$ mit $\vec{v}+(-\vec{v})=\vec{0}$.
- 5. $\alpha \cdot (\beta \cdot \vec{v}) = (\alpha \beta) \cdot \vec{v}$.
- 6. $1 \cdot \vec{v} = \vec{v}$.
- 7. $(\alpha + \beta) \cdot \vec{v} = \alpha \cdot \vec{v} + \beta \cdot \vec{v}$.
- 8. $\alpha \cdot (\vec{v} + \vec{w}) = \alpha \cdot \vec{v} + \alpha \cdot \vec{w}$

Bemerkung zu 3. ... nämlich $\vec{0} := (0, 0, \dots, 0)^T$.

Bemerkung zu 4. ... nämlich $-\vec{v} := (-1) \cdot \vec{v} = (-v_1, \dots, -v_n)^T$.

Definition 11.4 (Linearkombination)

Es seien $\vec{v}_1, \dots, \vec{v}_n \in \mathbb{R}^n$ Vektoren und $\alpha_1, \dots \alpha_n \in \mathbb{R}$ reelle Zahlen. Eine Summe der Form

$$\alpha_1 \vec{v}_1 + \alpha_2 \vec{v}_2 + \ldots + \alpha_n \vec{v}_n$$

heißt Linearkombination und die Zahlen $\alpha_j \in \mathbb{R}$ heißen Koeffizienten der Linearkombination.

Beispiel: Der Vektor $\begin{pmatrix} 6 \\ 4 \\ 2 \end{pmatrix}$ ist eine Linearkombination der Vektoren

$$\vec{v}_1 = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}, \vec{v}_2 = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}, \vec{v}_3 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \text{ mit Koeffizienten } \alpha_1 = 6, \alpha_2 = 4, \alpha_3 = 2$$

sowie eine Linearkombination der Vektoren

$$\vec{v}_1 = \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}, \vec{v}_2 = \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix}, \vec{v}_3 = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix} \text{ mit Koeffizienten } \alpha_1 = 4, \alpha_2 = 0, \alpha_3 = 2.$$

Definition 11.5 (Linear abhängig)

Die Vektoren $\vec{v}_1, \ldots, \vec{v}_n \in \mathbb{R}^n$ heißen LINEAR ABHÄNGIG, wenn es Zahlen $\alpha_1, \ldots, \alpha_n \in \mathbb{R}$ gibt, die nicht alle Null sind, so dass

$$\alpha_1 \vec{v}_1 + \alpha_2 \vec{v}_2 + \ldots + \alpha_n \vec{v}_n = \vec{0}.$$

Sie heißen LINEAR UNABHÄNGIG, wenn sie nicht linear abhängig sind.

Bemerkung 11.6

Die Vektoren $\vec{v}_1, \dots \vec{v}_n \in \mathbb{R}^n$ sind genau dann linear unabhängig, wenn die Gleichung (als Gleichung für die Zahlen $\alpha_1, \dots, \alpha_n$)

$$\alpha_1 \vec{v}_1 + \alpha_2 \vec{v}_2 + \ldots + \alpha_n \vec{v}_n = \vec{0}$$

nur die Lösung $\alpha_1 = \ldots = \alpha_n = 0$ hat.

Beispiele:

1. Die Vektoren $\vec{u} = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}, \vec{v} = \begin{pmatrix} 2 \\ 6 \\ 8 \end{pmatrix}, \vec{w} = \begin{pmatrix} 1 \\ 1 \\ 2 \end{pmatrix}$ sind linear abhängig, denn es gilt

$$4\vec{u} + (-1)\vec{v} + (-2)\vec{w} = 0.$$

2. Die Vektoren $\vec{v}=\begin{pmatrix}1\\2\end{pmatrix}, \vec{w}=\begin{pmatrix}2\\1\end{pmatrix}$ sind linear unabhängig, denn

$$\alpha \vec{v} + \beta \vec{w} = \vec{0} \Leftrightarrow \begin{array}{ccc} \alpha + 2\beta & = 0 \\ 2\alpha + \beta & = 0 \end{array} \Leftrightarrow \alpha = \beta = 0.$$

Tatsächlich erhält man aus $\alpha+2\beta=0$, dass $\alpha=-2\beta$ und aus der zweiten Gleichung $2\alpha+\beta=0$ demnach

$$2(-2\beta) + \beta = 0 \Leftrightarrow -3\beta = 0 \Leftrightarrow \beta = 0.$$

Damit folgt auch $\alpha = -2\beta = 0$, also $\alpha = \beta = 0$.

A. Lamacz-Keymling Vorkurs 2024 121 / 153

Weitere wichtige Begriffe und Bemerkungen:

- 1. Das Erzeugnis (oder Spann) der Vektoren $\vec{v}_1,\ldots,\vec{v}_k\in\mathbb{R}^n$ ist die Menge aller Linearkombinationen dieser Vektoren.
- 2. Lässt sich ein Vektor eindeutig(!) als Linearkombination der Vektoren $\vec{v}_1, \ldots, \vec{v}_n$ darstellen, dann nennt man $\{\vec{v}_1, \ldots, \vec{v}_n\}$ eine BASIS von \mathbb{R}^n .
- 3. n Vektoren des \mathbb{R}^n sind genau dann linear unabhängig, wenn sie eine Basis bilden.
- 4. Die Standardbasis des \mathbb{R}^n besteht aus den Kanonischen Einheitsvektoren

$$\vec{e}_1 = \begin{pmatrix} 1 \\ 0 \\ 0 \\ \vdots \\ 0 \\ 0 \end{pmatrix}, \vec{e}_2 = \begin{pmatrix} 0 \\ 1 \\ 0 \\ \vdots \\ 0 \\ 0 \end{pmatrix}, \dots, \vec{e}_n = \begin{pmatrix} 0 \\ 0 \\ 0 \\ \vdots \\ 0 \\ 1 \end{pmatrix}.$$

A. Lamacz-Keymling Vorkurs 2024 122 / 153