Kapitel 13 – Aussageformen

Definition 13.1 (Aussageformen)

Eine Aussage Form A über einer Menge G ist eine Abbildung, die jedem $x \in G$ eine Aussage A(x) zuordnet.

Bemerkung: Die Aussage A(x) kann in Abhängigkeit von x wahr oder falsch sein.

Beispiele:

- Sei $G:=\mathbb{N}$ und A die Aussageform, die jedem $x\in G$ die folgende Aussage A(x) zuordnet: "x ist gerade". Dann ist A(2) eine wahre, aber A(7) eine falsche Aussage.
- Sei $G:=\mathbb{R}$ und A die Abbildung, die jedem $x\in G$ die Behauptung " $\frac{2}{x}\in\mathbb{Q}$ " zuordnet. Dann ist A keine Aussageform. Beim Einsetzen von x=0 muss nämlich der nicht definierte Ausdruck $\frac{2}{0}$ gebildet werden. Daher ist A(0) keine Aussage.

A. Lamacz-Keymling Vorkurs 2024 131 / 153

Es gibt zwei Operationen, die Aussageformen zu Aussagen machen.

Definition 13.2 (Quantoren)

Sei A eine Aussageform über einer Menge G. Der Allquantor " \forall " und der Existenzquantor " \exists " ist durch die folgenden Aussagen definiert:

- Für alle $x \in G$ gilt A(x). Symbol: $\forall x \in G: A(x)$,
- Es gibt ein $x \in G$, so dass A(x) gilt. Symbol: $\exists x \in G : A(x)$.

Definition 13.3 (Erfüllbarkeit, Allgemeingültigkeit)

Sei A eine Aussageform über G. Dann heißt A...

- 1. ... ERFÜLLBAR, wenn $\exists x \in G : A(x)$.
- 2. ...NICHT ERFÜLLBAR, wenn $\forall x \in G : \neg A(x)$.
- 3. ...ALLGEMEINGÜLTIG, wenn $\forall x \in G : A(x)$.
- 4. ...NICHT ALLGEMEINGÜLTIG, wenn $\exists x \in G : \neg A(x)$.

13. Sprechweisen und Bemerkungen

- 1. Das Wort "gilt" ist ein Synonym für "ist wahr".
- 2. Statt "für alle" sagt man auch "für jedes".
- 3. Statt "es gibt ein" sagt man auch "es existiert (mindestens) ein".
- 4. Will man ausdrücken, dass es "genau ein x" gibt, so dass A(x) gilt, so schreibt man:

$$\exists! \, x \in G : \, A(x).$$

5. Schlechter Stil ist es, Quantoren hinter A(x) zu schreiben, z.B.

$$A(x) \quad \forall x \in G.$$

Trotzdem kommt diese Schreibweise häufiger vor.

Häufiger muss die Negation einer mit Allquantor oder Existenzquantor beginnenden Aussage gebildet werden.

Satz 13.4 (Negation von Quantoren)

Es gilt:

- 1. $\neg (\exists x \in G : A(x)) \iff \forall x \in G : \neg A(x)$
- 2. $\neg (\forall x \in G : A(x)) \iff \exists x \in G : \neg A(x)$

Beispiele:

- $\neg(\exists x \in \mathbb{Z}: x^2 = 15) \Leftrightarrow \forall x \in \mathbb{Z}: x^2 \neq 15$. Diese negierte Aussage ist wahr, da die Gleichung $x^2 = 15$ keine ganzzahlige Lösung besitzt.
- $\neg(\forall x \in \mathbb{R}: x^2 > 4 \Rightarrow x > 2) \Leftrightarrow \exists x \in \mathbb{R}: (x^2 > 4 \land x \leq 2).$ Diese Negierte Aussage ist wahr, da für x = -4 tatsächlich $x^2 = 16 > 4$ und x = -4 < 2 gilt.

13. Aussagen mit mehreren Quantoren

Enthalten Aussagen mehrere Quantoren, so ist Folgendes zu beachten:

- Stehen Quantoren in Reihung, so verzichtet man oft auf Doppelpunkte.
- Gleiche Quantoren, die nebeneinander stehen, sind vertauschbar, ohne dass sich die Aussage ändert.
- Das Vertauschen unterschiedlicher Quantoren ändert die Aussage.

Beispiel 13.5 (Vertauschen von Quantoren)

Dann ist n > x.

- 1. $\forall x \in \mathbb{R} \ \exists n \in \mathbb{N} : n > x \text{ ist wahr, denn:}$ Sei $x \in \mathbb{R}$ beliebig. Wähle dann $n := |\lceil x \rceil| + 1 \in \mathbb{N}$, wobei $\lceil x \rceil$ die obere Gauß-Klammer von x (kleinste ganze Zahl $\geq x$) bezeichnet.
- 2. $\exists n \in \mathbb{N} \ \forall x \in \mathbb{R} : n > x \text{ ist falsch, denn:}$ Für jedes $n \in \mathbb{N} \text{ ist } x := n + 1 \in \mathbb{R} \text{ und } x > n.$

13. Typische Anfängerfehler

 Der Existenzquantor ∃ wird als "es existiert genau ein" gedeutet: Die Aussage

$$\exists x \in \mathbb{R}: \quad x^2 = 16$$

ist wahr. Das zugehörige x ist aber nicht eindeutig, da sowohl $4^2=16$ als auch $(-4)^2=16$ gilt. Die Aussage

$$\exists! \, x \in \mathbb{R}: \quad x^3 = 16$$

ist daher falsch.

2. Falsche Negation von Aussagen mit Quantoren:

$$\neg(\exists x < 0 : x^2 = 4) \iff \exists x < 0 : x^2 \neq 4.$$

Tatsächlich ist die Aussage $\exists\,x<0:\,x^2=4$ wahr (wähle x=-2) und die Negation daher falsch. Die Aussage $\exists\,x<0:x^2\neq 4$ ist aber wahr (wähle x=-3).