

ÜBUNGEN ZUR ALGEBRA II

Blatt 12

Abgabe am Donnerstag, dem 20. Juli in der Vorlesung

- **45.** Es sei $A \subset B$ eine ganze Erweiterung von Integritätsringen. Zeigen Sie: Genau dann ist A ein Körper, wenn B ein Körper ist.
- **46.** Beweisen Sie Lemma 9.18: Es sei R ein Ring, A eine R-Algebra, und sei $S \subset R$ eine multiplikative Teilmenge. Ist $A' \subset A$ der ganze Abschluss von R in A, dann ist A'_S der ganze Abschluss von R_S in A_S .
- 47. Sei *R* ein Ring. Finden Sie Isomorphismen für folgende Polynomringe:
 - (a) $R[x] \otimes R[x] \cong R[x, y]$ (als *R*-Algebren).
 - (b) Ist $R \subset L$ eine Ringerweiterung, dann gilt $R[x] \otimes_R L \cong L[x]$.
- **48.** Es sei *R* ein lokaler Ring mit maximalem Ideal *P*. Zeigen Sie, dass jeder endliche projektive *R*-Modul frei ist (siehe dazu Aufgabe 28), wie folgt:
 - (a) Sei M ein endlicher projektiver R-Modul und x_1, \ldots, x_n ein minimales Erzeugendensystem von M. Sei $F = R^n$ und $\varphi: F \to M$ die Abbildung $e_i \mapsto x_i$. Dann gilt $F = M' \oplus \text{Ker}(\varphi)$ für einen Untermodul M' von F.
 - (b) Es gilt $Ker(\varphi) \subset PF = P^n$.
 - (c) Daraus folgt $P\text{Ker}(\varphi) = \text{Ker}(\varphi)$ und damit $\text{Ker}(\varphi) = \langle 0 \rangle$.

Bemerkung: Die Aussage stimmt auch für nicht endlich erzeugte projektive Moduln, aber der Beweis ist deutlich schwieriger.