

ÜBUNGSAUFGABEN ZUR ALGEBRA (BACHELOR)

Blatt 7 Abgabe am 5. Dezember 2016 bis 10:15 Uhr

25. Zeigen Sie, dass $f(x) = x^3 + x + 1$ irreduzibel über \mathbb{Q} ist. Sei $\alpha \in \mathbb{C}$ eine Nullstelle von f. Bestimmen Sie das Inverse von $1 + \alpha$ im Körper $\mathbb{Q}(\alpha)$ in der Form

$$(1+\alpha)^{-1}=a+b\alpha+c\alpha^2, a,b,c\in\mathbb{Q}.$$

- **26.** (a) Bestimmen Sie alle irreduziblen normierten Polynome vom Grad 2 über \mathbb{F}_3 .
 - (b) Bestimmen Sie für jede Primzahl p die Anzahl der irreduziblen Polynome vom Grad 2 über \mathbb{F}_p .
 - (c) Zeigen Sie, dass für jede Primzahl p ein Körper mit genau p^2 Elementen existiert.
- **27.** Es sei $K \subset L$ eine Körpererweiterung und seien $a, b \in L$. Zeigen Sie: Sind a + b und ab beide algebraisch über K, dann auch a und b.
- **28.** Es sei K ein Körper und $f \in K[x]$. Ein Element $a \in K$ heißt eine *mehrfache Nullstelle* von f, wenn $(x a)^2 | f$ gilt.
 - (a) Zeigen Sie: Genau dann ist $a \in K$ eine mehrfache Nullstelle von f, wenn a eine gemeinsame Nullstelle von f und seiner Ableitung f' ist. (Dabei ist $f' \in K[x]$ die formale Ableitung von f nach x und es gelten die üblichen Ableitungsregeln.)
 - (b) Es gelte char(K) = 0 und sei $g \in K[x]$ irreduzibel. Zeigen Sie: Aus g|f und g|f' folgt $g^2|f$. (*Hinweis*. Wegen char(K) = 0 ist g' nicht das Nullpolynom.)
 - (c) Es sei $p = \operatorname{char}(K)$. Für welche $p \in \mathbb{N}_0$ und welche natürlichen Zahlen $n \ge 2$ hat das Polynom $x^n x \in K[x]$ eine mehrfache Nullstelle in K?