

ÜBUNGSAUFGABEN ZUR ALGEBRA (BACHELOR)

Blatt 8

Abgabe am 12. Dezember 2016 bis 10:15 Uhr

29. Es sei $\zeta = e^{\frac{2\pi i}{3}}$, $\eta = e^{\frac{2\pi i}{5}}$ und $\vartheta = e^{\frac{2\pi i}{7}}$. Überprüfen Sie, ob

(1)
$$\eta \in \mathbb{Q}(\vartheta)$$
 (2) $\vartheta \in \mathbb{Q}(\zeta, \eta)$

gelten. (Hinweis: Bestimmen Sie den Grad dieser Körpererweiterungen.)

30. (a) Zeigen Sie, dass das Polynom f irreduzibel in K[x] ist und bestimmen Sie den Zerfällungskörper von f und seinen Grad über K:

(1)
$$K = \mathbb{Q}$$
, $f = x^4 + 1$ (2) $K = \mathbb{F}_3$, $f = x^3 + 2x + 1$

- (b) Es sei $f \in \mathbb{Q}[x]$ ein kubisches Polynom. Zeigen Sie: Falls der Zerfällungskörper von f den Grad 3 über \mathbb{Q} hat, dann sind alle Nullstellen von f reell.
- 31. (a) Es sei G eine Gruppe und seien H_1 , H_2 zwei Untergruppen von G. Zeigen Sie: Falls $G = H_1 \cup H_2$, dann muss $G = H_1$ oder $G = H_2$ gelten. (Mit anderen Worten, eine Gruppe ist niemals die Vereinigung zweier echter Untergruppen.)
 - (b) Finden Sie eine Gruppe, die die Vereinigung von drei echten Untergruppen ist.
- **32.** Es sei *G* eine nicht-leere Menge mit assoziativer Verknüpfung

$$G \times G \to G$$
, $(g,h) \mapsto gh$.

Zeigen Sie: Genau dann ist G eine Gruppe, wenn die beiden Gleichungen

$$gx = h$$
 und $yg = h$

für alle $g, h \in G$ Lösungen $x, y \in G$ besitzen. Wenn das der Fall ist, dann sind die Lösungen außerdem eindeutig.