Prof. Dr. Daniel Plaumann Konstantinos Lentzos Wintersemester 2016/17

ÜBUNGSAUFGABEN ZUR ALGEBRA (LEHRAMT)

Blatt 13 Abgabe am 30. Januar 2017 bis 10:15 Uhr

- 50. Es sei \mathbb{F}_q der Körper mit q Elementen. Ein Quadrat in \mathbb{F}_q ist ein Element der Form a^2 , für ein $a \in \mathbb{F}_q$. Zeigen Sie:
 - (a) Falls q gerade ist, dann ist jedes Element in \mathbb{F}_q ein Quadrat in \mathbb{F}_q .
 - (b) Falls q ungerade ist, dann sind genau die Hälfte aller Elemente ungleich Null Quadrate in \mathbb{F}_q .
 - (c) Jedes Element in \mathbb{F}_q ist eine Summe von zwei Quadraten.
- **51.** Beweisen Sie die folgende Umkehrung von Satz 5.1.5 aus der Vorlesung: Es sei K ein Körper. Falls K^* zyklisch ist, dann ist K endlich. (*Hinweis*: Einheitswurzeln)
- **52.** Es sei K ein Körper der Charakteristik p > 0. Zeigen Sie, dass jede endliche Körpererweiterung $K \subset L$ mit p + [L : K] separabel ist.
- **53.** Es seien α , $\beta \in \mathbb{C}$ mit $\alpha^3 = 2$ und $\beta^4 = 5$.
 - (a) Bestimmen Sie den Grad der Körpererweiterung $\mathbb{Q} \subset \mathbb{Q}(\alpha, \beta)$.
 - (b) Zeigen Sie, dass $y = \alpha \beta$ ein primitives Element für diese Erweiterung ist.
 - (c) Folgern Sie, dass das Polynom x^{12} 2000 in $\mathbb{Q}[x]$ irreduzibel ist.