Prof. Dr. Daniel Plaumann Konstantinos Lentzos Wintersemester 2016/17

ÜBUNGSAUFGABEN ZUR ALGEBRA

Blatt 10

Musterlösung für Aufgabe 41.

(a) Es sei $V = \{id, (12)(34), (13)(24), (14)(23)\} \subset A_4 \subset S_4$. Zeigen Sie, dass V eine Untergruppe von A_4 ist, die zur Kleinschen Vierergruppe isomorph ist.

Lösung. Schreibe a = (12)(34), b = (13)(24), c = (14)(23). Dann gelten $a^2 = b^2 = c^2 = id$ sowie ab = ba = c, ac = ca = b und bc = cb = a. Also ist $V = \langle a, b \rangle$ eine Kleinsche Vierergruppe.

(b) Zeigen Sie, dass V normal in S_4 ist und bestimmen Sie die Struktur der Faktorgruppen A_4/V und S_4/V .

Lösung. Die Gruppe V besteht gerade aus allen Produkten von zwei disjunkten Transpositionen und der Identität. Da die Konjugation die Zykelstruktur erhält, ist V deshalb normal in S_4 .

Die Faktorgruppe A_4/V hat die Ordnung 3. Sie muss daher zyklisch sein.

Die Faktorgruppe S_4/V hat die Ordnung 6. Sie kann daher nach Aufgabe 35 nur abelsch sein oder isomorph zu S_3 . In S_3 gilt zum Beispiel (12)(23) = (123) \neq (132) = (23)(12). Behaupte, dass auch in S_4/V

$$(12)V \cdot (23)V = (123)V \neq (132)V = (23)V \cdot (12)V$$

gilt. Denn andernfalls wäre $(123)(132)^{-1} \in V$. Es gilt aber $(132)^{-1} = (123)$, also $(123)(132)^{-1} = (132) \notin V$. Also ist S_4/V nicht abelsch, und damit isomorph zu S_3 . (Man kann auch explizit einen Isomorphismus $S_4/V \xrightarrow{\sim} S_3$ angeben.)

(c) Finden Sie eine Untergruppe von V, die normal in V ist aber nicht in A_4 . Lösung. Weil V eine abelsche Gruppe ist, ist jede Untergruppe von V normal in V. Sei etwa $H = \langle (12)(34) \rangle$ eine zyklische Gruppe der Ordnung 2. Dann ist H aber nicht normal in A_4 , denn es gilt zum Beispiel

$$(123)(12)(34)(123)^{-1} = (123)(12)(34)(132) = (14)(23) \notin H.$$

(d) Zeigen Sie, dass A_4 keine Untergruppe der Ordnung 6 besitzt.

Lösung. Die Gruppe A_4 besteht aus der Identität, 8 Dreizykeln und drei Produkten von zwei disjunkten Transpositionen. Sei H eine Untergruppe der Ordnung $\geqslant 6$. Dann müssen wir $H = A_4$ zeigen. Falls H mindestens zwei Produkte von zwei disjunkten Transpositionen enthält, dann enthält H die Untergruppe V, kann also nach Lagrange nicht die Ordnung 6 haben. Also enthält H höchstens ein Produkt von zwei Transpositionen. Dann muss H mindestens vier Dreizykel enthalten. Damit enthält H zwei Dreizykel mit zwei gleichen aufeinander folgenden Einträgen, bis auf Umnummerierung etwa die beiden Dreizykel (123), (124). Nach Satz 4.3.13 ist H damit gleich A_4 .