Sums of integral squares in totally real number fields

Jakub Krásenský

Based on joint works with R. Scharlau, P. Yatsyna, M. Raška and E. Sgallová

Czech Technical University in Prague

April 6, 2025

Major achievement:

Theorem (Bhargava-Hanke)

A PD quadratic form over \mathbb{Z} is universal (represents all positive integers) iff it represents all numbers up to 290.

Many open questions, e.g.:

Conjecture (Kaplansky, 1995)

The form $x^2 + 2y^2 + 5z^2 + xz$ represents all odd positive integers.

Similar questions over ${\mathbb Q}$ are fully solved: local–global principle (Hasse–Minkowski).

- Lagrange, 1770: Every nonnegative element of Z is a sum of four squares.
- Maaß, 1941: Every totally nonnegative element of $\mathbb{Z}[\frac{1+\sqrt{5}}{2}]$ is a sum of three squares.
- Can $\frac{1+\sqrt{5}}{2}$ be written as a sum of squares?
- Suppose that $\sum (a_i+b_i\sqrt{5})^2=rac{1+\sqrt{5}}{2}$ for $a_i,b_i\in\mathbb{Q}.$
- Then $\sum (a_i b_i \sqrt{5})^2 = \frac{1 \sqrt{5}}{2} < 0.$
- We call a + b√5 ∈ Q(√5) totally nonnegative if a + b√5 ≥ 0 and a - b√5 ≥ 0.
- But: $\frac{1+\sqrt{5}}{2} = \left(\frac{1+\sqrt{5}}{2}\right)^2 + i^2$ is a sum of squares in $\mathbb{Q}(\frac{1+\sqrt{5}}{2},i)$.

- Lagrange, 1770: Every nonnegative element of Z is a sum of four squares.
- Maaß, 1941: Every totally nonnegative element of $\mathbb{Z}[\frac{1+\sqrt{5}}{2}]$ is a sum of three squares.
- Can $\frac{1+\sqrt{5}}{2}$ be written as a sum of squares?
- Suppose that $\sum (a_i + b_i \sqrt{5})^2 = \frac{1 + \sqrt{5}}{2}$ for $a_i, b_i \in \mathbb{Q}$.
- Then $\sum (a_i b_i \sqrt{5})^2 = \frac{1 \sqrt{5}}{2} < 0.$
- We call a + b√5 ∈ Q(√5) totally nonnegative if a + b√5 ≥ 0 and a - b√5 ≥ 0.
- But: $\frac{1+\sqrt{5}}{2} = \left(\frac{1+\sqrt{5}}{2}\right)^2 + i^2$ is a sum of squares in $\mathbb{Q}(\frac{1+\sqrt{5}}{2},i)$.

- Lagrange, 1770: Every nonnegative element of Z is a sum of four squares.
- Maaß, 1941: Every totally nonnegative element of $\mathbb{Z}[\frac{1+\sqrt{5}}{2}]$ is a sum of three squares.
- Can $\frac{1+\sqrt{5}}{2}$ be written as a sum of squares?
- Suppose that $\sum (a_i + b_i \sqrt{5})^2 = \frac{1 + \sqrt{5}}{2}$ for $a_i, b_i \in \mathbb{Q}$.

• Then
$$\sum (a_i - b_i \sqrt{5})^2 = \frac{1 - \sqrt{5}}{2} < 0$$
.

- We call a + b√5 ∈ Q(√5) totally nonnegative if a + b√5 ≥ 0 and a - b√5 ≥ 0.
- But: $\frac{1+\sqrt{5}}{2} = \left(\frac{1+\sqrt{5}}{2}\right)^2 + i^2$ is a sum of squares in $\mathbb{Q}(\frac{1+\sqrt{5}}{2},i)$.

- Lagrange, 1770: Every nonnegative element of Z is a sum of four squares.
- Maaß, 1941: Every totally nonnegative element of $\mathbb{Z}[\frac{1+\sqrt{5}}{2}]$ is a sum of three squares.
- Can $\frac{1+\sqrt{5}}{2}$ be written as a sum of squares?
- Suppose that $\sum (a_i + b_i \sqrt{5})^2 = \frac{1+\sqrt{5}}{2}$ for $a_i, b_i \in \mathbb{Q}$.
- Then $\sum (a_i b_i \sqrt{5})^2 = \frac{1 \sqrt{5}}{2} < 0.$
- We call $a + b\sqrt{5} \in \mathbb{Q}(\sqrt{5})$ totally nonnegative if $a + b\sqrt{5} \ge 0$ and $a - b\sqrt{5} \ge 0$.

• But: $\frac{1+\sqrt{5}}{2} = \left(\frac{1+\sqrt{5}}{2}\right)^2 + i^2$ is a sum of squares in $\mathbb{Q}(\frac{1+\sqrt{5}}{2},i)$.

- Lagrange, 1770: Every nonnegative element of Z is a sum of four squares.
- Maaß, 1941: Every totally nonnegative element of $\mathbb{Z}[\frac{1+\sqrt{5}}{2}]$ is a sum of three squares.
- Can $\frac{1+\sqrt{5}}{2}$ be written as a sum of squares?
- Suppose that $\sum (a_i + b_i \sqrt{5})^2 = \frac{1+\sqrt{5}}{2}$ for $a_i, b_i \in \mathbb{Q}$.
- Then $\sum (a_i b_i \sqrt{5})^2 = \frac{1 \sqrt{5}}{2} < 0.$
- We call $a + b\sqrt{5} \in \mathbb{Q}(\sqrt{5})$ totally nonnegative if $a + b\sqrt{5} \ge 0$ and $a - b\sqrt{5} \ge 0$.
- But: $\frac{1+\sqrt{5}}{2} = \left(\frac{1+\sqrt{5}}{2}\right)^2 + i^2$ is a sum of squares in $\mathbb{Q}(\frac{1+\sqrt{5}}{2},i)$.

Number fields

- A *number field* is a field *K* with [*K* : Q] is finite.
- We call K totally real if all embeddings $K \hookrightarrow \mathbb{C}$ actually map $K \hookrightarrow \mathbb{R}$.
 - Examples: \mathbb{Q} , $\mathbb{Q}(\sqrt{3})$; non-examples: $\mathbb{Q}(i)$, $\mathbb{Q}(\sqrt[3]{2})$
- If in all embeddings σ : K → ℝ we have σ(α) > 0, then α is totally positive, denoted by α ≻ 0.
 - ► Sums of squares are totally positive.
 - The set K⁺ of tot. positive elements is closed under addition and multiplication.
- The ring of integers of K is

 $\mathcal{O}_{\mathcal{K}} = \{ \alpha \in \mathcal{K} \mid \alpha \text{ is a root of a monic } \mathbb{Z}\text{-polynomial} \}.$

• An order is any subring $\mathcal{O} \subseteq \mathcal{O}_K$ with fraction field K. Every order has an *integral basis*.

- In $\mathbb{Z} = \mathcal{O}_{\mathbb{Q}}$, every (totally) positive integer is a sum of four squares.
- In $\mathbb{Z}[\frac{1+\sqrt{5}}{2}] = \mathcal{O}_{\mathbb{Q}(\sqrt{5})}$, every totally positive integer is a sum of three squares.
- Siegel, 1945: For a totally real number field K ≠ Q, Q(√5), not all totally positive integers are sums of integral squares.
 - ▶ Hence, universal forms and sums of squares are distinct topics.

Definitions

- For a ring R, we put $\sum R^2 = \left\{ \sum_{i=1}^N \alpha_i^2 \mid N \in \mathbb{N}, \alpha_i \in R \right\}.$
- The *length* of an element from $\sum R^2$: $\ell(\alpha) =$ "smallest *N* such that $\alpha = \sum_{i=1}^{N} \alpha_i^2$ ".
- The Pythagoras number: $\mathcal{P}(R) = \sup_{\alpha \in \sum R^2} \ell(\alpha).$
- $\mathcal{P}(\mathbb{Z}) = 4, \mathcal{P}(\mathbb{Z}[\frac{1+\sqrt{5}}{2}]) = 3.$
- $\mathcal{P}(\mathbb{C}) = 1, \mathcal{P}(\mathbb{R}) = 1.$
- $\mathcal{P}(\mathbb{Z}[x]) = \infty$.
- Hoffmann, 1999: Every n ∈ N occurs as P(F) for some field F.

Local conditions

- Over \mathbb{Q} , $x^2 + y^2$ is always positive. (A "real condition".)
- Over \mathbb{Q} , $v_3(x^2 + y^2)$ is always even. (Condition "modulo p".)
- These *local conditions* come from the embedding $\mathbb{Q} \hookrightarrow \mathbb{R}$ and the embeddings $\mathbb{Q} \hookrightarrow \mathbb{Q}_p$ for all primes p.
- For a number field K, the local conditions use all completions of K, i.e. all embeddings K → C and all completions K_p, where p is a prime ideal.
- A quadratic form "satisfies the local–global principle" if these local conditions are sufficient.
- For example, over \mathbb{Z} , this holds for the forms $x^2 + y^2$ (two-squares theorem), $x^2 + y^2 + z^2$ (three-squares theorem) and $x^2 + y^2 + z^2 + w^2$ (four-squares theorem).

Local conditions

- Over \mathbb{Q} , $x^2 + y^2$ is always positive. (A "real condition".)
- Over \mathbb{Q} , $v_3(x^2 + y^2)$ is always even. (Condition "modulo p".)
- These *local conditions* come from the embedding $\mathbb{Q} \hookrightarrow \mathbb{R}$ and the embeddings $\mathbb{Q} \hookrightarrow \mathbb{Q}_p$ for all primes p.
- For a number field K, the local conditions use all completions of K, i.e. all embeddings K → C and all completions K_p, where p is a prime ideal.
- A quadratic form "satisfies the local–global principle" if these local conditions are sufficient.
- For example, over Z, this holds for the forms x² + y² (two-squares theorem), x² + y² + z² (three-squares theorem) and x² + y² + z² + w² (four-squares theorem).

Local conditions

- Over \mathbb{Q} , $x^2 + y^2$ is always positive. (A "real condition".)
- Over \mathbb{Q} , $v_3(x^2 + y^2)$ is always even. (Condition "modulo p".)
- These *local conditions* come from the embedding $\mathbb{Q} \hookrightarrow \mathbb{R}$ and the embeddings $\mathbb{Q} \hookrightarrow \mathbb{Q}_p$ for all primes p.
- For a number field K, the local conditions use all completions of K, i.e. all embeddings K → C and all completions K_p, where p is a prime ideal.
- A quadratic form "satisfies the local–global principle" if these local conditions are sufficient.
- For example, over \mathbb{Z} , this holds for the forms $x^2 + y^2$ (two-squares theorem), $x^2 + y^2 + z^2$ (three-squares theorem) and $x^2 + y^2 + z^2 + w^2$ (four-squares theorem).

The simple cases

- Hasse-Minkowski theorem: Over a number **field**, the local-global principle holds for every quadratic form.
- Corollary: $\mathcal{P}(K) \leq 4$.
 - ▶ (Because the same is true for every local field: $K_{\mathfrak{p}}, \mathbb{R}, \mathbb{C}$.)
- Theory of spinor genera: If K is not tot. real, then local-global principle holds for forms over O_K in at least four variables.
- Corollary: $\mathcal{P}(\mathcal{O}_K) \leq 4$ unless K is totally real.
- Similarly: $\mathcal{P}(\mathcal{O}) \leq 5$ unless K is totally real.
- But what about $\mathcal{P}(\mathcal{O}_K)$ for totally real K?
- Also, the local-global principle provides a simple description of ∑ K² resp. ∑ O². What if the local-global principle fails?

- Hasse-Minkowski theorem: Over a number **field**, the local-global principle holds for every quadratic form.
- Corollary: $\mathcal{P}(K) \leq 4$.
 - ▶ (Because the same is true for every local field: $K_{\mathfrak{p}}, \mathbb{R}, \mathbb{C}$.)
- Theory of spinor genera: If K is not tot. real, then local-global principle holds for forms over \mathcal{O}_K in at least four variables.
- Corollary: $\mathcal{P}(\mathcal{O}_K) \leq 4$ unless K is totally real.
- Similarly: $\mathcal{P}(\mathcal{O}) \leq 5$ unless K is totally real.
- But what about $\mathcal{P}(\mathcal{O}_K)$ for totally real K?
- Also, the local-global principle provides a simple description of ∑ K² resp. ∑ O². What if the local-global principle fails?

- Hasse-Minkowski theorem: Over a number **field**, the local-global principle holds for every quadratic form.
- Corollary: $\mathcal{P}(\mathcal{K}) \leq 4$.
 - ▶ (Because the same is true for every local field: $K_{\mathfrak{p}}, \mathbb{R}, \mathbb{C}$.)
- Theory of spinor genera: If K is not tot. real, then local-global principle holds for forms over \mathcal{O}_K in at least four variables.
- Corollary: $\mathcal{P}(\mathcal{O}_K) \leq 4$ unless K is totally real.
- Similarly: $\mathcal{P}(\mathcal{O}) \leq 5$ unless K is totally real.
- But what about $\mathcal{P}(\mathcal{O}_K)$ for totally real K?
- Also, the local-global principle provides a simple description of ∑K² resp. ∑O². What if the local-global principle fails?

- Hasse-Minkowski theorem: Over a number **field**, the local-global principle holds for every quadratic form.
- Corollary: $\mathcal{P}(\mathcal{K}) \leq 4$.
 - ▶ (Because the same is true for every local field: $K_{\mathfrak{p}}, \mathbb{R}, \mathbb{C}$.)
- Theory of spinor genera: If K is not tot. real, then local-global principle holds for forms over O_K in at least four variables.
- Corollary: $\mathcal{P}(\mathcal{O}_K) \leq 4$ unless K is totally real.
- Similarly: $\mathcal{P}(\mathcal{O}) \leq 5$ unless K is totally real.
- But what about $\mathcal{P}(\mathcal{O}_{\mathcal{K}})$ for totally real \mathcal{K} ?
- Also, the local-global principle provides a simple description of ∑K² resp. ∑O². What if the local-global principle fails?

- Hasse-Minkowski theorem: Over a number **field**, the local-global principle holds for every quadratic form.
- Corollary: $\mathcal{P}(\mathcal{K}) \leq 4$.
 - ▶ (Because the same is true for every local field: $K_{\mathfrak{p}}, \mathbb{R}, \mathbb{C}$.)
- Theory of spinor genera: If *K* is not tot. real, then local–global principle holds for forms over \mathcal{O}_K in at least four variables.
- Corollary: $\mathcal{P}(\mathcal{O}_K) \leq 4$ unless K is totally real.
- Similarly: $\mathcal{P}(\mathcal{O}) \leq 5$ unless K is totally real.
- But what about $\mathcal{P}(\mathcal{O}_{\mathcal{K}})$ for totally real \mathcal{K} ?
- Also, the local-global principle provides a simple description of ∑K² resp. ∑O². What if the local-global principle fails?

About the set $\sum {\cal O}^2$

- In any ring R, a sum of squares is a square modulo 2R.
 - Thus $2 + \sqrt{2} \notin \sum \mathcal{O}^2_{\mathbb{Q}(\sqrt{2})}$.
- The only local conditions for α ∈ O to be a sum of squares are α ≽ 0 and α = □ (mod 2O).
- $\bullet\,$ Under these conditions, α is locally a sum of four squares.
- Conjecture (R. Scharlau, 1979): There are only finitely many tot. real orders where $\sum O^2$ contains *all* such numbers.
 - Only six such orders are known: \mathcal{O}_K for $K = \mathbb{Q}; \mathbb{Q}(\sqrt{n})$ for $n = 2, 3, 5; \mathbb{Q}(\sqrt{2}, \sqrt{5}); \mathbb{Q}(\zeta_{20} + \zeta_{20}^{-1}).$
 - Local-global principle fails spectacularly. (Even with tons of variables.)
 - ▶ Recent progress: Kala–Yatsyna, 2024.

About the set $\sum {\cal O}^2$

- In any ring R, a sum of squares is a square modulo 2R.
 - Thus $2 + \sqrt{2} \notin \sum \mathcal{O}^2_{\mathbb{Q}(\sqrt{2})}$.
- The only local conditions for α ∈ O to be a sum of squares are α ≽ 0 and α = □ (mod 2O).
- $\bullet\,$ Under these conditions, α is locally a sum of four squares.
- Conjecture (R. Scharlau, 1979): There are only finitely many tot. real orders where $\sum O^2$ contains *all* such numbers.
 - Only six such orders are known: \mathcal{O}_K for $K = \mathbb{Q}; \mathbb{Q}(\sqrt{n})$ for $n = 2, 3, 5; \mathbb{Q}(\sqrt{2}, \sqrt{5}); \mathbb{Q}(\zeta_{20} + \zeta_{20}^{-1}).$
 - Local–global principle fails spectacularly. (Even with tons of variables.)
 - ▶ Recent progress: Kala–Yatsyna, 2024.

About the set $\sum {\cal O}^2$

- In any ring R, a sum of squares is a square modulo 2R.
 - Thus $2 + \sqrt{2} \notin \sum \mathcal{O}^2_{\mathbb{Q}(\sqrt{2})}$.
- The only local conditions for α ∈ O to be a sum of squares are α ≽ 0 and α = □ (mod 2O).
- $\bullet\,$ Under these conditions, α is locally a sum of four squares.
- Conjecture (R. Scharlau, 1979): There are only finitely many tot. real orders where $\sum O^2$ contains *all* such numbers.
 - Only six such orders are known: \mathcal{O}_K for $K = \mathbb{Q}; \mathbb{Q}(\sqrt{n})$ for $n = 2, 3, 5; \mathbb{Q}(\sqrt{2}, \sqrt{5}); \mathbb{Q}(\zeta_{20} + \zeta_{20}^{-1}).$
 - Local-global principle fails spectacularly. (Even with tons of variables.)
 - ▶ Recent progress: Kala–Yatsyna, 2024.

Theorem (Peters; Cohn and Pall; Dzewas; Kneser; Maaß)

Let \mathcal{O} be an order in a real quadratic number field. Then

$$\mathcal{P}(\mathcal{O}) = \begin{cases} 3 & \text{for } \mathcal{O} = \mathbb{Z}[\sqrt{2}], \ \mathbb{Z}[\sqrt{3}] \text{ and } \mathbb{Z}\left[\frac{1+\sqrt{5}}{2}\right], \\ 4 & \text{for } \mathcal{O} = \mathbb{Z}[\sqrt{6}], \ \mathbb{Z}[\sqrt{7}] \text{ and nonmaximal order } \mathbb{Z}[\sqrt{5}], \\ 5 & \text{otherwise.} \end{cases}$$

The maximal length is attained for example by:

- Length 3: $1 + \sqrt{2}^2 + (1 + \sqrt{2})^2$, $2 + (2 + \sqrt{3})^2$, $2 + (\frac{1 + \sqrt{5}}{2})^2$;
- Length 4: $3 + (1 + \sqrt{6})^2$, $3 + (1 + \sqrt{7})^2$, $3 + (1 + \sqrt{5})^2$;
- Length 5: $3 + \left(\frac{1+\sqrt{13}}{2}\right)^2 + \left(1 + \frac{1+\sqrt{13}}{2}\right)^2$ in $\mathbb{Z}\left[\frac{1+\sqrt{13}}{2}\right]$; in all the remaining cases $7 + (1 + f\sqrt{n})^2$ for $\mathbb{Z}[f\sqrt{n}]$ or $7 + (f\frac{1+\sqrt{n}}{2})^2$ for $\mathbb{Z}[f\frac{1+\sqrt{n}}{2}]$.

Together with $\mathcal{P}(\mathcal{O}) \leq 5$ for not-totally-real orders, this lead Peters to conjecture $\mathcal{P}(\mathcal{O}) \leq 5$ for all number field orders.

There are totally real number fields with arbitrarily large $\mathcal{P}(\mathcal{O}_{\mathcal{K}})$.

The proof uses multiquadratic fields $\mathbb{Q}(\sqrt{n_1}, \sqrt{n_2}, \dots, \sqrt{n_k})$ for pairwise coprime square-free n_j .

Theorem (Kala–Yatsyna, 2021)

There exists a function g(d) such that for every field K with $d = [K : \mathbb{Q}]$ and every order $\mathcal{O} \subseteq \mathcal{O}_K$ one has

- In particular, P(O) ≤ 5 for quadratic, ≤ 6 for cubic and ≤ 7 for quartic orders.
- It seems that typically, this upper bound is the correct value.

There are totally real number fields with arbitrarily large $\mathcal{P}(\mathcal{O}_{\mathcal{K}})$.

The proof uses multiquadratic fields $\mathbb{Q}(\sqrt{n_1}, \sqrt{n_2}, \dots, \sqrt{n_k})$ for pairwise coprime square-free n_j .

Theorem (Kala–Yatsyna, 2021)

There exists a function g(d) such that for every field K with $d = [K : \mathbb{Q}]$ and every order $\mathcal{O} \subseteq \mathcal{O}_K$ one has

- In particular, P(O) ≤ 5 for quadratic, ≤ 6 for cubic and ≤ 7 for quartic orders.
- It seems that typically, this upper bound is the correct value.

There are totally real number fields with arbitrarily large $\mathcal{P}(\mathcal{O}_{\mathcal{K}})$.

The proof uses multiquadratic fields $\mathbb{Q}(\sqrt{n_1}, \sqrt{n_2}, \dots, \sqrt{n_k})$ for pairwise coprime square-free n_j .

Theorem (Kala–Yatsyna, 2021)

There exists a function g(d) such that for every field K with $d = [K : \mathbb{Q}]$ and every order $\mathcal{O} \subseteq \mathcal{O}_K$ one has

- In particular, P(O) ≤ 5 for quadratic, ≤ 6 for cubic and ≤ 7 for quartic orders.
- It seems that typically, this upper bound is the correct value.

There are totally real number fields with arbitrarily large $\mathcal{P}(\mathcal{O}_{\mathcal{K}})$.

The proof uses multiquadratic fields $\mathbb{Q}(\sqrt{n_1}, \sqrt{n_2}, \dots, \sqrt{n_k})$ for pairwise coprime square-free n_j .

Theorem (Kala–Yatsyna, 2021)

There exists a function g(d) such that for every field K with $d = [K : \mathbb{Q}]$ and every order $\mathcal{O} \subseteq \mathcal{O}_K$ one has

- In particular, P(O) ≤ 5 for quadratic, ≤ 6 for cubic and ≤ 7 for quartic orders.
- It seems that typically, this upper bound is the correct value.

Representation of QFs by QFs

- A quadratic form φ is *represented* by a quadratic form Q over the same ring if we obtain φ from Q by plugging in suitable linear forms.
- Example: $\varphi(x, y) = 3x^2 + 4xy + 4y^2$ is represented by the sum-of-three-squares form I_3 : $x^2 + x^2 + (x + 2y)^2$.
- Mordell, 1930s: Every binary QF over \mathbb{Z} which is a sum of squares of linear forms (i.e. represented by some I_N) is already a sum of 5 squares.

Definition

Let R be a ring. Denote by Σ_R^k the set of all k-ary quadratic forms which are represented by I_N for some (possibly large) N. We put

$$g_R(k) = \min\{n \in \mathbb{N} \mid \text{Every form in } \Sigma_R^k \text{ is represented by } I_n\}.$$

•
$$\mathcal{P}(R) = g_R(1)$$
.

• THE upper bound: For $\mathcal{O} \subset K$ with $d = [K : \mathbb{Q}]$ we have

$$\mathcal{P}(\mathcal{O}) \leq g_{\mathbb{Z}}(d).$$

- Little is known:
 - ▶ $g_{\mathbb{Z}}(k) = k + 3$ for $k = 1, \dots, 5$ (Mordell, Ko, 1930s)
 - but $g_{\mathbb{Z}}(6) = 10$ (Kim–Oh 1997).
 - Lower bound linear in d, upper bound exponential in \sqrt{d} .
- $\mathcal{P}(\mathcal{O}_{\mathcal{K}}) \leq \mathcal{G}_{\mathcal{O}_{\mathcal{F}}}(d)$ for $[\mathcal{K}:\mathcal{F}] = d$ (K.-Yatsyna, 2023).
 - (Here G_R is the "correctly defined" g_R . It matches g_R if R is a UFD.)

Quadratic Waring's problem in number fields

•
$$g_{\mathcal{O}_{\mathbb{Q}(\sqrt{5})}}(2) = 5$$
 (Sasaki, 1993)

•
$$g_{\mathcal{O}_{\mathbb{Q}(\sqrt{2})}}(2) = 5$$
 (He–Hu, 2022).

• $G_{\mathcal{O}_{K}}(2) = 7$ for all other real quadratic fields $K \neq \mathbb{Q}(\sqrt{3})$ (K.-Yatsyna, 2023).

Conjecture (my favourite)

$$g_{\mathbb{Z}[\sqrt{3}]}(2)=6.$$

Upper bounds for $g_{\mathcal{O}_{\mathcal{K}}}(\cdot)$: Chan–Icaza, K.–Yatsyna.

A sort of integral local-global principle

- Two quadratic forms are *equivalent* if they differ only by invertible change of variables.
- They lie in the same *genus* if they are everywhere locally equivalent.
- E.g.: gen($x^2 + 82y^2$) = {cls($x^2 + 82y^2$), cls($2x^2 + 41y^2$)}.

Theorem

Let Q be a quadratic form over \mathcal{O}_K . If α is locally represented be Q, then it is represented by some form in gen(Q).

Corollary

Let Q be a quadratic form over \mathcal{O}_K . If h(Q) = 1 (the class number), then the local-global principle holds for Q.

• Unfortunately, $h(I_3) = 1$ only for six totally real fields.

Cubic fields

Theorem (K., 2022)

Let
$$K = \mathbb{Q}(\zeta_7 + \zeta_7^{-1})$$
. Then:

•
$$\mathcal{P}(\mathcal{O}_K) = 4.$$

•
$$\sum \mathcal{O}_{\mathcal{K}}^2 = \{ \alpha \in \mathcal{O}_{\mathcal{K}} \mid \alpha \succeq 0, \mathbb{N}(\alpha) \neq 7 \}.$$

This is the lowest possible value: For odd [$K : \mathbb{Q}$], Springer's th. implies $\ell(7) = 4$, hence $\mathcal{P}(\mathcal{O}_K) \ge 4$.

On the other hand: Let ρ_a be a root of $x^3 - ax^2 - (a+3)x - 1$ for an integer $a \ge -1$. Then $K(\rho_a)$ is called a simplest cubic field.

Theorem (Tinková, 2023+)

Let $K = \mathbb{Q}(\rho_a)$ for $a \ge 2$. Then $\mathcal{P}(\mathbb{Z}[\rho_a]) = 6$.

And a further improvement: Tinková, Gil-Munoz 2025.

Cubic fields

Theorem (K., 2022)

Let
$$K = \mathbb{Q}(\zeta_7 + \zeta_7^{-1})$$
. Then:

•
$$\mathcal{P}(\mathcal{O}_K) = 4.$$

•
$$\sum \mathcal{O}_{\mathcal{K}}^2 = \{ \alpha \in \mathcal{O}_{\mathcal{K}} \mid \alpha \succeq 0, \mathrm{N}(\alpha) \neq 7 \}.$$

This is the lowest possible value: For odd $[K : \mathbb{Q}]$, Springer's th. implies $\ell(7) = 4$, hence $\mathcal{P}(\mathcal{O}_K) \ge 4$. On the other hand: Let ρ_a be a root of $x^3 - ax^2 - (a+3)x - 1$ for an integer $a \ge -1$. Then $K(\rho_a)$ is called a *simplest cubic field*.

Theorem (Tinková, 2023+)

Let
$$K = \mathbb{Q}(\rho_a)$$
 for $a \ge 2$. Then $\mathcal{P}(\mathbb{Z}[\rho_a]) = 6$.

And a further improvement: Tinková, Gil-Munoz 2025.

Biquadratic fields

Many recent papers: K.–Raška–Sgallová, He–Hu, Tinková, Dombek.

Conjecture

Let K be a real biquadratic field: $K = \mathbb{Q}(\sqrt{n_1}, \sqrt{n_2})$. Then:

- $\mathcal{P}(\mathcal{O}_{\mathcal{K}})=3$ for three exceptional fields;
- $\mathcal{P}(\mathcal{O}_{\mathcal{K}}) = 4$ for four exceptional fields;
- $\mathcal{P}(\mathcal{O}_K) = 5$ if K contains $\sqrt{2}$ or $\sqrt{5}$ (minus the exceptional) and for five further exceptional fields.
- $6 \leq \mathcal{P}(\mathcal{O}_{\mathcal{K}}) \leq 7$ otherwise.

Theorem (K., 2025+)

Every real biquadratic field K contains infinitely many orders \mathcal{O} with $\mathcal{P}(\mathcal{O}) = 7$.

Theorem (K.–Scharlau, 2025+)

Let
$$K = \mathbb{Q}(\sqrt{2}, \sqrt{5})$$
 and $L = \mathbb{Q}(\zeta_{20} + \zeta_{20}^{-1}) = \mathbb{Q}(\sqrt{\frac{5+\sqrt{5}}{2}})$. Then

$$\mathcal{P}(\mathcal{O}_{\mathcal{K}}) = \mathcal{P}(\mathcal{O}_{\mathcal{L}}) = 3.$$

The proof is based on examining the other forms in $gen(I_3)$, see next slide.

Conjecture

There are precisely three other totally real quartic fields K with $\mathcal{P}(\mathcal{O}_K) = 3$, namely $\mathbb{Q}(\sqrt{2}, \sqrt{3})$, $\mathbb{Q}(\sqrt{3}, \sqrt{5})$ and $\mathbb{Q}(\zeta_{16} + \zeta_{16}^{-1})$.

The genus of I_3 over $K = \mathbb{Q}(\sqrt{2}, \sqrt{5})$ consists of two equivalence classes, with representatives I_3 and Q_3 , where

$$Q_{3}(x, y, z) = 2x^{2} + 2y^{2} + 3z^{2} + 2\overline{\varphi}xy - 2\sqrt{2}xz + 2\sqrt{2}\varphi yz$$

$$(\varphi = \frac{1+\sqrt{5}}{2} \text{ and } \overline{\varphi} = \frac{1-\sqrt{5}}{2}).$$
 Thus:

Proposition

If $\alpha \in \mathcal{O}_K$ is locally a sum of squares, then it is represented either by I_3 or by Q_3 .

It remains to show the following:

emma

If $\alpha \in \mathcal{O}_K$ is represented by Q_3 , then it is also represented by I_3 .

The genus of I_3 over $K = \mathbb{Q}(\sqrt{2}, \sqrt{5})$ consists of two equivalence classes, with representatives I_3 and Q_3 , where

$$Q_{3}(x, y, z) = 2x^{2} + 2y^{2} + 3z^{2} + 2\overline{\varphi}xy - 2\sqrt{2}xz + 2\sqrt{2}\varphi yz$$

$$(arphi=rac{1+\sqrt{5}}{2} ext{ and } \overline{arphi}=rac{1-\sqrt{5}}{2}).$$
 Thus:

Proposition

If $\alpha \in \mathcal{O}_K$ is locally a sum of squares, then it is represented either by I_3 or by Q_3 .

It remains to show the following:

emma

If $lpha \in \mathcal{O}_K$ is represented by Q_3 , then it is also represented by I_3 .

The genus of I_3 over $K = \mathbb{Q}(\sqrt{2}, \sqrt{5})$ consists of two equivalence classes, with representatives I_3 and Q_3 , where

$$Q_{3}(x, y, z) = 2x^{2} + 2y^{2} + 3z^{2} + 2\overline{\varphi}xy - 2\sqrt{2}xz + 2\sqrt{2}\varphi yz$$

$$(arphi=rac{1+\sqrt{5}}{2} ext{ and } \overline{arphi}=rac{1-\sqrt{5}}{2}).$$
 Thus:

Proposition

If $\alpha \in \mathcal{O}_K$ is locally a sum of squares, then it is represented either by I_3 or by Q_3 .

It remains to show the following:

Lemma

If $\alpha \in \mathcal{O}_K$ is represented by Q_3 , then it is also represented by I_3 .

Proof.

$$\begin{split} Q_3(a, b, c) &= \\ &= \left(\frac{1}{\sqrt{2}}a\right)^2 + \left(\frac{\varphi}{\sqrt{2}}a + \overline{\varphi}c\right)^2 + \left(\frac{\overline{\varphi}}{\sqrt{2}}a + \sqrt{2}b + \varphi c\right)^2 \\ &= \left(\frac{1}{\sqrt{2}}b + c\right)^2 + \left(\frac{\varphi}{\sqrt{2}}b + c\right)^2 + \left(\sqrt{2}a + \frac{\overline{\varphi}}{\sqrt{2}}b - c\right)^2 \\ &= \left(\frac{1}{\sqrt{2}}(a + b) - \overline{\varphi}c\right)^2 + \left(\frac{\varphi}{\sqrt{2}}(a - b) - \varphi c\right)^2 + \left(\frac{\overline{\varphi}}{\sqrt{2}}(a + b)\right)^2 \\ &= \left(\frac{1}{\sqrt{2}}(a - \varphi b) - \varphi c\right)^2 + \left(\frac{1}{\sqrt{2}}(-\varphi a + \overline{\varphi}b)\right)^2 + \left(\frac{1}{\sqrt{2}}(\overline{\varphi}a + b) - \overline{\varphi}c\right)^2 \\ &= \left(\frac{1}{\sqrt{2}}(a + \overline{\varphi}b) - c\right)^2 + \left(\frac{1}{\sqrt{2}}(\varphi a - b) - c\right)^2 + \left(\frac{1}{\sqrt{2}}(\overline{\varphi}a - \varphi b) - c\right)^2. \end{split}$$

The squares in the first equality are integral iff $a \equiv 0$ (all the congruences are modulo $\sqrt{2}$), in the second iff $b \equiv 0$, in the third iff $a \equiv b$, in the fourth iff $a \equiv \varphi b$ and in the fifth iff $a \equiv \overline{\varphi} b$.

The proof for the other field $\mathbb{Q}(\zeta_{20} + \zeta_{20}^{-1})$ is similar.

As a corollary, we can prove the following:

Theorem (K.–Scharlau)

$$x^2 + y^2 + z^2 + xy + \sqrt{2}yz$$
 is universal over $\mathcal{O}_{\mathbb{Q}(\sqrt{2},\sqrt{5})}$.

Similarly, we get a ternary universal quadratic form over $\mathcal{O}_{\mathbb{Q}(\zeta_{20}^+)}$. These are the first examples in degree > 2. Thank you for your attention (and for all your questions)!

A proper list of references can be found in the following two papers:

- J. Krásenský, M. Raška and E. Sgallová, Pythagoras numbers of orders in biquadratic fields, Expo. Math. 40, 1181–1228 (2022). Available at arXiv:2105.08860.
- J. Krásenský and P. Yatsyna, On quadratic Waring's problem in totally real number fields, Proc. Amer. Math. Soc. 151, 1471–1485 (2023). Available at arXiv:2112.15243.

If you're interested, I encourage you to read the introductions. Or contact me at **jakub.krasensky(at)fit.cvut.cz**.