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Studying integral QFs is hard

Major achievement:

Theorem (Bhargava{Hanke)

A PD quadratic form over Z is universal (represents all positive

integers) i� it represents all numbers up to 290.

Many open questions, e.g.:

Conjecture (Kaplansky, 1995)

The form x2 + 2y2 + 5z2 + xz represents all odd positive integers.

Similar questions over Q are fully solved: local{global principle

(Hasse{Minkowski).
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Lagrange, 1770: Every nonnegative element of Z is a sum of

four squares.

Maa�, 1941: Every totally nonnegative element of Z[1+
√
5

2 ]
is a sum of three squares.

Can 1+
√
5

2 be written as a sum of squares?

Suppose that
∑

(ai + bi
√
5)2 = 1+

√
5

2 for ai , bi ∈ Q.

Then
∑

(ai − bi
√
5)2 = 1−

√
5

2 < 0.

We call a+ b
√
5 ∈ Q

(√
5
)
totally nonnegative if a+ b

√
5 ≥ 0

and a− b
√
5 ≥ 0.

But: 1+
√
5

2 =
(
1+

√
5

2

)2
+ i2 is a sum of squares in Q(1+

√
5

2 , i).
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Number �elds

A number �eld is a �eld K with [K : Q] is �nite.

We call K totally real if all embeddings K ↪→ C actually map
K ↪→ R.

▶ Examples: Q, Q
(√

3
)
; non-examples: Q(i), Q( 3

√
2)

If in all embeddings σ : K ↪→ R we have σ(α) > 0, then α is
totally positive, denoted by α ≻ 0.

▶ Sums of squares are totally positive.
▶ The set K+ of tot. positive elements is closed under addition

and multiplication.

The ring of integers of K is

OK = {α ∈ K | α is a root of a monic Z-polynomial}.
An order is any subring O ⊆ OK with fraction �eld K . Every

order has an integral basis.
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In Z = OQ, every (totally) positive integer is a sum of four

squares.

In Z[1+
√
5

2 ] = OQ(
√
5), every totally positive integer is a sum of

three squares.

Siegel, 1945: For a totally real number �eld K ̸= Q,Q
(√

5
)
,

not all totally positive integers are sums of integral squares.

▶ Hence, universal forms and sums of squares are distinct topics.
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De�nitions

For a ring R, we put
∑

R2 =
{∑N

i=1 α
2
i | N ∈ N, αi ∈ R

}
.

The length of an element from
∑

R2:

ℓ(α) = \smallest N such that α =
∑N

i=1 α
2
i ".

The Pythagoras number: P(R) = sup
α∈

∑
R2

ℓ(α).

P(Z) = 4,P(Z[1+
√
5

2 ]) = 3.

P(C) = 1,P(R) = 1.

P(Z[x ]) = ∞.

Ho�mann, 1999: Every n ∈ N occurs as P(F ) for some

�eld F .
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Local conditions

Over Q, x2 + y2 is always positive. (A \real condition".)

Over Q, v3(x
2 + y2) is always even. (Condition \modulo p".)

These local conditions come from the embedding Q ↪→ R and

the embeddings Q ↪→ Qp for all primes p.

For a number �eld K , the local conditions use all completions

of K , i.e. all embeddings K ↪→ C and all completions Kp,

where p is a prime ideal.

A quadratic form \satis�es the local{global principle" if these

local conditions are su�cient.

For example, over Z, this holds for the forms x2 + y2

(two-squares theorem), x2 + y2 + z2 (three-squares theorem)

and x2 + y2 + z2 + w2 (four-squares theorem).
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The simple cases

Hasse{Minkowski theorem: Over a number �eld, the

local{global principle holds for every quadratic form.

Corollary: P(K ) ≤ 4.

▶ (Because the same is true for every local �eld: Kp,R,C.)
Theory of spinor genera: If K is not tot. real, then local{global

principle holds for forms over OK in at least four variables.

Corollary: P(OK ) ≤ 4 unless K is totally real.

Similarly: P(O) ≤ 5 unless K is totally real.

But what about P(OK ) for totally real K?

Also, the local{global principle provides a simple description of∑
K 2 resp.

∑
O2. What if the local{global principle fails?
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About the set
∑

O2

In any ring R, a sum of squares is a square modulo 2R.

▶ Thus 2+
√
2 /∈

∑
O2

Q(
√
2)
.

The only local conditions for α ∈ O to be a sum of squares

are α ≽ 0 and α = □ (mod 2O).

Under these conditions, α is locally a sum of four squares.

Conjecture (R. Scharlau, 1979): There are only �nitely many
tot. real orders where

∑
O2 contains all such numbers.

▶ Only six such orders are known:
OK for K = Q;Q(

√
n) for n = 2, 3, 5; Q(

√
2,
√
5); Q(ζ20+ζ−1

20
).

▶ Local{global principle fails spectacularly. (Even with tons of
variables.)

▶ Recent progress: Kala{Yatsyna, 2024.
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Theorem (Peters; Cohn and Pall; Dzewas; Kneser; Maa�)

Let O be an order in a real quadratic number �eld. Then

P(O) =


3 for O = Z[

√
2], Z[

√
3] and Z

[
1+

√
5

2

]
,

4 for O = Z[
√
6], Z[

√
7] and nonmaximal order Z[

√
5],

5 otherwise.

The maximal length is attained for example by:

Length 3: 1+
√
2
2
+ (1+

√
2)2, 2+ (2+

√
3)2, 2+

(
1+

√
5

2

)2
;

Length 4: 3+ (1+
√
6)2, 3+ (1+

√
7)2, 3+ (1+

√
5)2;

Length 5: 3+
(
1+

√
13

2

)2
+

(
1+ 1+

√
13

2

)2
in Z

[
1+

√
13

2

]
; in all the remaining cases

7+ (1+ f
√
n)2 for Z[f

√
n] or 7+

(
f 1+

√
n

2

)2
for Z[f 1+

√
n

2
].

Together with P(O) ≤ 5 for not-totally-real orders, this lead

Peters to conjecture P(O) ≤ 5 for all number �eld orders.
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Theorem (R. Scharlau, 1980)

There are totally real number �elds with arbitrarily large P(OK ).

The proof uses multiquadratic �elds Q(
√
n1,

√
n2, . . . ,

√
nk) for

pairwise coprime square-free nj .

Theorem (Kala{Yatsyna, 2021)

There exists a function g(d) such that for every �eld K with

d = [K : Q] and every order O ⊆ OK one has

P(O) ≤ g(d).

In particular, P(O) ≤ 5 for quadratic, ≤ 6 for cubic and ≤ 7

for quartic orders.

It seems that typically, this upper bound is the correct value.
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Representation of QFs by QFs

A quadratic form φ is represented by a quadratic form Q over

the same ring if we obtain φ from Q by plugging in suitable

linear forms.

Example: φ(x , y) = 3x2 + 4xy + 4y2 is represented by the

sum-of-three-squares form I3: x
2 + x2 + (x + 2y)2.

Mordell, 1930s: Every binary QF over Z which is a sum of

squares of linear forms (i.e. represented by some IN) is already
a sum of 5 squares.

De�nition

Let R be a ring. Denote by Σk
R the set of all k-ary quadratic forms

which are represented by IN for some (possibly large) N. We put

gR(k) = min{n ∈ N | Every form in Σk
R is represented by In}.

P(R) = gR(1).
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Quadratic Waring's problem

THE upper bound: For O ⊂ K with d = [K : Q] we have

P(O) ≤ gZ(d).

Little is known:

▶ gZ(k) = k + 3 for k = 1, . . . , 5 (Mordell, Ko, 1930s)
▶ but gZ(6) = 10 (Kim{Oh 1997).
▶ Lower bound linear in d , upper bound exponential in

√
d .

P(OK ) ≤ GOF
(d) for [K : F ] = d (K.{Yatsyna, 2023).

▶ (Here GR is the \correctly de�ned" gR . It matches gR if R is a UFD.)
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Quadratic Waring's problem in number �elds

gOQ(
√

5)
(2) = 5 (Sasaki, 1993)

gOQ(
√

2)
(2) = 5 (He{Hu, 2022).

GOK
(2) = 7 for all other real quadratic �elds K ̸= Q

(√
3
)

(K.{Yatsyna, 2023).

Conjecture (my favourite)

gZ[
√
3](2) = 6.

Upper bounds for gOK
( · ): Chan{Icaza, K.{Yatsyna.
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A sort of integral local{global principle

Two quadratic forms are equivalent if they di�er only by

invertible change of variables.

They lie in the same genus if they are everywhere locally

equivalent.

E.g.: gen(x2 + 82y2) = {cls(x2 + 82y2), cls(2x2 + 41y2)}.

Theorem

Let Q be a quadratic form over OK . If α is locally represented be

Q, then it is represented by some form in gen(Q).

Corollary

Let Q be a quadratic form over OK . If h(Q) = 1 (the class

number), then the local{global principle holds for Q.

Unfortunately, h(I3) = 1 only for six totally real �elds.

J. Krásenský Sums of integral squares in totally real number �elds



Cubic �elds

Theorem (K., 2022)

Let K = Q(ζ7 + ζ−1
7 ). Then:

P(OK ) = 4.∑
O2

K = {α ∈ OK | α ≽ 0,N(α) ̸= 7}.

This is the lowest possible value:

For odd [K : Q], Springer's th. implies ℓ(7) = 4, hence P(OK ) ≥ 4.

On the other hand:

Let ρa be a root of x3 − ax2 − (a + 3)x − 1 for an integer a ≥ −1.

Then K (ρa) is called a simplest cubic �eld.

Theorem (Tinková, 2023+)

Let K = Q(ρa) for a ≥ 2. Then P(Z[ρa]) = 6.

And a further improvement: Tinková, Gil-Munoz 2025.
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Biquadratic �elds

Many recent papers: K.{Ra¹ka{Sgallová, He{Hu, Tinková,

Dombek.

Conjecture

Let K be a real biquadratic �eld: K = Q(
√
n1,

√
n2). Then:

P(OK ) = 3 for three exceptional �elds;

P(OK ) = 4 for four exceptional �elds;

P(OK ) = 5 if K contains
√
2 or

√
5 (minus the exceptional)

and for �ve further exceptional �elds.

6 ≤ P(OK ) ≤ 7 otherwise.

Theorem (K., 2025+)

Every real biquadratic �eld K contains in�nitely many orders O
with P(O) = 7.
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Theorem (K.{Scharlau, 2025+)

Let K = Q(
√
2,
√
5) and L = Q(ζ20 + ζ−1

20 ) = Q
(√

5+
√
5

2

)
. Then

P(OK ) = P(OL) = 3.

The proof is based on examining the other forms in gen(I3), see
next slide.

Conjecture

There are precisely three other totally real quartic �elds K with

P(OK ) = 3, namely Q(
√
2,
√
3), Q(

√
3,
√
5) and Q(ζ16 + ζ−1

16 ).
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Sketch of the proof

The genus of I3 over K = Q(
√
2,
√
5) consists of two equivalence

classes, with representatives I3 and Q3, where

Q3(x , y , z) = 2x2 + 2y2 + 3z2 + 2φxy − 2
√
2xz + 2

√
2φyz

(φ = 1+
√
5

2 and φ = 1−
√
5

2 ). Thus:

Proposition

If α ∈ OK is locally a sum of squares, then it is represented either

by I3 or by Q3.

It remains to show the following:

Lemma

If α ∈ OK is represented by Q3, then it is also represented by I3.
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Sketch of the proof

Proof.

Q3(a, b, c) =

=
(
1√
2
a
)2
+
( φ√

2
a+ φc

)2
+
( φ√

2
a+

√
2b + φc

)2
=

(
1√
2
b + c

)2
+

( φ√
2
b + c

)2
+
(√

2a+ φ√
2
b − c

)2
=

(
1√
2
(a+ b)− φc

)2
+

( φ√
2
(a− b)− φc

)2
+
( φ√

2
(a+ b)

)2
=

(
1√
2
(a− φb)− φc

)2
+
(
1√
2
(−φa+ φb)

)2
+
(
1√
2
(φa+ b)− φc

)2
=

(
1√
2
(a+ φb)− c

)2
+
(
1√
2
(φa− b)− c

)2
+
(
1√
2
(φa− φb)− c

)2
.

The squares in the �rst equality are integral i� a ≡ 0 (all the

congruences are modulo
√
2), in the second i� b ≡ 0, in the third

i� a ≡ b, in the fourth i� a ≡ φb and in the �fth i� a ≡ φb.

The proof for the other �eld Q(ζ20 + ζ−1
20 ) is similar.
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As a corollary, we can prove the following:

Theorem (K.{Scharlau)

x2 + y2 + z2 + xy +
√
2yz is universal over OQ(

√
2,
√
5).

Similarly, we get a ternary universal quadratic form over OQ(ζ+20)
.

These are the �rst examples in degree > 2.
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Thank you for your attention (and for all your questions)!
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A proper list of references can be found in the following two papers:

J. Krásenský, M. Ra¹ka and E. Sgallová, Pythagoras numbers

of orders in biquadratic �elds, Expo. Math. 40, 1181{1228

(2022). Available at arXiv:2105.08860.

J. Krásenský and P. Yatsyna, On quadratic Waring's problem

in totally real number �elds, Proc. Amer. Math. Soc. 151,

1471{1485 (2023). Available at arXiv:2112.15243.

If you're interested, I encourage you to read the introductions.

Or contact me at jakub.krasensky(at)�t.cvut.cz.
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