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Studying integral QFs is hard

Major achievement:

Theorem (Bhargava—Hanke)

A PD quadratic form over Z is universal (represents all positive
integers) iff it represents all numbers up to 290.

Many open questions, e.g.:

Conjecture (Kaplansky, 1995)

The form x? + 2y? + 52° 4 xz represents all odd positive integers.

Similar questions over QQ are fully solved: local—-global principle
(Hasse—Minkowski).
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o Lagrange, 1770: Every nonnegative element of Z is a sum of
four squares.

o MaaB, 1941: Every totally nonnegative element of Z[%]
is a sum of three squares.

e Can 14'2—\/5 be written as a sum of squares?
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o Lagrange, 1770: Every nonnegative element of Z is a sum of
four squares.

o MaaB, 1941: Every totally nonnegative element of Z[%]
is a sum of three squares.

e Can 14'2—\/5 be written as a sum of squares?

o Suppose that 3 (a; + biv/5)? = % for a;, b; € Q.
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Lagrange, 1770: Every nonnegative element of Z is a sum of
four squares.

MaaB, 1941: Every totally nonnegative element of Z[%]
is a sum of three squares.

Can 14'2—‘/5 be written as a sum of squares?
Suppose that 3 (a; + biv/5)? = % for a;, b € Q.
Then S (a; — biV/5)2 = 1555 < 0.
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o Lagrange, 1770: Every nonnegative element of Z is a sum of
four squares.

o MaaB, 1941: Every totally nonnegative element of Z[%]
is a sum of three squares.

e Can 14'2—\/5 be written as a sum of squares?
o Suppose that 3 (a; + biv/5)? = % for a;, b; € Q.
o Then Y (a; — biv/5)2 = 155 < 0.

e Wecall a+ b5 € Q(\/g) totally nonnegative if a+ bv/5 >0
and a— b5 > 0.
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o Lagrange, 1770: Every nonnegative element of Z is a sum of
four squares.

o MaaB, 1941: Every totally nonnegative element of Z[%]
is a sum of three squares.

e Can 314'2—\/5 be written as a sum of squares?
o Suppose that 3 (a; + biv/5)? = % for a;, b; € Q.
o Then Y (a; — biv/5)2 = 155 < 0.

e Wecall a+ b5 € Q(\/g) totally nonnegative if a+ bv/5 >0
and a — bv/5 > 0.
e But: % = (12—‘/‘?’)2 + 2 is a sum of squares in Q(%,i).
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Number fields

A number field is a field K with [K : Q] is finite.

We call K totally real if all embeddings K < C actually map
K — R.

» Examples: Q, Q(v/3); non-examples: Q(i), Q(v/2)
e If in all embeddings o : K < R we have o(«) > 0, then a is
totally positive, denoted by a >~ 0.

» Sums of squares are totally positive.
» The set KT of tot. positive elements is closed under addition
and multiplication.

e o

The ring of integers of K is
Ok ={a € K| ais a root of a monic Z-polynomial}.

@ An order is any subring O C Ok with fraction field K. Every
order has an integral basis.
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o In Z = O, every (totally) positive integer is a sum of four
squares.

@ In Z[1+2\/§] = (9@(\/5), every totally positive integer is a sum of

three squares.
o Siegel, 1945: For a totally real number field K # Q,Q(\/g),
not all totally positive integers are sums of integral squares.
» Hence, universal forms and sums of squares are distinct topics.
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e For aring R, we put Y R? = {E, 102 | NeN,aj € R}

@ The length of an element from > R?:
() = “smallest N such that o = SN a?".

e The Pythagoras number.  P(R) = sup {(«).

aEY R?
o P(L) = 4, P(Z['% ])
e P(C) = 1,’P( ) =
o P(ZIx]) =
@ Hoffmann, 1999: Every n € N occurs as P(F) for some
field F.
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Local conditions

e Over Q, x2 + y? is always positive. (A “real condition”.)
o Over Q, v3(x? + y?) is always even. (Condition “modulo p".)

@ These local conditions come from the embedding Q — R and
the embeddings Q < Q, for all primes p.
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Local conditions

e Over Q, x2 + y? is always positive. (A “real condition”.)
o Over Q, v3(x? + y?) is always even. (Condition “modulo p".)

@ These local conditions come from the embedding Q — R and
the embeddings Q < Q, for all primes p.

@ For a number field K, the local conditions use all completions
of K, i.e. all embeddings K — C and all completions K,
where p is a prime ideal.
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Local conditions

Over Q, x% + y? is always positive. (A “real condition”.)

Over Q, va(x? + y?) is always even. (Condition “modulo p".)

These local conditions come from the embedding Q@ — R and
the embeddings Q < Q, for all primes p.

@ For a number field K, the local conditions use all completions
of K, i.e. all embeddings K — C and all completions K,
where p is a prime ideal.

A quadratic form “satisfies the local-global principle” if these
local conditions are sufficient.

For example, over Z, this holds for the forms x2 4+ y2
(two-squares theorem), x? 4 y? + z? (three-squares theorem)
and x? + y? 4 z2 + w? (four-squares theorem).
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The simple cases

@ Hasse—Minkowski theorem: Over a number field, the
local-global principle holds for every quadratic form.
e Corollary: P(K) < 4.

> (Because the same is true for every local field: K, R,C.)
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The simple cases

@ Hasse—Minkowski theorem: Over a number field, the
local-global principle holds for every quadratic form.
Corollary: P(K) < 4.

> (Because the same is true for every local field: K, R,C.)

Theory of spinor genera: If K is not tot. real, then local-global
principle holds for forms over Ok in at least four variables.

Corollary: P(Ok) < 4 unless K is totally real.

(]
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The simple cases

@ Hasse—Minkowski theorem: Over a number field, the
local-global principle holds for every quadratic form.

e Corollary: P(K) < 4.
> (Because the same is true for every local field: K, R,C.)
@ Theory of spinor genera: If K is not tot. real, then local-global
principle holds for forms over Ok in at least four variables.
o Corollary: P(Ok) < 4 unless K is totally real.
e Similarly: P(O) <5 unless K is totally real.
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The simple cases

@ Hasse—Minkowski theorem: Over a number field, the
local-global principle holds for every quadratic form.
e Corollary: P(K) < 4.

> (Because the same is true for every local field: K, R,C.)

@ Theory of spinor genera: If K is not tot. real, then local-global
principle holds for forms over Ok in at least four variables.

o Corollary: P(Ok) < 4 unless K is totally real.
e Similarly: P(O) <5 unless K is totally real.
e But what about P(Ok) for totally real K?
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The simple cases

@ Hasse—Minkowski theorem: Over a number field, the
local-global principle holds for every quadratic form.
e Corollary: P(K) < 4.

> (Because the same is true for every local field: K, R,C.)

@ Theory of spinor genera: If K is not tot. real, then local-global
principle holds for forms over Ok in at least four variables.

Corollary: P(Ok) < 4 unless K is totally real.
Similarly: P(O) <5 unless K is totally real.
But what about P(Ok) for totally real K?

Also, the local—global principle provides a simple description of
ST K? resp. Y 02, What if the local-global principle fails?

J. Krésensky Sums of integral squares in totally real number fields



About the set Y O?

@ In any ring R, a sum of squares is a square modulo 2R.
> Thus2—|—f§é2(’)@(\[

@ The only local conditions for & € O to be a sum of squares
are a = 0 and a = O (mod 20).

@ Under these conditions, « is locally a sum of four squares.
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About the set Y O?

@ In any ring R, a sum of squares is a square modulo 2R.
> Thus2+\f§§2(’)@(\[

The only local conditions for « € O to be a sum of squares
are a = 0 and a = O (mod 20).

Under these conditions, « is locally a sum of four squares.

Conjecture (R. Scharlau, 1979): There are only finitely many
tot. real orders where Y~ 02 contains all such numbers.

» Only six such orders are known:
Ok for K = Q;Q/n) for n = 2,3,5; Q/2,v/5); Q(Cao+(ab)-

» Local-global principle fails spectacularly.
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About the set Y O?

@ In any ring R, a sum of squares is a square modulo 2R.
> Thus2+\f§§2(’)@(\[
@ The only local conditions for & € O to be a sum of squares
are a = 0 and a = O (mod 20).
@ Under these conditions, « is locally a sum of four squares.
e Conjecture (R. Scharlau, 1979): There are only finitely many
tot. real orders where Y~ 02 contains all such numbers.
» Only six such orders are known:
Ok for K = Q; Q(y/n) for n = 2,3,5; Q(+/2,v/5); Q((ao+Cogt)-
» Local—global principle fails spectacularly. (Even with tons of
variables.)

» Recent progress: Kala—Yatsyna, 2024.
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Theorem (Peters; Cohn and Pall; Dzewas; Kneser; MaaB)

Let O be an order in a real quadratic number field. Then

3 for O = Z[v2], Z[V3] and Z[155],
P(O) =14 for O =7Z[V6], Z[\T] and nonmaximal order Z[\/5|,
5 otherwise.

The maximal length is attained for example by:
® Length3: 1+ V2 +(1+v2?2, 2+ (2+V3), 2+ (L55)%
@ Length4: 34 (1++6)2, 3+ (1+vV7)% 3+ (1 +56)%
® Length5: 3+ (L0/13)% 4 (14 1yY13)? i 7[LY13) in alf the remaining cases
74 (14 f/n)? for Z[fy/n] or 7+ (FE)? for Z[F 17,

Together with P(O) < 5 for not-totally-real orders, this lead
Peters to conjecture P(O) < 5 for all number field orders.
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Theorem (R. Scharlau, 1980)
There are totally real number fields with arbitrarily large P(Ok).

The proof uses multiquadratic fields Q(,/n1, \/n2, - .., /nx) for
pairwise coprime square-free n;.
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Theorem (R. Scharlau, 1980)

There are totally real number fields with arbitrarily large P(Ok).

The proof uses multiquadratic fields Q(,/n1, \/n2, - .., /nx) for
pairwise coprime square-free n;.

Theorem (Kala—Yatsyna, 2021)

There exists a function g(d) such that for every field K with
d = [K : Q] and every order O C Ok one has

P(0) < g(d).
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Theorem (R. Scharlau, 1980)

There are totally real number fields with arbitrarily large P(Ok).

The proof uses multiquadratic fields Q(,/n1, \/n2, - .., /nx) for
pairwise coprime square-free n;.

Theorem (Kala—Yatsyna, 2021)

There exists a function g(d) such that for every field K with
d = [K : Q] and every order O C Ok one has

P(0) < g(d).

e In particular, P(O) < 5 for quadratic, < 6 for cubic and <7
for quartic orders.
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Theorem (R. Scharlau, 1980)

There are totally real number fields with arbitrarily large P(Ok).

The proof uses multiquadratic fields Q(,/n1, \/n2, - .., /nx) for
pairwise coprime square-free n;.

Theorem (Kala—Yatsyna, 2021)

There exists a function g(d) such that for every field K with
d = [K : Q] and every order O C Ok one has

P(0) < g(d).

e In particular, P(O) < 5 for quadratic, < 6 for cubic and <7
for quartic orders.

@ It seems that typically, this upper bound is the correct value.
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Representation of QFs by QFs

@ A quadratic form ¢ is represented by a quadratic form Q over
the same ring if we obtain ¢ from Q by plugging in suitable
linear forms.

e Example: o(x,y) = 3x% + 4xy + 4y? is represented by the
sum-of-three-squares form f3: x? + x? + (x + 2y ).
e Mordell, 1930s: Every binary QF over Z which is a sum of

squares of linear forms (i.e. represented by some ly) is already
a sum of 5 squares.

Definition

Let R be a ring. Denote by Z’,‘? the set of all k-ary quadratic forms
which are represented by Iy for some (possibly large) N. We put

gr(k) = min{n € N | Every form in Xk is represented by I,}.

e P(R) = gr(1).



Quadratic Waring's problem

e THE upper bound: For O C K with d = [K : Q] we have

P(O) < gz(d).

o Little is known:

» gz(k) =k+3for k=1,...,5 (Mordell, Ko, 1930s)

» but gz(6) = 10 (Kim—Oh 1997).

» Lower bound linear in d, upper bound exponential in v/d.
e P(Ok) < Go,(d) for [K : F] = d (K.—Yatsyna, 2023).

» (Here Gg is the “correctly defined” gg. It matches gg if R is a UFD.)
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Quadratic Waring's problem in number fields

® 80, (2) =5 (Sasaki, 1993)
° g@Q(ﬁ)(Q) 5 (He-Hu, 2022).

® Go,(2) =7 for all other real quadratic fields K # Q(v/3)
(K.=Yatsyna, 2023).

Conjecture (my favourite)

gz[\/§](2) = 6.

Upper bounds for go, (- ): Chan—lcaza, K.-Yatsyna.
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A sort of integral local—global principle

@ Two quadratic forms are equivalent if they differ only by
invertible change of variables.

@ They lie in the same genus if they are everywhere locally
equivalent.

o E.g.: gen(x? + 82y2) = {cls(x® + 82y2), cls(2x? + 41y?)}.

Let @ be a quadratic form over Ok. If a is locally represented be
Q, then it is represented by some form in gen(Q).

Let Q be a quadratic form over Ok. If h(Q) =1 (the class
number), then the local-global principle holds for Q.

e Unfortunately, h(/3) =1 only for six totally real fields.
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Cubic fields

Theorem (K., 2022)

Let K = Q(¢7 + ¢ h). Then:
e P(Ok) = 4.
0 > 02 ={a €0k |ax0,Na)#T}.

This is the lowest possible value:
For odd [K : Q], Springer’s th. implies £(7) = 4, hence P(Ok) > 4.
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Cubic fields

Theorem (K., 2022)

Let K = Q(¢7 + ¢ h). Then:
e P(Ok) = 4.
0 > 02 ={a €0k |ax0,Na)#T}.

This is the lowest possible value:
For odd [K : Q], Springer’s th. implies £(7) = 4, hence P(Ok) > 4.

On the other hand:
Let p, be a root of x> — ax?® — (a+3)x — 1 for an integer 2 > —1.
Then K(p,) is called a simplest cubic field.

Theorem (Tinkovd, 2023+)

Let K = Q(p,) for a> 2. Then P(Z[p,]) = 6.

And a further improvement: Tinkova, Gil-Munoz 2025.
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Biquadratic fields

Many recent papers: K.—Raska—Sgallovd, He—Hu, Tinkov4,
Dombek.

Let K be a real biquadratic field: K = Q(/nt, /n2). Then:
@ P(Ok) = 3 for three exceptional fields;
e P(Ok) = 4 for four exceptional fields;

o P(Ok) =5 if K contains v/2 or /5 (minus the exceptional)
and for five further exceptional fields.

e 6 < P(Ok) < 7 otherwise.

Theorem (K., 2025+)

Every real biquadratic field K contains infinitely many orders O
with P(O) =T.
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Theorem (K.-Scharlau, 2025+)

Let K = Q(v/2,/5) and L = Q(Cao + Gogl) = @( %) Thaz

P(Ok) =P(0Or) = 3.

The proof is based on examining the other forms in gen(/3), see
next slide.

There are precisely three other totally real quartic fields K with

P(Ok) = 3, namely Q(v/2,v/3), Q(v/3,v/5) and Q(Ci6 + (ig)-
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Sketch of the proof

The genus of /3 over K = Q(v/2,1/5) consists of two equivalence
classes, with representatives I3 and Q3, where

Q(x,y,z) = 2x° + 2y? + 32% + 25xy — 2V2xz + 2V 2¢pyz

_ 1+f

(¢ = and g = 155),
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Sketch of the proof

The genus of /3 over K = Q(v/2,1/5) consists of two equivalence
classes, with representatives I3 and Q3, where

Q(x,y,z) = 2x° + 2y? + 32% + 25xy — 2V2xz + 2V 2¢pyz

Proposition

If & € Ok is locally a sum of squares, then it is represented either
by /5 or by Qs.
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Sketch of the proof

The genus of /3 over K = Q(v/2,1/5) consists of two equivalence
classes, with representatives I3 and Q3, where

Q(x,y,z) = 2x° + 2y? + 32% + 25xy — 2V2xz + 2V 2¢pyz

Proposition

If & € Ok is locally a sum of squares, then it is represented either
by /5 or by Qs.

It remains to show the following:

If a € Ok is represented by Qs, then it is also represented by Is.
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Sketch of the proof

Q3(37 b7 C) =

= (553) + (Ha+Pc) + (Fa+ V2b+ pc)

= (Lb+cf + (Sb+c)f + (V2a+ Zb—cf

_\2
= (J3(a+b) — )" + (F(a— b) — pc ) (G2 + )
2
= (Z5(a — ¢b) — pc) +(Z5(—pa+ Bb))*+(Z5(@a + b) — pc)’
_ 2 2 2

= (%(a +@b) —¢) +(ﬁ(gpa —b)—c¢) +(%(<pa — ¢b) —c)’.
The squares in the first equality are integral iff a =0 (all the
congruences are modulo v/2), in the second iff b = 0, in the third
iff a = b, in the fourth iff a = @b and in the fifth iff a = pb. Ol

The proof for the other field Q(Cao + Cyg') is similar.



As a corollary, we can prove the following:

Theorem (K.—Scharlau)

x2 4+ y? + 22 + xy + \/2yz is universal over Og(v/3,v5)-

Similarly, we get a ternary universal quadratic form over O@(C%)'
These are the first examples in degree > 2.
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Thank you for your attention (and for all your questions)!
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A proper list of references can be found in the following two papers:

[§ J. Krdsensky, M. Raéka and E. Sgallovd, Pythagoras numbers
of orders in biquadratic fields, Expo. Math. 40, 1181-1228
(2022). Available at arXiv:2105.08860.

[§ J. Krédsensky and P. Yatsyna, On quadratic Waring's problem
in totally real number fields, Proc. Amer. Math. Soc. 151,
1471-1485 (2023). Available at arXiv:2112.15243.

If you're interested, | encourage you to read the introductions.
Or contact me at jakub.krasensky(at)fit.cvut.cz.
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