Isotropy Indices of Pfister multiples in Characteristic 2 (joint with K. Zemková)

Squares in Dortmund

Nico Lorenz

Ruhr-Universität Bochum

1. April 2025

Isotropy Indices of Pfister multiples in Characteristic 2 (joint with K. Zemková)

Ruhr-Universität Bochum

Motivation	The First Isotropy Index	Isotropy over Function Fields of Quadrics	Generic Pfister forms	References

Witt decomposition

• in characteristic 2, Witt decomposition is slightly more involved:

$$\varphi \cong \varphi_1 \perp \varphi_2 \perp i \times \mathbb{H} \perp j \times \langle \mathbf{0} \rangle$$

with

- $\begin{array}{l} \ \varphi_1 \cong [a_1, b_1] \perp \ldots \perp [a_r, b_r] \ \text{nonsingular} \\ \text{recall the notation } [a, b] \colon F^2 \to F, (x, y) \mapsto ax^2 + xy + by^2. \\ \ \varphi_2 \cong \langle c_1, \ldots c_s \rangle \ \text{totally singular or quasilinear} \text{unique up to isometry} \\ \ \varphi_1 \perp \varphi_2 \ \text{anisotropic} \end{array}$
- *type*(*r*, *s*) ∈ N² is unique;
- Witt index i = i_W(φ) and defect j = i_d(φ) are unique; the anisotropic part φ₁ ⊥ φ₂ is unique up to isometry
- total isotropy index $i_t(\varphi) = i_W(\varphi) + i_d(\varphi)$

We have multiple ways to measure isotropy!

Motivation	The First Isotropy Index	Isotropy over Function Fields of Quadrics	Generic Pfister forms	References

Main Question

• We consider the tensor product of a bilinear form $\mathfrak{b} = \langle a_1, \dots, a_k \rangle_b$ and a quadratic form φ

$$\mathfrak{b}\otimes\varphi=a_1\varphi\perp\ldots\perp a_k\varphi$$

- Questions:
 - How are the different isotropy indices of $\mathfrak{b} \otimes \varphi$ and φ related to each other?
 - What about isotropy indices over field extensions?
 Of most interest: connections between i_{*}(φ_{F(ψ)}) and i_{*}(b ⊗φ_{F(b ⊗ψ)}) for another quadratic form ψ with i_{*} ∈ {i_W, i_d, i_t}.

In particular, for $\psi=\varphi$ and $\mathfrak{i}_*=\mathfrak{i}_\mathfrak{l},$ we obtain the *first isotropy indices*

$$\mathfrak{i}_1(\varphi) = \mathfrak{i}_\mathfrak{t}(\varphi_{F(\varphi)})$$
 and $\mathfrak{i}_1(\mathfrak{b} \otimes \varphi) = \mathfrak{i}_\mathfrak{t}(\mathfrak{b} \otimes \varphi_{F(\mathfrak{b} \otimes \varphi)})$

(Theorem by A. Laghribi: if φ is not totally singular, $i_1(\varphi) = i_W(\varphi_{F(\varphi)})$ and if φ is totally singular, $i_1(\varphi) = i_d(\varphi_{F(\varphi)})$)

Motivation	The First Isotropy Index	Isotropy over Function Fields of Quadrics	Generic Pfister forms	References

Conventions

- · We cannot expect deep results without constrains on our forms
- Motivated by J. O'Shea who asked the same question in characteristic ≠ 2: We can expect results for *n*-fold bilinear Pfister form: defined as in characteristic ≠ 2 as tensor product

$$\langle\!\langle a_1,\ldots,a_n\rangle\!\rangle_b = \langle\!\langle a_1\rangle\!\rangle_b \otimes \ldots \otimes \langle\!\langle a_n\rangle\!\rangle_b$$

where $\langle\!\langle a \rangle\!\rangle_b = \langle 1, a \rangle_b$ (Don't worry about sign conventions here!)

Notation for the rest of the talk:

- φ a quadratic form of dimension dim $(\varphi) \ge 2$ and of type (r, s)
- π an anisotropic *n*-fold bilinear Pfister form for some $n \in \mathbb{N}_+$

The base field

Over F, the situation is covered by the following well known result:

Proposition

If $\pi \otimes \varphi$ is isotropic, there are $k, \ell \in \mathbb{N}$ and a quadratic form φ_1 of type $(r - k, s - \ell)$ such that

 $\pi \otimes \varphi \cong \pi \otimes (\varphi_1 \perp k \times \mathbb{H} \perp \ell \times \langle 0 \rangle)$

and $\pi \otimes \varphi_1$ is anisotropic. In particular, we have

 $\mathfrak{i}_{W}(\pi \otimes \varphi) = k \cdot \dim(\pi)$ and $\mathfrak{i}_{d}(\pi \otimes \varphi) = \ell \cdot \dim(\pi)$.

Proof: The proof is just a modification of the usual proof in characteristic \neq 2.

The First Isotropy Index

If $\pi\otimes \varphi$ is anisotropic, we have

 $\mathfrak{i}_1(\pi\otimes\varphi)=\mathfrak{i}_\mathfrak{t}((\pi\otimes\varphi)_{F(\pi\otimes\varphi)})=\mathfrak{i}_\mathfrak{t}(\pi_{F(\pi\otimes\varphi)}\otimes\varphi_{F(\pi\otimes\varphi)}),$

and thus readily obtain $i_1(\pi \otimes \varphi) \ge \dim(\pi)$ by the above proposition. This is the base case for the proof of the following:

Theorem

If $\pi\otimes \varphi$ is anisotropic, we have

$$\mathfrak{i}_1(\pi \otimes \varphi) \ge (\dim \pi) \mathfrak{i}_1(\varphi).$$

Proof: Because of the above, we may assume $i_1(\varphi) > 1$. We choose a dominated form $\varphi' \preccurlyeq \varphi$ (i.e. $\varphi' \cong \varphi|_U$ for some subspace *U*) of dimension dim $(\varphi) - i_1(\varphi) + 1$. The dimension is big enough to assure that $\varphi'_{F(\varphi)}$ is isotropic and thus, $(\pi \otimes \varphi')_{F(\pi \otimes \varphi)}$ is isotropic by a Theorem of K. Zemková. Clearly, $(\pi \otimes \varphi)_{F(\pi \otimes \varphi')}$ is isotropic as well. It follows

$$\dim(\pi \otimes \varphi) - \mathfrak{i}_1(\pi \otimes \varphi) = \dim(\pi \otimes \varphi') - \underbrace{\mathfrak{i}_1(\pi \otimes \varphi')}_{\geqslant \dim \pi} \qquad \text{(key equation, B. Totaro)}$$

hence the assertion.

Examples for (strict in-) equality?

Isotropy Indices of Pfister multiples in Characteristic 2 (joint with K. Zemková)

Motivation	The First Isotropy Index	Isotropy over Function Fields of Quadrics	Generic Pfister forms	References

Strict Inequality

Example

 (a) Let F = 𝔽₂(a, b, t) with independent indeterminants a, b, t, φ = [1, a] ⊥ t[1, b] and π = ⟨⟨a + b⟩⟩_b. Then i₁(φ) = 1, but one can show that

$$\pi \otimes \varphi \cong \langle\!\langle t, \mathbf{a} + \mathbf{b} \rangle\!\rangle_{\mathbf{b}} \otimes [\mathbf{1}, \mathbf{a}]$$

is a quadratic Pfister form and thus has

$$\mathfrak{i}_1(\pi\otimes\varphi)=4>2\cdot 1=\dim(\pi)\cdot\mathfrak{i}_1(\varphi)$$

(b) Similarly, for π = ⟨⟨b⟩⟩_b and φ = ⟨1, a, t, abt⟩, we obtain an example for strict inequality with totally singular forms (using that π ⊗ φ is a *quasi Pfister form* so that similar arguments apply).

Explicit example for equality will follow at the end of the talk, because this will be an example showing strictness for multiple inequalities.

Motivation	The First Isotropy Index	Isotropy over Function Fields of Quadrics	Generic Pfister forms	References

Function fields of Quadrics

• We now would like to compare $i_*((\pi \otimes \varphi)_{F(\pi \otimes \psi)})$ with $i_*(\varphi_{F(\psi)})$ and hope for the analogous inequality

$$\mathfrak{i}_*((\pi \otimes \varphi)_{F(\pi \otimes \psi)}) \ge (\dim \pi)\mathfrak{i}_*(\varphi_{F(\psi)})$$

- While this is a natural generalization, the above techniques do not work anymore since there is no analogue for the *key equation* from above
- We do not show this in complete generality, but have to make assumptions on the types of $\varphi, \psi.$
- For our result, there are key reduction steps:
 - Reduction to anisotropic forms technical, won't give further details on this part
 - Study isotropy behaviour over $F(\mu)$ where $\mu \preccurlyeq \psi$ we will show that we find a suitable form of μ of dimension 2.

Motivation	The First Isotropy Index	Isotropy over Function Fields of Quadrics	Generic Pfister forms	References

Lemma

For a form μ with dim $\mu \ge 2$ and $\mu \preccurlyeq \psi$ with ψ not totally singular, we have

```
\begin{split} &i_{W}(\varphi_{F(\mu)}) \geqslant i_{W}(\varphi_{F(\psi)}), \\ &i_{d}(\varphi_{F(\mu)}) \geqslant i_{d}(\varphi_{F(\psi)}), \\ &i_{t}(\varphi_{F(\mu)}) \geqslant i_{t}(\varphi_{F(\psi)}). \end{split}
```

Proof:

- For the defect, this follows from results of Stephan Scully (which apply more generally to *quasilinear p-forms*)
- For the Witt index, since ψ is not totally singular, we have

$$\mathfrak{i}_{\mathrm{W}}(\psi_{F(\mu)}) \ge \mathfrak{i}_{\mathrm{W}}(\psi_{F(\psi)}) = \mathfrak{i}_{1}(\psi) > 0$$

and hence, $F(\mu)(\psi)/F(\mu)$ is purely transcendental. We thus have

$$\mathfrak{i}_{W}(\varphi_{F(\mu)}) = \mathfrak{i}_{W}(\varphi_{F(\mu)}(\psi)) \ge \mathfrak{i}_{W}(\varphi_{F(\psi)}).$$

Motivation	The First Isotropy Index	Isotropy over Function Fields of Quadrics	Generic Pfister forms	References

Main Theorem

Theorem

Let φ and ψ be of dimension at least 2, and let π be an n-fold bilinear Pfister form.

(a) We have

$$\mathfrak{i}_{\mathrm{d}}((\pi\otimes\varphi)_{F(\pi\otimes\psi)}) \geqslant (\dim\pi)\mathfrak{i}_{\mathrm{d}}(\varphi_{F(\psi)}).$$

(b) Moreover, if φ is nonsingular and ψ is not totally singular, then we also have

$$\mathfrak{i}_{W}((\pi \otimes \varphi)_{F(\pi \otimes \psi)}) \ge (\dim \pi) \mathfrak{i}_{W}(\varphi_{F(\psi)}).$$

Proof (1/2):

- Both proofs work similarly and make use of similar lemmas for the respective isotropy indices.
- We use induction on *n*, the induction step being the easier part.
- For n≥ 2, write π = ⟨⟨a⟩⟩_b ⊗ π'. By using the case n = 1, we reduce to the calculation of i_{*}((π' ⊗ φ)_{F(π'⊗ψ)}), which is covered by induction.

Proof (2/2):

 For n = 1, i.e. π = (1, a)_b, we find linear independent vectors u, v over E = F(π ⊗ ψ) with ψ(u) + aψ(v) = 0. Thus, for μ = ψ|_{span(u,v)}, we have i_{*}(π_E ⊗ μ) = 2. If μ is nonsingular or if we consider the defect, we can choose a bilinear form τ over E of dimension i_{*}(φ_{E(μ)}) such that τ ⊗ μ ≤ φ_E. We obtain

$$\begin{split} \mathfrak{i}_*((\pi \otimes \varphi)_E) \geqslant \mathfrak{i}_*(\pi_E \otimes \tau \otimes \mu) \\ \geqslant \mathfrak{i}_*(\pi_E \otimes \mu) \mathsf{dim}\tau = 2\mathsf{dim}\tau = 2\mathfrak{i}_*(\varphi_{E(\mu)}) \geqslant 2\mathfrak{i}_*(\varphi_{F(\psi)}). \end{split}$$

If $\mu \cong \langle 1, d \rangle$ is totally singular and we consider the Witt index, we have

$$\varphi_{\mathsf{E}} \cong \prod_{i=1}^{k} ([a_i, b_i] \perp d[a_i, c_i]) \perp \varphi'$$

with $k = i_W(\varphi_{E(\mu)})$ and $\varphi'_{F(\sqrt{d})}$ anisotropic and use

$$\pi_E \otimes ([a_i, b_i] \perp d[a_i, c_i]) \cong \langle 1, d \rangle \otimes [a_i, b_i + c_i] \perp 2 \times \mathbb{H}$$

Some remarks about the assumptions

We want to clarify why we needed the restrictions on φ and ψ in part (b) of the above Theorem in contrast to part (a).

- We needed ψ to be not totally singular so that we can apply the above lemma – recall that we used a chain of inequalities

$$\mathfrak{i}_{\mathrm{W}}(\psi_{F(\mu)}) \ge \mathfrak{i}_{\mathrm{W}}(\psi_{F(\psi)}) = \mathfrak{i}_{1}(\psi) > 0$$

where the first inequality only holds for ψ not totally singular

 Further, we needed φ to be nonsingular since only for nonsingular forms, we find a decomposition related to the Witt index resp. defect *r* over a quadratic extension *E*/*F* where *E* = *F*(φ⁻¹(*d*)) resp. *E* = *F*(√*d*): Recall that we have

$$arphi \cong arphi' \perp au \otimes [\mathsf{1}, d]$$
 resp. $arphi \cong \coprod_{i=0}^r \left([a_i, b_i] \perp d[a_i, c_i]
ight) \perp arphi'$

with dim(τ) = r and φ'_E anisotropic.

• We did not need similar assumptions for our results about the defect, since the defect only depends on the quasilinear part of a quadratic form and we were thus able to reduce to the case of totally singular forms

Theorem

Let φ, ψ be quadratic forms over F as above, let $K = F((X_1)) \dots ((X_n))$ be the field of iterated Laurent series and $\pi = \langle X_1, \dots, X_n \rangle_b$.

(a) If φ is nonsingular and ψ is not totally singular, then we have

$$\mathfrak{i}_{\mathrm{W}}((\pi\otimes\varphi)_{\mathcal{K}(\pi\otimes\psi)})=(\dim\pi)\mathfrak{i}_{\mathrm{W}}(\varphi_{\mathcal{F}(\psi)}).$$

(b) For arbitrary quadratic forms φ and ψ , we have

$$\mathfrak{i}_{\mathrm{d}}((\pi\otimes\varphi)_{\mathcal{K}(\pi\otimes\psi)})=(\dim\pi)\mathfrak{i}_{\mathrm{d}}(\varphi_{\mathcal{F}(\psi)}).$$

(c) For an arbitrary quadratic form φ , we have

$$\mathfrak{i}_1(\pi\otimes\varphi)=(\dim\pi)\mathfrak{i}_1(\varphi).$$

Proof: Subtle calculations with our lemmas and using that for $\varphi \cong \varphi_0 \perp X \varphi_1$ with φ_0, φ_1 defined over *F*, we have

$$\mathfrak{i}_{W}(\varphi) = \mathfrak{i}_{W}(\varphi_{0}) + \mathfrak{i}_{W}(\varphi_{1})$$
 and $\mathfrak{i}_{d}(\varphi) = \mathfrak{i}_{d}(\varphi_{0}) + \mathfrak{i}_{d}(\varphi_{1})$.

Motivation	The First Isotropy Index	Isotropy over Function Fields of Quadrics	Generic Pfister forms	References

References

- Hoffmann, D. W., Laghribi, A., 2006. Isotropy of quadratic forms over the function field of a quadric in characteristic 2. J. Algebra 295 (2), 362–386.
- Hoffmann, D. W., Laghribi, A., 2004. Quadratic Forms and Pfister Neighbors in Characteristic 2. Trans. Amer. Math. Soc. 356 (10), 4019–4053.
- Laghribi, A., 2002. On the generic splitting of quadratic forms in characteristic 2. Math. Z. 240 (4), 711–730.
- Lorenz, N., Zemková, K., 2024. Isotropy indices of Pfister multiples in Characteristic 2. J. Pure Appl. Algebra Vol. 228 (12).
- O'Shea, J., 2016. Multiples of Pfister forms. J. Algebra 449, 214–236.
- Scully, S., 2016. On the splitting of quasilinear *p*-forms. J. Reine Angew. Math. 2016 (713), 49 83.
- Zemková, K., 2024. Isotropy of quadratic forms over function fields in characteristic 2. Comm. Algebra Vol. 52 (10).