Orthogonal Representations of Finite Groups

Gabriele Nebe

Lehrstuhl für Algebra und Zahlentheorie

joint work with Thomas Breuer, Linda Hoyer, and Richard Parker

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Group algebras

- ▶ G finite group, K field
- ► $KG = \bigoplus_{g \in G} Kg$ group algebra
- $\mathbb{Q}G \cong \bigoplus_{i=1}^{h} A_i$ with $A_i \cong D_i^{n_i \times n_i}$ semisimple algebra
- ► $K_i := Z(D_i)$ abelian number fields, conductor divides |G|
- D_i division algebra $\dim_{K_i}(D_i) = m_i^2$
- D_i has uniformly distributed invariants
- $m_i n_i$ divides $|G| = \sum_{i=1}^h [K_i : \mathbb{Q}](m_i n_i)^2$

Natural involution

$$\blacktriangleright \iota: \mathbb{Q}G \to \mathbb{Q}G, \sum_{g \in G} a_g g \mapsto \sum_{g \in G} a_g g^{-1}.$$

- $\blacktriangleright \iota(A_i) = A_i, \, \iota_i := \iota_{|A_i|}$
- K_i real ⇒ ι_i involution of first kind, then m_i ∈ {1,2} and m_i = 2 if ι_i symplectic.
- K_i not real ι_i involution of second kind.

Determine invariants of ι_i

Invariant forms

- $\rho_i: G \to A_i^{\times}$ group homomorphism
- $\chi_i: G \to K_i, g \mapsto \operatorname{trace}(\rho_i(g))$ character,

 $K_i = \mathbb{Q}(\chi_i)$ character field

 χ_i constant on conjugacy classes, $\chi_i(1) = n_i m_i$

- Frobenius Schur indicator $ind(\chi_i) \in \{+, o, -\}$
- + if K_i is real and $\rho_i(G)$ stabilises a quadratic form Q_i
- if K_i is real and $\rho_i(G)$ stabilises a symplectic form S_i
- o if K_i is complex, then $\rho_i(G)$ stabilises a Hermitian form H_i $F_i := Fix_{K_i}(\iota_i)$

 $\mathcal{F}(\rho_i) = \{aQ_i \mid a \in K_i\} \text{ resp.} = \{aH_i \mid a \in F_i\}$ space of $\rho_i(G)$ -invariant forms. Invariants of ι_i are the invariants of Q_i resp. H_i that are independent of scaling.

Discriminants for even character degree

ι_i orthogonal

$$\begin{split} \mathfrak{F}(\rho_i) &= \{ aQ_i \mid a \in K_i \}, \, \rho_i : G \to O(Q_i) \text{ orthogonal} \\ \operatorname{disc}(aQ_i) &= a^{\chi_i(1)} \operatorname{disc}(Q_i) \\ \text{so } \operatorname{disc}(\iota_i) \in K_i^{\times} / (K_i^{\times})^2 \text{ well defined, if and only if } \chi_i(1) \text{ even.} \end{split}$$

 $\operatorname{Irr}^+(G) := \{ \chi \in \operatorname{Irr}(G) \mid \operatorname{ind}(\chi) = + \text{ and } \chi(1) \text{ even } \}$

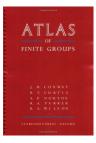
ι_i of second kind

 $\mathcal{F}(\rho_i) = \{aH_i \mid a \in F_i\}, \rho_i : G \to U(H_i) \text{ unitary}$ $\operatorname{disc}(\iota_i) \in F_i^{\times} / N_{K_i/F_i}(K_i^{\times}) \text{ well defined, if and only if } \chi_i(1) \text{ even.}$

 $\operatorname{Irr}^{o}(G) := \{ \chi \in \operatorname{Irr}(G) \mid \operatorname{ind}(\chi) = o \text{ and } \chi(1) \text{ even } \}$

Determine discriminants for the characters in $Irr^+(G)$ and $Irr^o(G)$ for all but the largest few ATLAS groups.

・ロト・1回ト・1回ト・1回ト・1回ト



◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

- Building blocks of finite groups: finite simple groups
- alternating groups
- classical groups

linear, symplectic, unitary, orthogonal groups over finite fields

- 26 sporadic simple groups: Matthieu groups ... Monster
- ATLAS of finite groups ordinary character tables of finite simple groups classifying simple QG-modules

The character table of A_7

		1a	2a	Зa	3b	4a	5a	бa	7a	7b
X.1	+	1	1	1	1	1	1	1	1	1
Х.2	+	6	2	3		•	1	-1	-1	-1
Х.З	0	10	-2	1	1			1	Α	В
Χ.4	0	10	-2	1	1			1	В	Α
Χ.5	+	14	2	2	-1		-1	2		
Х.б	+	14	2	-1	2		-1	-1		
Χ.7	+	15	-1	3		-1		-1	1	1
Χ.8	+	21	1	-3		-1	1	1		
Х.9	+	35	-1	-1	-1	1		-1		

$$A = (-1 + \sqrt{-7})/2, B = (-1 - \sqrt{-7})/2$$

◆□ > ◆□ > ◆ 三 > ◆ 三 > ● ○ ○ ○ ○

The character table of A_7

			1a	2a	3a	3b	4a	5a	6a	7a	7b
	OD										
Χ.1		+	1	1	1	1	1	1	1	1	1
Х.2	-7	+	6	2	3			1	-1	-1	-1
Х.З	-1	0	10	-2	1	1			1	Α	В
Χ.4	-1	0	10	-2	1	1			1	В	Α
Χ.5	-3	+	14	2	2	-1		-1	2		
Х.6	-15	+	14	2	-1	2		-1	-1		
Χ.7		+	15	-1	3		-1		-1	1	1
Χ.8		+	21	1	-3		-1	1	1		
Х.9		+	35	-1	-1	-1	1		-1		

$$A = (-1 + \sqrt{-7})/2, B = (-1 - \sqrt{-7})/2$$

▲□▶▲圖▶▲≣▶▲≣▶ ≣ のへで

Orthogonal stability

A character χ is called orthogonal if there is a representation ρ with character χ admitting a non-degenerate invariant quadratic form Q. Then $\rho : G \to O(Q)$. An orthogonal character χ is called orthogonally stable if there is a square class $d(\mathbb{Q}(\chi)^{\times})^2$ such that for all representations $\rho : G \to \operatorname{GL}_n(L)$ with character χ and all non-degenerate quadratic forms $Q \in \mathcal{F}(\rho)$

$$\operatorname{disc}(Q) = d(L^{\times})^2.$$

 χ orthogonally stable, then

$$\operatorname{disc}(\chi) := d(\mathbb{Q}(\chi)^{\times})^2$$

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

is called the orthogonal discriminant of χ .

The discriminant of a quadratic form

- B non-degenerate symmetric bilinear form on V
- adjoint involution ι_B on $\operatorname{End}(V)$

$$\begin{split} B(\alpha(v),w) &= B(v,\iota_B(\alpha)(w)) \text{ for all } v,w \in V.\\ E_-(B) &:= \{\alpha \in \operatorname{End}_K(V) \mid \iota_B(\alpha) = -\alpha\}\\ \blacktriangleright \text{ basis } (v_1,\ldots,v_n), \operatorname{End}(V) \cong K^{n\times n}, B &:= (B(v_i,v_j)) \in K^{n\times n}\\ \iota_B(A) &= BA^{tr}B^{-1} \text{ and } E_-(B) = \{BX \mid X = -X^{tr}\} \text{ as}\\ \vdash \iota_B(BX) &= B(BX)^{tr}B^{-1} = BX^{tr}.\\ \blacktriangleright X &= -X^{tr} \text{ then } \det(X) \text{ is a square.} \end{split}$$

Proposition (Knus, Parimala, Sridharan 1991)

 $\dim(V)$ even $\Leftrightarrow E_{-}(B) \cap \operatorname{GL}(V) \neq \{\}.$ Then $\det(B) = \det(\alpha)(K^{\times})^2$ for any invertible $\alpha \in E_{-}(B)$.

Computing the orthogonal discriminant

Proposition (Knus, Parimala, Sridharan 1991)

 $\dim(V) \text{ even } \Rightarrow E_{-}(B) \cap \operatorname{GL}(V) \neq \{\}.$ Then $\det(B) = \det(\alpha)(K^{\times})^2$ for any invertible $\alpha \in E_{-}(B)$.

Theorem (GN 22)

 χ is orthogonally stable, if and only if all its absolutely irreducible indicator + constituents have even degree.

- ▶ $Q \in \mathfrak{F}(\rho)$ non-degenerate, $\rho(G) \leq O(Q)$, $n := \dim(\rho)$ even
- $\iota_Q(g) = g^{-1}$ for all $g \in \rho(G)$
- Take three random elements g, h, k in $\rho(G)$
- compute $X = X(g, h, k) = g g^{-1} + h h^{-1} + k k^{-1}$

(ロ) (同) (三) (三) (三) (○) (○)

If det(X) ≠ 0 then
 (a) χ_ρ is orthogonally stable and
 (b) disc(χ_ρ) = (-1)^{n/2} det(X)(Q(χ)[×])².

The character table of J_2

5				-																		0			P	0					e	e	e	e			
		;		e 1		e 1	6		e e		6	6	6	e	6	6	4	e	6		15		,		36	18	2		8 16		6	т	12	12			
	p p'	powe par	r t	A A	A A	A	A	A A	A A	A A	A	24 AA AA			A		AB	10 DA CA 10C	CA	AA	BA	AA	us i		A	A	BB	C	A .	A A	BC BC	AC	AB	AB			
Xı		d 1.					38 2			50			68	7A 1	04	1	1	1				1			1						1 .	1 1	1	1	χ1		
		•					1	1 1			1	1		0	0	55		-b5			0	0		+	0	0	0	0	0	0	0	0	0 0	0	X2		
X2		- 14						2 -365		b5+2	*		-1		0	*					0	0													X3		
X3		14			2 5	- 1	1		-365		b5+2		-1	0			05	0	0	1				+	D	0	0	0	0	0	0	0	0	0 0	x		
X4	+	21	5	-3	3		0	b5+4	*	-205	*	-1	0	0	-1	65		0	0		-65		1												×	3	
Xs	+	21	5	-3	3	0) ;	*	b5+4	•	-205		0	0	-1	*	b5				-0)				6	-2	0	0	2	2	1	0	-1	-1 -	1 7	(6	
Xo	+	36	4	0	9	C	· 4	-4	-4	1	1	1		1	0	0		-1				0		++	7	3	-1	1	-3	1	0	-1	0	0	0	X7	
X7	+	63	15	-1	0	3	3	3	3	-2	-2	0	-1	0	1	-1			0	0	9						0	0	0	0	0	0	0	0	0	Xs	
Хв	+	70	-10	-2	7	1	2	-505		0	0	-1	. 1	0	0	-b5	*	0	0		b5		1													X9	
Xo	+	70 -	-10	-2	7	1	2	*	-5b5	. 0	0	-1	1	0	0	*	-b5	0	0	-1		b5	•						4	0	-1	0	-1	1	1	X10	
X10	+	90	10	6	9	0	-2	5	5	0	0	1	0	1	0	1	1	0	0	1		-1		**								c	0	-1	-1	X11	
* X11	+ 1	26	14	6	-9	0	2	1	1	1	1	-1	0	0	0	1	1	-1	-1	-1	1	1	:	+4							0 0			0	0	X12	
X12	+ 1	60	0	4	16	1	0	-5	-5	0	0	0	1	-1	0	-1	-1	0	0	0	1	. 1	:	. +-	•	B 1) 2							0 -1	-1	X13	
				-5	=	1	-1	0	0	0	0	3	1	0	-1	0	0	0 0	0	-1	C) :	: +	+	7 -	1	1	1 -		.1 -			0 0		X14	
X13		75								b5+2		0	0	0	1	b5	*	b5		C) (. .	I	+	0	0	0	0	0	0	0	0	0 0			
X14	+ 11	39 -	-3	-3	0	0	-3	-305				0	0	0	1		Ъ5	; *	b5	() () (0	1												Xis	
X15	+ 18	9 -	-3 -	-3	0	0	-3	*	-3b5	*	b5+2					1		1 0		(e -b	5	,	+	0	0	0	0	0	0	0	0	0	0	0 X1	
X10	+ 22	4	0 -	.4	8	-1	• 0	2r5-1-2	2r5-1	255	*	0	-1	0	0) -b	5	*	1												x	,
X17 -	+ 22	¥	0 -	.24	8 .	-1	0-3	2r5-1 2	2r5-1	*	265	0	-1	0	0	1	1									1	-3	-1	1	3	-1	0	-1	1	0	0 ×	18
X18 4	- 22	5 -1	5	5	0	3.	-3	0	0	0	0	0	-1	1	-1	0	(0 0) (-2	-1	0	0	0	1	1	0	0 :	.19
				4	0 -	-3	0	3	3	-2	-2	0	1	1	0	-1	-	1 0) ()	0	0	0	:	++	8				-2	-2	1	0	-1	1	1	X20
	288					-		0	0	0	0	1	0	-1	0	0	1	0 0) ()	1	0	0	:	++	6	-2	0	0				0	0	r6	-r6	X21
Number of the second	300	-20		0 -1	5	0	4					2	0	0	0	0	,	0 .	1	1	0 -	-1	-1	;	++	0	0	0	0	0	0	0					
X21Q213+	336	16	() -	б	0	0	-4	-4	1	1	-2						0 10	0 1		12	15	15 f	us	ind	4	4	8	12	8		12		28		24 24	
ind	1	2	4		3	3	4	5	5 10	5 10	5 10	6	12	7	8		2	11	0 1	0 .	12	30	30					8						0 0		0 0	X2
Ind	2	S		6	5	6	4 .	10						-1	0	0		0 -b	5	* -	-1	b5	*	I	-	0	0	C	C	() ()				x
24.0	4	2	0	-3		0	2	-2b5	*	*	b5-1	1	U	-1	0	0															-			1	-		13

・ロト・日本・日本・日本・日本・日本

The character table of J_2

• Rational Schur index of
$$\chi_{21}$$
 is 2, $A_{21} = \left(\frac{2.3}{\mathbb{Q}}\right)^{168 \times 168}$

- ► No rational representation with character χ_{21}
- But over 𝔽_p, p ≥ 7, there is an orthogonal representation of degree 336 with character χ₂₁.
- Compute $\operatorname{disc}(\chi_{21})$:
- ▶ ρ a 672 dimensional rational representation affording $2\chi_{21}$

< □ > < 同 > < Ξ > < Ξ > < Ξ > < Ξ < </p>

The discriminant field extension

•
$$d(K^{\times})^2$$
 determines $K[\sqrt{d}]/K$.

$$\blacktriangleright \ \chi \in \operatorname{Irr}^+(G), \ K := \mathbb{Q}(\chi)$$

- disc $(\chi) = d(K^{\times})^2 \Rightarrow \Delta(\chi) := K[\sqrt{d}]$ discriminant field
- ► $\chi \pmod{\wp}$ orthogonally stable $\Rightarrow \wp$ unramified in $\Delta(\chi)$ Then \wp inert $\Leftrightarrow \operatorname{disc}(\chi \pmod{\wp})$ not a square.
- primes that ramify in $\Delta(\chi)/\mathbb{Q}(\chi)$ divide the group order.
- a priori finite list of possibilities for disc(χ)
- Determine disc(\u03c0) by reducing it modulo enough primes (not dividing the group order)

 $\Delta(\chi)/\mathbb{Q}$ is not always Galois.

E.g.
$$G = J_1, \chi(1) = 56, \mathbb{Q}(\chi) = \mathbb{Q}(\sqrt{5}),$$

$$\operatorname{disc}(\chi) = (31 + 5\sqrt{5})/2, \ \operatorname{Gal}(\Delta(\chi))/\mathbb{Q} \cong D_8$$

2 ordinaries 20 Dec 2021 11 19 129 31 41 59 13/17 · 14 0-0+0-0+0-0-3 XX 14 0-0+0-0+0-0--3 × X 360+0+0+0+0+0+15 0-0-700-0+0-0+0-0--3 XX 700-0+0-0+0-0--3 × X 900+0-0+0-0-0--70-0-1260-0-0+0-0+0- +7-50-0-160 0+0+0+0+0+0+ 1 of of 224 OF OF OF OF OF OF I X X 224 Ot Ot Ot Ot Ot OT I X X 288 0- 0- 0-0-0+0+271050+0-3000-0-0-0-0+0+210-0+ 336 0+ 0+ 0+ 0+ 0+ 0+ 1 0+ 0+ ab 63 175 189ab 225 (12/4) 8/3 6 13 (12/11/9) 9/0/7 13 (Prine) = 1+ k63+ k36 (22 k36= 224ab+70ab+21ab

$$\Sigma^{-}(G) := \langle g - g^{-1} \mid g \in G \rangle \le \mathbb{Z}G.$$

 χ orthogonally stable \Leftrightarrow there is $X \in \Sigma^{-}(G)$ such that $\det(\rho(X)) \neq 0$ for any representation ρ affording χ . Then

$$\operatorname{disc}(\chi) = (-1)^{\chi(1)/2} \operatorname{det}(\rho(X)) (\mathbb{Q}(\chi)^{\times})^2.$$

 $H \leq G$ such that $\chi_{|H}$ orthogonally stable $\Leftrightarrow \exists$ such $X \in \Sigma^{-}(H)$.

A simple algebra with orthogonal involution ι . $\Sigma^{-}(A) := \{a \in A \mid a = -\iota(a)\}.$ Subalgebra $B \leq A$ orthogonally stable if and only if (a) $\iota(B) = B$ and (b) $\Sigma^{-}(B) \cap A^{\times} \neq \emptyset.$ Then

 $\operatorname{disc}(\iota) = \operatorname{disc}(\iota|_B).$

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Parker's conjecture

Discriminants of rational orthogonally stable characters are odd. If $\operatorname{disc}(\chi) = d(K^{\times})^2$ then $\nu(d)$ is even for all dyadic valuations ν of K.

Parker's conjecture holds

- ► for the ATLAS groups up to HNorder $|HN| = 2^{14}3^65^67 \cdot 11 \cdot 19 = 273,030,912,000,000$ largest $\chi(1) = 5,103,000, \mathbb{Q}(\chi) = \mathbb{Q}(\sqrt{5})$
- ▶ for characters of the form ψ + ψ where ind(ψ) =o (Navarro, Tiep, Isaacs, Liebeck)
- for solvable groups (GN)
- ▶ $SL_2(q)$, $SL_3(q)$, $SU_3(q)$ (all q, OB, LH, GN),
- for all Coxeter groups (Linda Hoyer)
- ▶ for all groups $GL_n(q)$, $G_2(q)$ with q odd (Linda Hoyer)

No counterexamples to Parker's conjecture so far.

Hermitian forms

Discriminant of quaternion algebra

• K field, $\sigma \in Aut(K)$ of order 2, $F := Fix_K(\sigma), K = F[\sqrt{-\delta}]$

▶ $d \in F^{\times}$, quaternion algebra

$$(K,d)_F := \langle 1, i, j, k \mid i^2 = -\delta, j^2 = d, ij = -ji = k \rangle_F$$

• disc_K([(K, d)_F]) =: $dN_{K/F}(K^{\times})$ K-discriminant of [(K, d)_F].

Discriminant of Hermitian form

- $H: V \times V \to K$ Hermitian form
- ► $H_B := (H(b_i, b_j))_{i,j=1}^n \in K^{n \times n}$, $B = (b_1, \dots, b_n)$ an K-basis of V
- disc $(H) := (-1)^{\binom{n}{2}} \det(H_B) N_{K/F}(K^{\times})$ discriminant of H.
- $\Delta(H) := [(K, d)_F] \in Br_2(K, F)$ discriminant algebra of H.
- $\chi \in \operatorname{Irr}^{o}(G)$, well defined $\operatorname{disc}(\chi)$ and $\Delta(\chi)$
- Primes that ramify in $\Delta(\chi)$ do divide the group order.

Orthogonal subalgebras

 \mathfrak{A} central simple *K*-algebra of even degree 2m ι involution of second kind, $F := \operatorname{Fix}_{K}(\iota)$.

A *F*-subalgebra A of \mathfrak{A} is called an orthogonal subalgebra of (\mathfrak{A}, ι) if

- (a) A is a central simple F-algebra with $KA = \mathfrak{A}$.
- (b) A is invariant under ι , i.e. $\iota(A) = A$.
- (c) The restriction of ι to A is an orthogonal involution of A.

(V, H) Hermitian space of dimension 2m B an orthogonal basis, so H_B diagonal matrix. $\mathfrak{A} = \operatorname{End}(V) = K^{2m \times 2m}, \iota = \iota_H.$ Then $A := F^{2m \times 2m}$ is an orthogonal subalgebra. $\operatorname{disc}(H) = \operatorname{disc}(\iota_A)N_{K/F}(K^{\times}).$

Orthogonal subalgebras

$$\begin{array}{l} \mathbf{k} & K = F[\sqrt{-\delta}], \\ \mathbf{k} & V = Kb_1 \oplus Kb_2, \, d \in F^{\times}, \, H_B := \operatorname{diag}(1, d) \in K^{2 \times 2}. \\ \mathbf{k} & \operatorname{disc}(H) = \operatorname{disc}(H_B) = -dN_{K/F}(K^{\times}) \\ \mathbf{k} & = \langle i := \operatorname{diag}(\sqrt{-\delta}, -\sqrt{-\delta}), j := \begin{pmatrix} 0 & 1 \\ d & 0 \end{pmatrix} \rangle_F \subseteq K^{2 \times 2} \\ \mathbf{k} & \operatorname{adjoint} \text{ involution } \iota_H \text{ restricts to orthogonal involution } \iota_{\mathfrak{Q}} \text{ of } \mathfrak{Q}. \\ \mathbf{k} & (i) = -i, \operatorname{so} \operatorname{disc}(\iota_{\mathfrak{Q}}) = -\operatorname{det}(i)(F^{\times})^2 = -\delta(F^{\times})^2. \\ \mathbf{k} & \operatorname{disc}(\iota_H) = -dN_{K/F}(K^{\times}) \\ \mathbf{k} & \in N_{K/F}(K^{\times}) \end{array}$$

$$\operatorname{disc}(H_B) = \operatorname{disc}(\iota_H) = \operatorname{disc}(\iota_{\mathfrak{Q}}) \operatorname{disc}_K([\mathfrak{Q}])$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Unitary discriminant from orthogonal subalgebra

Theorem (GN 24)

Let (V, H) be a Hermitian *K*-space of even dimension 2m, $\mathfrak{A} := \operatorname{End}_K(V)$, and $\iota = \iota_H$ the adjoint involution of the non-degenerate Hermitian form *H*. Let *A* be an orthogonal subalgebra of \mathfrak{A} .

(a)
$$[A] \in \operatorname{Br}_2(K, F).$$

(b) $\operatorname{disc}(H) = \operatorname{disc}_K([A])^m \operatorname{disc}(\iota_{|A}) \in F^{\times}/N_{K/F}(K^{\times}).$

Proof: Choose suitable orthogonal basis and use formula above for each orthogonal summand.

(日) (日) (日) (日) (日) (日) (日)

Fixed algebras of certain group automorphisms are orthogonal subalgebras.

Fixed algebras

- ▶ $\chi \in Irr^{o}(G), \rho : G \to GL_{2m}(K)$ representation affording χ
- $\alpha \in \operatorname{Aut}(G)$ with $\alpha^2 = 1$ and $\chi \circ \alpha = \overline{\chi}$.

•
$$A = \langle \rho(g) + \rho(\alpha(g)) : g \in G \rangle_F = Fix(\alpha)$$
 is orthogonal subalgebra

- $\blacktriangleright \Sigma^{-}(A) = \langle \rho(g) + \rho(\alpha(g)) (\rho(g^{-1}) + \rho(\alpha(g^{-1}))) : g \in G \rangle_{F}$
- $X \in \Sigma^{-}(A) \cap A^{\times}$ then the α -discriminant of χ is

$$\operatorname{disc}^{\alpha}(\chi) = (-1)^m \operatorname{det}(X) (F^{\times})^2.$$

Theorem

 $\operatorname{disc}(\chi) = \operatorname{disc}^{\alpha}(\chi) \operatorname{disc}_{K}([A])^{m}.$

 $\operatorname{disc}^{\alpha}(\chi)$ is a square class of *F* hence can be obtained by enough reductions modulo primes $\operatorname{disc}_{K}([A])$ is obtained from Schur indices of the induced character of χ to the semidirect product $G : \langle \alpha \rangle$.

Conclusion

Computed the orthogonal discriminants of the characters in

 $\operatorname{Irr}^+(G) = \{ \chi \in \operatorname{Irr}(G) \mid \operatorname{ind}(\chi) = +, \chi(1) \text{ even } \}.$

for the ATLAS groups up to HN. (joint with Richard Parker and Thomas Breuer)

Computed the unitary discriminants of the characters in

 $\operatorname{Irr}^{o}(G) = \{ \chi \in \operatorname{Irr}(G) \mid \operatorname{ind}(\chi) = +, \chi(1) \text{ even } \}.$

for the ATLAS groups up to HN. (joint with David Schlang)

$$\Sigma^{-}(G) := \langle g - g^{-1} \mid g \in G \rangle \le \mathbb{Z}G.$$

 χ orthogonally stable \Leftrightarrow there is $X \in \Sigma^{-}(G)$, $\det(\rho(X)) \neq 0$ for any representation ρ affording χ . Then

 $\det(\chi) = \det(\rho(X))(\mathbb{Q}(\chi)^{\times})^2.$

Parker's conjecture

 $X\in \Sigma^-(G) \Rightarrow \nu(\det(\rho(X))) \text{ even for all dyadic valuations } \nu.$