Universality Beyond Quadratic Forms

Om Prakash Charles University, Czechia

Squares in Dortmund, Germany March 31, 2025 (Joint work with Vítězslav Kala)

Quadratic Forms

Quadratic forms:
$$Q(x_1, x_2, \dots, x_n) = \sum_{1 \le i \le j \le n} a_{ij} x_i x_j, \quad a_{ij} \in \mathbb{Z}.$$

• Q represents an integer c if there exists $x \in \mathbb{Z}^n$ satisfying Q(x) = c.

2/13

Quadratic Forms

Quadratic forms:
$$Q(x_1, x_2, \dots, x_n) = \sum_{1 \le i \le j \le n} a_{ij} x_i x_j, \quad a_{ij} \in \mathbb{Z}.$$

- Q represents an integer c if there exists $x \in \mathbb{Z}^n$ satisfying Q(x) = c.
- Q is positive definite if Q(x) > 0 for all $x \in \mathbb{Z}^n \setminus \{0\}$.

Quadratic Forms

Quadratic forms:
$$Q(x_1, x_2, \dots, x_n) = \sum_{1 \le i \le j \le n} a_{ij} x_i x_j, \quad a_{ij} \in \mathbb{Z}.$$

- Q represents an integer c if there exists $x \in \mathbb{Z}^n$ satisfying Q(x) = c.
- Q is positive definite if Q(x) > 0 for all $x \in \mathbb{Z}^n \setminus \{0\}$.

Which integers are represented by quadratic forms?

Example

Sums of squares (Fermat, Gauss and Lagrange):

- $p = x^2 + y^2 \iff p \equiv 1 \pmod{4}$
- $n = x^2 + y^2 + z^2 \iff n \neq 4^a(8b + 7)$
- $x^2 + y^2 + z^2 + w^2$ represents all $\mathbb{Z}_{\geq 0}$.

Universal Quadratic Forms

 A quadratic form is called universal if it is positive definite and represents all positive integers.

Classification

- Ramanujan, Dickson (1916): classified all universal forms in four variables, e.g., $x^2 + 2y^2 + 4z^2 + dw^2$ with $d \le 14$.
- 15-Theorem (Conway–Schneeberger): positive definite classical quadratic form is universal ← it represents 1, 2, . . . , 15.

Universal Quadratic Forms

 A quadratic form is called universal if it is positive definite and represents all positive integers.

Classification

- Ramanujan, Dickson (1916): classified all universal forms in four variables, e.g., $x^2 + 2y^2 + 4z^2 + dw^2$ with $d \le 14$.
- 15-Theorem (Conway–Schneeberger): positive definite classical quadratic form is universal ⇒ it represents 1, 2, ..., 15.

290-Theorem (Bhargava-Hanke, 2011)

If a positive definite quadratic form Q represents

$$1, 2, 3, 5, 6, 7, 10, 13, 14, 15, 17, 19, 21, 22, 23, 26,$$
 $29, 30, 31, 34, 35, 37, 42, 58, 93, 110, 145, 203, and 290,$

then it is universal.

Sums of *m*th Powers

Waring's problem (1770): Can every positive integer be expressed as a sum of at most g(m) mth powers of non-negative integers, where g(m) depends only on m, not the number being represented? g(3) = 9? g(4) = 19?

Sums of mth Powers

Waring's problem (1770): Can every positive integer be expressed as a sum of at most g(m) mth powers of non-negative integers, where g(m) depends only on m, not the number being represented? g(3) = 9? g(4) = 19?

Theorem (Hilbert, 1909)

For each fixed $m \ge 1$, there exists $g(m) < \infty$ such that every positive integer can be expressed as a sum of at most g(m) mth powers.

Estimates/Formulae for g(m)?

Bounds for g(m)

- $g(m) \geq 2^{m-1}$.
- Conjecture: $g(m) = 2^m + \lfloor (3/2)^m \rfloor 2$ for every $m \ge 1$.
- Mahler (1957), there are at most finitely many exceptions. Verified for $m \le 471,600,000$ by Kubina–Wunderlich (1990).

Bounds for g(m)

- $g(m) \geq 2^{m-1}$.
- Conjecture: $g(m) = 2^m + \lfloor (3/2)^m \rfloor 2$ for every $m \ge 1$.
- Mahler (1957), there are at most finitely many exceptions. Verified for $m \le 471,600,000$ by Kubina–Wunderlich (1990).
- Unconditionally it is known that

$$g(m) \leq 2^m + \lfloor (3/2)^m \rfloor - 2.$$

if $2^m\{(3/2)^m\} + \lfloor (3/2)^m \rfloor \leq 2^m$. Otherwise,

$$g(m) \leq 2^m + \lfloor (3/2)^m \rfloor + \lfloor (4/3)^m \rfloor - \epsilon,$$

where ϵ is 2 or 3 depending on $\lfloor (4/3)^m \rfloor \lfloor (3/2)^m \rfloor + \lfloor (4/3)^m \rfloor + \lfloor (3/2)^m \rfloor$ equals or exceeds 2^m .

Higher Degree Forms

Replace the sum of mth power, by a homogeneous polynomial of degree m > 2 (i.e. higher degree form).

Higher Degree Forms

Replace the sum of mth power, by a homogeneous polynomial of degree m>2 (i.e. higher degree form).

Definition

Let m and n be positive integers. Then an m-ic form in n variables over $\mathbb Z$ is

$$Q(x_1, x_2, \dots, x_n) = \sum_{\substack{i_1, \dots, i_n \ge 0 \\ i_1 + i_2 + \dots + i_n = m}} a_{i_1 i_2 \dots i_n} x_1^{i_1} x_2^{i_2} \dots x_n^{i_n},$$

where $a_{i_1i_2...i_n} \in \mathbb{Z}$. We call m the degree of Q and n its rank.

e.g.
$$x^4 + 2x^3y + 5z^4 + y^2z^2$$

Positive Definite Forms

- An *m*-ic form Q is positive definite if Q(x) > 0 for all $x \in \mathbb{R}^n \setminus \{(0, 0, \dots, 0)\}$.
- By homogeneity of Q, we have $Q(-x) = (-1)^m Q(x)$ for all x.

From now on, we assume that m is even.

 An m-ic form is universal if it is positive definite and represents all positive integers.

Positive Definite Forms

- An *m*-ic form Q is positive definite if Q(x) > 0 for all $x \in \mathbb{R}^n \setminus \{(0, 0, \dots, 0)\}$.
- By homogeneity of Q, we have $Q(-x) = (-1)^m Q(x)$ for all x.

From now on, we assume that m is even.

• An *m*-ic form is <u>universal</u> if it is positive definite and represents all positive integers.

Question

- Given an m-ic form Q, which integers are represented by Q?
- ② Does there exists a finite set A of positive integers such that if an m-ic form represents all elements of A then it is universal?
 Such a set A is known as finite criterion set.

Question 1

- is hard.
- is related to Hilbert's 10th problem.
- Davis, Putnam, Robinson, and Matiyasevich (1973): may be undecidable.

Question 1

- is hard.
- is related to Hilbert's 10th problem.
- Davis, Putnam, Robinson, and Matiyasevich (1973): may be undecidable.

We'll answer Question 2 negatively.

No criterion set

Proposition (Kala-P., 2024)

Given a positive even integer m>2 and a positive integer B, there is a positive definite, m-ic form Q that represents all the positive integers $\leq B$ but is not universal.

9/13

No criterion set

Proposition (Kala-P., 2024)

Given a positive even integer m>2 and a positive integer B, there is a positive definite, m-ic form Q that represents all the positive integers $\leq B$ but is not universal.

Proof:

- $Q_1(x_1, x_2, ..., x_B) = \sum_{i=1}^B i x_i^m$.
- Let c > B be mth powerfree.
- $Q(x_1, x_2, ..., x_B) = \sum_{i=1}^{B} i x_i^m + \sum_{1 \le i < j \le B} \delta x_i^2 x_j^{m-2}$.

m > 2 is important.

Here is a stronger result.

Theorem (Kala-P., 2024)

Let $A \subset \mathbb{Z}_{>0}$ be finite. Then the following conditions are equivalent:

- There exists a positive definite *m*-ic form Q that represents exactly $\mathbb{Z}_{\geq 0} \setminus \mathcal{A}$.
- ② For all $a, b \in \mathbb{Z}$, we have that $ab^m \in \mathcal{A}$ implies $a \in \mathcal{A}$.

Moreover, Q can be chosen of rank $<(B+1)(2^{m+1}+1)$, where B is the largest element of A.

Forms Over Number Fields

$$K = \mathbb{Q}(\sqrt{2}) = \{a + b\sqrt{2} : a, b \in \mathbb{Q}\}.$$

$$\mathcal{O}_K = \mathbb{Z}[\sqrt{2}] = \{a + b\sqrt{2} : a, b \in \mathbb{Z}\}.$$

$$\mathcal{O}_K^+ = \mathbb{Z}[\sqrt{2}]^+ = \{a + b\sqrt{2} \in \mathbb{Z}[\sqrt{2}] : a + b\sqrt{2}, a - b\sqrt{2} > 0\}.$$

Forms Over Number Fields

$$K = \mathbb{Q}(\sqrt{2}) = \{a + b\sqrt{2} : a, b \in \mathbb{Q}\}.$$

$$\mathcal{O}_K = \mathbb{Z}[\sqrt{2}] = \{a + b\sqrt{2} : a, b \in \mathbb{Z}\}.$$

$$\mathcal{O}_K^+ = \mathbb{Z}[\sqrt{2}]^+ = \{a + b\sqrt{2} \in \mathbb{Z}[\sqrt{2}] : a + b\sqrt{2}, a - b\sqrt{2} > 0\}.$$

- We want to study the representation of elements in $\mathbb{Z}[\sqrt{2}]^+$ by the forms over K, e.g. $\sqrt{2}x^4 + 5y^2z^2 + (1+\sqrt{2})z^4$, i.e. homogeneous polynomials with coefficients in $\mathbb{Z}[\sqrt{2}]$.
- Q represents $\alpha \in \mathcal{O}_K^+ \iff$ it represents $\alpha \varepsilon^m$ for all $\varepsilon \in \mathcal{O}_K^{\times}$. So, need to consider $\mathcal{O}_K^+/\mathcal{O}_K^{\times m}$.

Forms Over Number Fields

$$K = \mathbb{Q}(\sqrt{2}) = \{a + b\sqrt{2} : a, b \in \mathbb{Q}\}.$$

$$\mathcal{O}_K = \mathbb{Z}[\sqrt{2}] = \{a + b\sqrt{2} : a, b \in \mathbb{Z}\}.$$

$$\mathcal{O}_K^+ = \mathbb{Z}[\sqrt{2}]^+ = \{a + b\sqrt{2} \in \mathbb{Z}[\sqrt{2}] : a + b\sqrt{2}, a - b\sqrt{2} > 0\}.$$

- We want to study the representation of elements in $\mathbb{Z}[\sqrt{2}]^+$ by the forms over K, e.g. $\sqrt{2}x^4 + 5y^2z^2 + (1+\sqrt{2})z^4$, i.e. homogeneous polynomials with coefficients in $\mathbb{Z}[\sqrt{2}]$.
- Q represents $\alpha \in \mathcal{O}_K^+ \iff$ it represents $\alpha \varepsilon^m$ for all $\varepsilon \in \mathcal{O}_K^{\times}$. So, need to consider $\mathcal{O}_K^+/\mathcal{O}_K^{\times m}$.

Does there exists universal *m*-ic form over $\mathbb{Z}[\sqrt{2}]$?

Universal *m*-ic Form

Siegel (1945): Sums of *m*th powers can never be universal over $K \neq \mathbb{Q}$.

$$(a+b\sqrt{2})^2 = a^2 + 2b^2 + 2ab\sqrt{2}$$

e.g. $3 + \sqrt{2}$ can't be expressible as sums of *m*th powers.

Universal *m*-ic Form

Siegel (1945): Sums of *m*th powers can never be universal over $K \neq \mathbb{Q}$.

$$(a + b\sqrt{2})^2 = a^2 + 2b^2 + 2ab\sqrt{2}$$

e.g. $3 + \sqrt{2}$ can't be expressible as sums of *m*th powers.

- Sum of *m*th powers can only represent elements from $\mathbb{Z}[2\sqrt{2}]$.
- $[\mathbb{Z}[\sqrt{2}]:\mathbb{Z}[2\sqrt{2}]]=2$, $\mathbb{Z}[\sqrt{2}]/\mathbb{Z}[2\sqrt{2}]=\{\alpha,\beta\}$

 α (sums of *m*th powers) + β (sum of *m*th powers) + something.

Theorem (Kala-P., 2024)

Given a totally real number field K and an even positive integer m > 2, there exists a universal m-ic form over K.

Remark. Above result is not always true in the case of totally real infinite extension of \mathbb{Q} .

12 / 13

Result over Number Fields

Theorem (Kala-P., 2024)

Let K be a totally real number field, m>2 an even positive integer, and \mathcal{A}_0 a finite subset of \mathcal{O}_K^+ . Set $\mathcal{A}=\mathcal{A}_0\cdot\mathcal{O}_K^{\times m}=\{\delta\varepsilon^m\mid \delta\in\mathcal{A}_0,\varepsilon\in\mathcal{O}_K^{\times}\}$. Then the following conditions are equivalent:

- There exists a totally positive definite *m*-ic form that represents exactly $\mathcal{O}_{\kappa}^+ \setminus \mathcal{A}$.
- ② For all $\alpha, \beta \in \mathcal{O}_K$ we have that $\alpha \beta^m \in \mathcal{A}$ implies $\alpha \in \mathcal{A}$.

Result over Number Fields

Theorem (Kala-P., 2024)

Let K be a totally real number field, m>2 an even positive integer, and \mathcal{A}_0 a finite subset of \mathcal{O}_K^+ . Set $\mathcal{A}=\mathcal{A}_0\cdot\mathcal{O}_K^{\times m}=\{\delta\varepsilon^m\mid \delta\in\mathcal{A}_0,\varepsilon\in\mathcal{O}_K^{\times}\}$. Then the following conditions are equivalent:

- There exists a totally positive definite *m*-ic form that represents exactly $\mathcal{O}_{\kappa}^+ \setminus \mathcal{A}$.
- ② For all $\alpha, \beta \in \mathcal{O}_K$ we have that $\alpha \beta^m \in \mathcal{A}$ implies $\alpha \in \mathcal{A}$.

Thank You for Your Attention!