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Quadratic Forms

Quadratic forms: Q(x1, x2, . . . , xn) =
∑

1≤i≤j≤n
aijxixj , aij ∈ Z.

Q represents an integer c if there exists x ∈ Zn satisfying Q (x) = c .

Q is positive definite if Q(x) > 0 for all x ∈ Zn \ {0}.

Which integers are represented by quadratic forms?

Example

Sums of squares (Fermat, Gauss and Lagrange):

p = x2 + y2 ⇐⇒ p ≡ 1 (mod 4)

n = x2 + y2 + z2 ⇐⇒ n ̸= 4a(8b + 7)

x2 + y2 + z2 + w2 represents all Z≥0.
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Universal Quadratic Forms

A quadratic form is called universal if it is positive definite and
represents all positive integers.

Classification

Ramanujan, Dickson (1916): classified all universal forms in four
variables, e.g., x2 + 2y2 + 4z2 + dw2 with d ≤ 14.

15-Theorem (Conway–Schneeberger): positive definite classical
quadratic form is universal ⇐⇒ it represents 1, 2, . . . , 15.

290-Theorem (Bhargava-Hanke, 2011)

If a positive definite quadratic form Q represents

1, 2, 3, 5, 6, 7, 10, 13, 14, 15, 17, 19, 21, 22, 23, 26,
29, 30, 31, 34, 35, 37, 42, 58, 93, 110, 145, 203, and 290,

then it is universal.
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Sums of mth Powers

Waring’s problem (1770): Can every positive integer be expressed as a
sum of at most g(m) mth powers of non-negative integers, where g(m)
depends only on m, not the number being represented? g(3) = 9?
g(4) = 19?

Theorem (Hilbert, 1909)

For each fixed m ≥ 1, there exists g(m) < ∞ such that every positive
integer can be expressed as a sum of at most g(m) mth powers.

Estimates/Formulae for g(m)?
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Bounds for g(m)

g(m) ≥ 2m−1.

Conjecture: g(m) = 2m + ⌊(3/2)m⌋ − 2 for every m ≥ 1.

Mahler (1957), there are at most finitely many exceptions. Verified
for m ≤ 471, 600, 000 by Kubina–Wunderlich (1990).

Unconditionally it is known that

g(m) ≤ 2m + ⌊(3/2)m⌋ − 2.

if 2m{(3/2)m}+ ⌊(3/2)m⌋ ≤ 2m. Otherwise,

g(m) ≤ 2m + ⌊(3/2)m⌋+ ⌊(4/3)m⌋ − ϵ,

where ϵ is 2 or 3 depending on
⌊(4/3)m⌋⌊(3/2)m⌋+ ⌊(4/3)m⌋+ ⌊(3/2)m⌋ equals or exceeds 2m.
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Higher Degree Forms

Replace the sum of mth power, by a homogeneous polynomial of degree
m > 2 (i.e. higher degree form).

Definition

Let m and n be positive integers. Then an m-ic form in n variables over Z
is

Q (x1, x2, . . . , xn) =
∑

i1,...,in≥0
i1+i2+···+in=m

ai1i2...inx
i1
1 x

i2
2 . . . x inn ,

where ai1i2...in ∈ Z. We call m the degree of Q and n its rank.

e.g. x4 + 2x3y + 5z4 + y2z2
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Positive Definite Forms

An m-ic form Q is positive definite if Q (x) > 0 for all
x ∈ Rn \ {(0, 0, . . . , 0)} .
By homogeneity of Q, we have Q (−x) = (−1)m Q (x) for all x .

From now on, we assume that m is even.

An m-ic form is universal if it is positive definite and represents all
positive integers.

Question
1 Given an m-ic form Q, which integers are represented by Q?

2 Does there exists a finite set A of positive integers such that if an
m-ic form represents all elements of A then it is universal?
Such a set A is known as finite criterion set.
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7 / 13



Question 1

is hard.

is related to Hilbert’s 10th problem.

Davis, Putnam, Robinson, and Matiyasevich (1973): may be
undecidable.

We’ll answer Question 2 negatively.
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No criterion set

Proposition (Kala-P., 2024)

Given a positive even integer m > 2 and a positive integer B, there is a
positive definite, m-ic form Q that represents all the positive integers ≤ B
but is not universal.

Proof:

Q1 (x1, x2, . . . , xB) =
B∑
i=1

ixmi .

Let c > B be mth powerfree.

Q (x1, x2, . . . , xB) =
B∑
i=1

ixmi +
∑

1≤i<j≤B

δx2i x
m−2
j .

m > 2 is important.
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Here is a stronger result.

Theorem (Kala-P., 2024)

Let A ⊂ Z>0 be finite. Then the following conditions are equivalent:

1 There exists a positive definite m-ic form Q that represents exactly
Z≥0 \ A.

2 For all a, b ∈ Z, we have that abm ∈ A implies a ∈ A.

Moreover, Q can be chosen of rank < (B + 1)(2m+1 + 1), where B is the
largest element of A.
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Forms Over Number Fields

K = Q(
√
2) = {a+ b

√
2 : a, b ∈ Q}.

OK = Z[
√
2] = {a+ b

√
2 : a, b ∈ Z}.

O+
K = Z[

√
2]+ = {a+ b

√
2 ∈ Z[

√
2] : a+ b

√
2, a− b

√
2 > 0}.

We want to study the representation of elements in Z[
√
2]+ by the

forms over K , e.g.
√
2x4 + 5y2z2 + (1 +

√
2)z4, i.e. homogeneous

polynomials with coefficients in Z[
√
2].

Q represents α ∈ O+
K ⇐⇒ it represents αεm for all ε ∈ O×

K . So,
need to consider O+

K/O
×m
K .

Does there exists universal m-ic form over Z[
√
2]?
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Universal m-ic Form

Siegel (1945): Sums of mth powers can never be universal over K ̸= Q.

(a+ b
√
2)2 = a2 + 2b2 + 2ab

√
2

e.g. 3 +
√
2 can’t be expressible as sums of mth powers.

Sum of mth powers can only represent elements from Z[2
√
2].

[Z[
√
2] : Z[2

√
2]] = 2, Z[

√
2]/Z[2

√
2] = {α, β}

α(sums of mth powers) + β(sum of mth powers) + something.

Theorem (Kala-P., 2024)

Given a totally real number field K and an even positive integer m > 2,
there exists a universal m-ic form over K .

Remark. Above result is not always true in the case of totally real infinite
extension of Q.
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Result over Number Fields

Theorem (Kala-P., 2024)

Let K be a totally real number field, m > 2 an even positive integer, and
A0 a finite subset of O+

K . Set A = A0 · O×m
K = {δεm | δ ∈ A0, ε ∈ O×

K}.
Then the following conditions are equivalent:

1 There exists a totally positive definite m-ic form that represents
exactly O+

K \ A.

2 For all α, β ∈ OK we have that αβm ∈ A implies α ∈ A.

Thank You for Your Attention!
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