Totally positive field extensions and Pythagorean index

Abhay Soman (Joint work with R. Preeti and P. Mandal)

University of Hyderabad, India

"Squares in Dortmund" 03 April 2025

Definitions and Notations related to quadratic forms

Throughout this talk by a quadratic form we always mean a *non-degenerate* quadratic form.

Definition (Isotropic quadratic forms)

A quadratic form q defined over F is said to be *isotropic* if there exists a nonzero vector v such that q(v) = 0.

Definition (Weakly isotropic quadratic forms)

A quadratic form q defined over F is said to be *weakly isotropic* if there exists $r \in \mathbb{N}$ such that $r \cdot q = \underbrace{q \perp q \perp \cdots \perp q}_{r \text{-times}}$ is isotropic.

Definitions and Notations related to real fields

We collect some definitions and notations.

Definition (Real fields)

A field F is said to be *formally real* or a real field if -1 is not a sum of squares in F.

Definition (Semiordering)

A proper subset S of F is said to be a *semiordering* on F if it satisfy the following conditions.

$$1 \in S$$
; $F^2 \subseteq S$; $S + S \subseteq S$, $S \cup -S = F$; $S \cap -S = \{0\}$

Definition (Ordering)

An ordering P on F is a semiordering with $P \cdot P \subseteq P$.

Definition (Totally positive field extension)

A field extension K/F is said to be *totally positive* if *every semiordering* of F extends to a semiordering of K.

We have the following criterion due to K. J. Becher $^{\rm 1}$

Equivalent criterion

Following statements are equivalent.

- K/F is a totally positive field extension;
- If quadratic form q over F becomes isotropic over K then, q is weakly isotropic over F

¹Becher, *Totally positive extensions and weakly isotropic forms*, Manuscripta Math.

Definition

The field F is said to be pythagorean if $F^2 + F^2 \subset F^2$, i.e., $\sum F^2 = F^2$.

Definition

Pythagorean closure There exists a smallest pythagorean subfield of F_{al} that contains F. This field is called the *pythagorean closure* of F and is denoted by F_{py} .

Explicitly, let \mathcal{F} be the family of extensions K/F, $K \subset F^{a}$, for which there exists a tower

$$F = K_0 \subset K_1 \subset \cdots \subset K_n = K,$$

such that $K_{i+1} = K_i(\sqrt{1+a_i^2})$, where $a_i \in K_i$. The compositum of all the fields in \mathcal{F} is F_{py} .

Examples of totally positive field extensions

All fields are assumed to be real fields.

- A quadratic extension $F(\sqrt{d})/F$ is totally positive if and only if d is a sum of squares in F.
- $F_{\rm py}/F$ is totally positive, where $F_{\rm py}$ is the pythagorean closure of F.
- An odd degree field extension is totally positive.
- F(X)/F is totally positive, where F(X) is the rational function field over F in one variable.
- F((X))/F is totally positive, where F((X)) is the Laurent series field in one variable over F.

 Let K/F be a totally positive field extension. If E/F is a subfield of K/F then, E/F is totally positive. However, in general, K/E need not be totally positive. For instance, consider

$$\mathbb{Q} \subset \mathbb{Q}\left(\sqrt{2}
ight) \subset \mathbb{Q}\left(\sqrt[4]{2}
ight)$$

- If E/F is a subfield of F_{py}/F then, F_{py}/E is also totally positive.
- If L/E and E/F are both totally positive then, L/F is totally positive.

The following example is due to K. J. Becher²

Function field of weakly isotropic form

The function field of a weakly isotropic quadratic form over F is a totally positive field extension of F.

Proof

Let q be a weakly isotropic quadratic form. So, q is isotropic over F_{py} , and hence, $F_{py}(q)/F$ is totally positive. As F(q)/F is a subextension of $F_{py}(q)/F$, we get the result.

² Totally positive extensions and weakly isotropic forms, Manuscripta Math.

Example...

Generic splitting field

A generic splitting field of an *even* dimensional quadratic form q is totally positive field extension if and only if q is torsion.

Proof

Recall that the generic splitting tower of q is constructed as follows. Let $q_0 = (q)_{an}$, and $q_i = (q_{i-1})_{an}$, and let $F_i = F_{i-1}(q_{i-1})$. Thus we get the following tower of fields.

$$F = F_0 \subset F_1 \subset \cdots \subset F_h = K$$

The field K is called the generic splitting field of q.

As dim $q_h \le 1$ and dim q is even, *K*-anisotropic part of q is zero.

If K/F is totally positive then, we get that $\operatorname{sgn}_P(q) = 0$ for every ordering P of F i.e., q is torsion.

The converse follows from the earlier examples.

A. Soman (UoH)

A question of K. J. Becher on the pythagorean index

We begin with the definition.

Definition (Pythagorean index)

Let F be a real field and let A be a central simple algebra over F. The pythagorean index of A is

 $\operatorname{pind}(A) = \operatorname{ind}(A \otimes F_{\operatorname{py}}).$

We recall the following question/conjecture due to K. J. Becher 3 .

Question

If K/F is a totally positive field extension and A a central simple algebra over F of exponent 2 then, $pind(A) = pind(A \otimes K)$.

In this talk we show that the above question has an affirmative answer when K/F is Galois totally positive and pind(A) = 4.

³ Totally positive extensions and weakly isotropic forms, Manuscripta Math.

A. Soman (UoH)

We begin with the following lemma.

Lemma

Let K/F be a totally positive field extension. Then, K_{py}/F_{py} is totally positive if and only if following condition is satisfied:

(*) LE/E is totally positive for any finite subextensions L/K and E/F with $L \subset K_{py}$ and $E \subset F_{py}$.

Proposition

Let K/F be a totally positive finite Galois extension of formally real fields. Then KF_{py}/F_{py} is a totally positive extension.

The proof of the above proposition rely on the theorem of Becher, Leep, and Schubert⁴, viz., *a Galois extension is totally positive if and only if it preserves the ordering*.

⁴Semiorderings and stability index under field extensions, Israel J. Math.

We now state the theorem.

Theorem

Let K/F be a totally positive Galois extension of formally real fields. Then K_{py}/F_{py} is a totally positive extension.

Sketch of the proof.

We first make some reductions.

- \bullet It is enough to show that ${\it KF}_{\rm py}/{\it F}_{\rm py}$ is totally positive.
- Any finitely generated field extension $L/F_{\rm py}$ of $KF_{\rm py}/F_{\rm py}$ is totally positive.
- We can assume $L/F_{\rm py}$ is finite Galois, and show that $L/F_{\rm py}$ is totally positive.

Theorem

Let K/F be a totally positive Galois extension of real fields. Suppose that A is a central simple algebra of exponent 2 and pind(A) = 4. Then, $pind(A \otimes K) = 4$.

Proof.

Let q be an Albert form associated to the underlying biquaternion division algebra of $A \otimes F_{py}$. If $pind(A \otimes K) < 4$ then, q becomes isotropic over K_{py} . As K_{py}/F_{py} is totally positive, q is weakly isotropic over F_{py} and hence isotropic over F_{py} , a contradiction.

Thank you!