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Definitions and Notations related to quadratic forms

Throughout this talk by a quadratic form we always mean a
non-degenerate quadratic form.

Definition (Isotropic quadratic forms)

A quadratic form q defined over F is said to be isotropic if there exists a
nonzero vector v such that q(v) = 0.

Definition (Weakly isotropic quadratic forms)

A quadratic form q defined over F is said to be weakly isotropic if there
exists r ∈ N such that r · q = q ⊥ q ⊥ · · · ⊥ q︸ ︷︷ ︸

r -times

is isotropic.

A. Soman (UoH) Totally positive extensions 03-Apr-2025 2 / 14



Definitions and Notations related to real fields

We collect some definitions and notations.

Definition (Real fields)

A field F is said to be formally real or a real field if −1 is not a sum of
squares in F .

Definition (Semiordering)

A proper subset S of F is said to be a semiordering on F if it satisfy the
following conditions.

1 ∈ S ; F 2 ⊆ S ; S + S ⊆ S , S ∪ −S = F ; S ∩ −S = {0}

Definition (Ordering)

An ordering P on F is a semiordering with P · P ⊆ P.
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Totally positive field extensions

Definition (Totally positive field extension)

A field extension K/F is said to be totally positive if every semiordering of
F extends to a semiordering of K .

We have the following criterion due to K. J. Becher 1

Equivalent criterion

Following statements are equivalent.

1 K/F is a totally positive field extension;

2 if quadratic form q over F becomes isotropic over K then, q is weakly
isotropic over F

1Becher, Totally positive extensions and weakly isotropic forms, Manuscripta Math.
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Pythagorean fields

Definition

The field F is said to be pythagorean if F 2 + F 2 ⊂ F 2, i.e.,
∑

F 2 = F 2.

Definition

Pythagorean closure There exists a smallest pythagorean subfield of Fal
that contains F . This field is called the pythagorean closure of F and is
denoted by Fpy.

Explicitly, let F be the family of extensions K/F , K ⊂ F a, for which there
exists a tower

F = K0 ⊂ K1 ⊂ · · · ⊂ Kn = K ,

such that Ki+1 = Ki (
√

1 + a2i ), where ai ∈ Ki . The compositum of all

the fields in F is Fpy.
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Examples of totally positive field extensions

All fields are assumed to be real fields.

A quadratic extension F (
√
d)/F is totally positive if and only if d is a

sum of squares in F .

Fpy/F is totally positive, where Fpy is the pythagorean closure of F .

An odd degree field extension is totally positive.

F (X )/F is totally positive, where F (X ) is the rational function field
over F in one variable.

F ((X ))/F is totally positive, where F ((X )) is the Laurent series field
in one variable over F .
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Examples...

Let K/F be a totally positive field extension. If E/F is a subfield of
K/F then, E/F is totally positive. However, in general, K/E need
not be totally positive. For instance, consider

Q ⊂ Q
(√

2
)
⊂ Q

(
4
√
2
)

If E/F is a subfield of Fpy/F then, Fpy/E is also totally positive.

If L/E and E/F are both totally positive then, L/F is totally positive.
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Example...

The following example is due to K. J. Becher2

Function field of weakly isotropic form

The function field of a weakly isotropic quadratic form over F is a totally
positive field extension of F .

Proof

Let q be a weakly isotropic quadratic form. So, q is isotropic over Fpy,
and hence, Fpy(q)/F is totally positive. As F (q)/F is a subextension of
Fpy(q)/F , we get the result.

2Totally positive extensions and weakly isotropic forms, Manuscripta Math.
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Example...

Generic splitting field

A generic splitting field of an even dimensional quadratic form q is totally
positive field extension if and only if q is torsion.

Proof

Recall that the generic splitting tower of q is constructed as follows. Let
q0 = (q)an, and qi = (qi−1)an, and let Fi = Fi−1(qi−1). Thus we get the
following tower of fields.

F = F0 ⊂ F1 ⊂ · · · ⊂ Fh = K

The field K is called the generic splitting field of q.
As dim qh ≤ 1 and dim q is even, K -anisotropic part of q is zero.
If K/F is totally positive then, we get that sgnP(q) = 0 for every ordering
P of F i.e., q is torsion.
The converse follows from the earlier examples.
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A question of K. J. Becher on the pythagorean index

We begin with the definition.

Definition (Pythagorean index)

Let F be a real field and let A be a central simple algebra over F . The
pythagorean index of A is

pind(A) = ind(A⊗ Fpy).

We recall the following question/conjecture due to K. J. Becher 3.

Question

If K/F is a totally positive field extension and A a central simple algebra
over F of exponent 2 then, pind(A) = pind(A⊗ K ).

In this talk we show that the above question has an affirmative answer
when K/F is Galois totally positive and pind(A) = 4.

3Totally positive extensions and weakly isotropic forms, Manuscripta Math.
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We begin with the following lemma.

Lemma

Let K/F be a totally positive field extension. Then, Kpy/Fpy is totally
positive if and only if following condition is satisfied:

(∗) LE/E is totally positive for any finite subextensions

L/K and E/F with L ⊂ Kpy and E ⊂ Fpy.

Proposition

Let K/F be a totally positive finite Galois extension of formally real fields.
Then KFpy/Fpy is a totally positive extension.

The proof of the above proposition rely on the theorem of Becher, Leep,
and Schubert4, viz., a Galois extension is totally positive if and only if it
preserves the ordering.

4Semiorderings and stability index under field extensions, Israel J. Math.
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We now state the theorem.

Theorem

Let K/F be a totally positive Galois extension of formally real fields. Then
Kpy/Fpy is a totally positive extension.

Sketch of the proof.

We first make some reductions.

It is enough to show that KFpy/Fpy is totally positive.

Any finitely generated field extension L/Fpy of KFpy/Fpy is totally
positive.

We can assume L/Fpy is finite Galois, and show that L/Fpy is totally
positive.
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Theorem

Let K/F be a totally positive Galois extension of real fields. Suppose that
A is a central simple algebra of exponent 2 and pind(A) = 4. Then,
pind(A⊗ K ) = 4.

Proof.

Let q be an Albert form associated to the underlying biquaternion division
algebra of A⊗ Fpy. If pind(A⊗ K ) < 4 then, q becomes isotropic over
Kpy. As Kpy/Fpy is totally positive, q is weakly isotropic over Fpy and
hence isotropic over Fpy, a contradiction.
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Thank you!
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