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Quadratic forms

Let F be a nonarchimedean local field at the place p and let R be the ring of

integers in F . We generally assume that chF ̸= 2.

For a positive integer n, a quadratic form of rank n is a quadratic

homogeneous polynomial

f(x) = f(x1, . . . , xn) =
n∑

i,j=1

fijxixj (fij = fji ∈ F ).

To every quadratic form f of rank n, there corresponds a unique symmetric

matrix Mf = (fij) ∈ Symn(F ), called the (Gram) matrix of f .

We call a quadratic form f nondegenerate if Mf is nondegenerate.

We call a quadratic form f diagonal if Mf is diagonal.
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Integral quadratic forms

Let f be a quadratic form.

We call f integral if f is a polynomial over R.

We call f classical if Mf is a matrix over R.

Clearly, a classical form is integral.

The converse is also true if R is nondyadic.

If R is dyadic, then there exists an integral quadratic form that is not

classical, for instance, f(x, y) = xy.

In this talk, we always assume that a quadratic form is nondegenerate and

integral, unless stated otherwise.
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Representability and universality

Let f and g be (integral) quadratic forms of rank n and m, respectively.

We say f is represented by g if there is a matrix T ∈ Matm,n(R) such that

Mf = T tMgT .

We say f is isometric to g if the above matrix T is invertible (unimodular).

A (classical) quadratic form g is called n-universal if every (classical,

respectively) quadratic form of rank n is represented by g.
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n-Universal quadratic forms

In 2023, He, He–Hu, and He–Hu–Xu provided criteria to determine whether

a given quadratic form is n-universal.

Let UR(n) (cUR(n)) be the minimal rank of n-universal (classical,

respectively) quadratic forms over R.

We have UR(n) =

2n if 1 ≤ n ≤ 3,

n+ 3 if n ≥ 3.

If R is dyadic, then cUR(n) =

2n+ 1 if 1 ≤ n ≤ 2,

n+ 3 if n ≥ 2.
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n-Universality criterion from n-representability

If a quadratic form f is represented by another form g, then every subform

of f is also represented by g.

There are finitely many quadratic forms of rank n that are “maximal” with

respect to a subform relation.

There are effective criteria to determine whether a given quadratic form is

represented by another form.

Therefore, criteria of n-universality are virtually equivalent to a logical

product of criteria of representability for finitely many “maximal” quadratic

forms of rank n.
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Primitive matrices and primitive vectors

Let m, n be positive integers such that m ≥ n.

A matrix T ∈ Matm,n(R) is called primitive if it satisfies the following

equivalent conditions:

(i) We can extend T to an invertible matrix in GLm(R) by adding suitable

(m− n) columns;

(ii) There exists a submatrix of T consisting of n rows that is invertible matrix

in GLn(R).

In particular, a vector a = (a1, . . . , an) in Rn is primitive iff (i) there is a

basis for Rn containing a, or equivalently, iff (ii) some ai is a unit in R×.
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Primitive representability and primitive universality

Let m, n be positive integers such that m ≥ n. Let f and g be quadratic forms

of rank n and m, respectively.

We say that f is primitively represented by g if there is a primitive matrix

T ∈ Matm,n(R) such that

Mf = T tMgT .

A (classical) quadratic form g is called primitively n-universal if every

(classical, respectively) quadratic form of rank n is primitively represented by

g.

Let U∗
R(n) (cU

∗
R(n)) be the minimal rank of primitively n-universal

(classical, respectively) quadratic forms over R.

9 / 36



Previous results

James(1993) provided criteria to determine whether a quadratic form is

primitively represented by another unimodular form.

Budarina(2010) and Earnest–Gunawardana(2021) provided criteria of

primitive 1-universality.

Budarina(2011) provided criteria of primitive 2-universality, for quadratic

forms with odd squarefree determinant.

Remark. There are no known general criteria to determine whether a given form

is primitively represented by another form (even locally).
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Main question

Let us abbreviate the phrase “primitively n-universal” as PnU.

1. Can we determine the minimal rank U∗
R(n) of PnU quadratic forms?

2. Can we enumerate all PnU quadratic forms of rank U∗
R(n)?
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PnU implies Witt index ≥ n

Let g be a quadratic form.

We do not assume that a quadratic form is nondegenerate in this section.

The discriminant dg of g is the square class (detMg)(R
×)2.

We say that a nondegenerate quadratic form g has (Witt) index ≥ n if and

only if g is isometric over F to a quadratic form with the matrix(
On ∗
∗ ∗

)
.

Clearly, this implies that g has rank ≥ 2n.

Lemma 1

If g is nondegenerate and primitively n-universal, then g has index ≥ n.
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Representability modulo an ideal

Let m, n be positive integers such that m ≥ n. Let f and g be quadratic forms

of rank n and m, respectively. Let I be an ideal in R.

We say that f is (primitively) represented modulo I by g if there is a

(primitive, respectively) matrix T ∈ Matm,n(R) such that

Mf − T tMgT ∈ Symn(I).

We say that f is isometric modulo I by g if the above matrix T is

invertible.
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Primitive representability is determined modulo an ideal

Let g be a nondegenerate quadratic form of rank m.

Lemma 2

Let f be a quadratic form of rank n. Let I = 4p(dg)2R. If f is primitively

represented modulo I by g, then f is primitively represented by g.

(Sketch of proof) The problem of primitive representability of f by g is

equivalent to solving a system of
n(n+ 1)

2
quadratic equations in mn variables.

Apply a multivariable version of Hensel’s lemma to approximate a solution

modulo I to a correct solution.
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Proof of Lemma 1

(Proof) Let f be a quadratic form with the matrix On and let f ′ be a

nondegenerate quadratic form with the matrix

Mf ′ ∈ Symn(4p(dg)
2R).

Since g is PnU, f ′ is primitively represented by g. This means that f is

represented by g modulo 4p(dg)2R. Now apply Lemma 2 to f and g to obtain

the conclusion.
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Consequences of Lemmas

A primitively n-universal quadratic form has rank ≥ 2n. Hence,

U∗
p (n) ≥ 2n.

We may determine in finite steps whether a given quadratic form is

primitively n-universal, for we only have to check primitive representability

modulo some ideal of finitely many quadratic forms of rank n chosen

modulo some ideal.
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U ∗
R(n) = 2n for nondyadic R

Let Ĥ denote the quadratic form Ĥ = Ĥ(x, y) = xy.

Clearly, every integer is primitively represented by Ĥ.

Let R be nondyadic. Then, every quadratic form can be diagonalized.

Hence, every lattice of rank n is primitively represented by

Ĥn = Ĥ⊥ · · · ⊥ Ĥ︸ ︷︷ ︸
n times

= x1y1 + · · ·+ xnyn.
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U ∗
R(n) = 2n for dyadic R

Let R be dyadic. Then, every quadratic form is isometric to a certain “block

diagonal” form, which is an orthogonal sum of quadratic forms of rank at

most 2.

Every quadratic form of rank 2 is primitively represented by Ĥ⊥ Ĥ, for

(
α 1

2
β

1
2
β γ

)
=

(
1 α

β 1 γ

)
0 1

2
1
2

0

0 1
2

1
2

0



1

α β

1

γ

 .

Hence, every lattice of rank n is primitively represented by Ĥn.
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Classification

Lemma 3

A quadratic form of rank 4 is primitively 2-universal if and only if it is isometric

to Ĥ2.

Lemma 4

Let R be nondyadic and 2 ≤ n ≤ 4. A quadratic form of rank 2n is primitively

n-universal if and only if it is n-universal and isometric to Ĥn over F .

n = 3: Ĥ3 or Ĥ2 ⊥ πĤ.

n = 4: Ĥ3 ⊥ ⟨−1, π2a⟩, Ĥ3 ⊥ ⟨−π, π2a+1⟩, Ĥ2 ⊥ ⟨−1⟩ ⊥ πĤ⊥ ⟨π2a+2⟩
(π is a uniformizer, a is a nonnegative integer).
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Classical universality

In this section, we let R be dyadic.

If n = 1, then the problem of (primitive) n-universality for classical quadratic

forms is nothing more than a subset of that for integral quadratic forms.

However, if n ≥ 2, they become distinct problems that may be answered

separately, for classical lattices only represent classical lattices.
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Q∗(⟨1,−1⟩)
Hereafter, we assume that R is 2-adic. i.e., 2 is unramified.

For α1, . . . , αn ∈ R, we mean by ⟨α1, . . . , αn⟩ the quadratic form

α1x
2
1 + · · ·+ αnx

2
n.

For a quadratic form f of rank n, we mean by Q(f) (Q∗(f)) the set of all

f(v), where v runs over all (primitive, respectively) vectors in Rn.

Lemma 5

Let f = ⟨1,−1⟩. Then,

Q(f) = R× ∪ 4R, Q∗(f) =

Q(f) if R ̸= Z2,

R× ∪ 8R if R = Z2.
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Proof of Lemma 5

(Proof) Define g(x, y) = x(x+ 2y). Since ⟨1,−1⟩ ∼= ( 1 1
1 0 ), we have

Q(L) =
{
g(x, y)

∣∣ (x, y) ∈ R2
}
,

Q∗(L) =
{
g(x, y)

∣∣ (x, y) ∈ R2 is primitive
}
.

If x is a unit in R, then so is g(x, y). If x is even, then 4 | g(x, y). Hence,
Q(L) ⊆ R× ∪ 4R.

Let ϵ be any unit. Then, there exists a unit η such that η2 = ϵ− 2α for some

α ∈ R; hence, g(η, η−1α) = ϵ. For a nonnegative integer a,

g(2a+2, ϵ− 2a+1) = 2a+3ϵ. Hence, R× ∪ 8R ⊆ Q∗(L).
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Proof of Lemma 5 (cont’d)

Suppose that R = Z2. In this case, it remains to show that Q∗(L) ∩ 4R× = ∅.

Assume that g(x, y) ∈ Q∗(L) ∩ 4R×. Since x must be even, we have y ∈ R×.

Since y ≡ 1 (mod 2), we have 8 | g(x, y), which is absurd.

Now, suppose that R ̸= Z2. In this case, it remains to show that 4R× ⊆ Q∗(L).

Let ϵ ∈ R×. There exists a unit η such that η2 ̸≡ ϵ (mod 2). Then,

g(2η, η−1ϵ− η) = 4ϵ.
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2n ≤ cU ∗
R(n) ≤ 2n + 1

Let H denote the quadratic form H = H(x, y) = 2xy.

For every unit ϵ in R, H⊥ ⟨ϵ⟩ ∼= ⟨1,−1, ϵ⟩.

Hence, if R, then every quadratic form of rank n is primitively represented

by Hn ⊥ ⟨ϵ⟩ for any unit ϵ in R.

Hence, we have to determine between cU∗
R(n) = 2n or 2n+ 1.

Since cU∗
R(2) ≥ cUR(2) = 5, we have cU∗

R(2) = 5.
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Even unimodular quadratic forms

Let ∆ = 1− 4ρ be a fixed nonsquare unit in R such that ρ ∈ R×.

Let A denote the quadratic form A = A(x, y) = 2x2 + 2xy + 2ρy2.

If f is an even unimodular quadratic form of rank 2, then either f ∼= H or

f ∼= A.

If f is a unimodular quadratic form of rank 3, then either f ∼= H⊥ ⟨−dL⟩ or
f ∼= A⊥ ⟨−∆ · df⟩.

For any ϵ ∈ R×, H⊥ ⟨2ϵ⟩ ∼= A⊥ ⟨2∆ · ϵ⟩.

We have H⊥H ∼= A⊥ A.
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Improper modular quadratic forms

Let α be an integer in R.

Scalings of H and A by α are denoted by

αH = 2αxy and αA = 2αx2 + 2αxy + 2αρy2.

If 2α is primitively represented by a quadratic form h, then αH and αA are

primitively represented by H⊥ h.

If a quadratic form h has nonzero index, then αH is primitively represented

by H⊥ h for any α ∈ R.
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cU ∗
R(n) = 2n for n ≥ 3 when R ̸= Z2

Lemma

Let n ≥ 3 and R ̸= Z2 be unramified dyadic. Then, the quadratic form

Hn−1 ⊥ ⟨1,−1⟩ is primitively n-universal. In particular, cU∗
R(n) = 2n.

(Proof) Let ℓ be any lattice of rank n. By Lemma 2, ℓ is primitively represented

by the given form unless ℓ is an orthogonal sum of even unimodular and proper

2-modular components.

Suppose so. If sℓ = R, then ℓ is orthogonally split by H. Otherwise, ℓ is proper

2-modular. Then, ℓ is orthogonally split by 2H or 2A.
Since H, 2H, and 2A are primitively represented by H⊥ ⟨1,−1⟩, we are done.
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cU ∗
Z2
(3) = 7

Hereafter, we assume that R = Z2.

If there exists a P3U classical quadratic form of rank 6, then it must be a 3U

quadratic form that is isometric to H3 over F .

Hence, every P3U classical quadratic form of rank 6 is isometric to a unit

scaling of one of the following six quadratic forms:

H2 ⊥ ⟨1,−1⟩(A) H2 ⊥ ⟨−1, 4⟩(B) H⊥ ⟨1,−1, 2,−2⟩(C)

H⊥ ⟨1,−1,−2, 8⟩(D) H⊥ ⟨−1, 2,−2, 4⟩(E) H⊥ ⟨−1,−2, 4, 8⟩(F)

Lemma

No classical quadratic form of rank 6 over Z2 is primitively 3-universal.
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cU ∗
Z2
(4) = 9

If there exists a P4U classical quadratic form of rank 8, then it must be a 4U

quadratic form that is isometric to H4 over F .

Hence, every P4U classical quadratic form of rank 8 is isometric to a unit

scaling of one of the following seven family of forms (a ≥ 0):

H3 ⊥ ⟨−1, 22a⟩(A) H2 ⊥ ⟨1,−1,−2, 22a+1⟩(B)

H2 ⊥ ⟨−1,−1, 4, 22a+2⟩(C) H2 ⊥ ⟨−1, 2,−2, 22a+2⟩(D)

H2 ⊥ ⟨−1,−2, 4, 22a+3⟩(E) H2 ⊥ ⟨−1,−2, 8, 22a+4⟩(F)

H2 ⊥ ⟨−1, 2,−8, 22a+4⟩(G)

Lemma

No classical quadratic form of rank 8 over Z2 is primitively 4-universal.
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Sketch of proof

Claim

A⊥ 22a+1A is not primitively represented by H3 ⊥ ⟨−1, 22a⟩.

(Sketch of Proof) Let M be a lattice such that M ∼= H⊥ ⟨5, 5, 5, 22a⟩ in
e1, . . . , e6. It suffices to show that 22a+1A is not primitively represented by M .

Suppose if possible that there exist z, w ∈ M such that Z2[z, w] is primitive,

Q(z) = Q(w) = 22a+2, and B(z, w) = 22a+1. We may assume that z ∈ H.

Hence, if we write w =
∑6

1wiei, then Z2[z, w] is primitive iff (w3, w4, w5, w6) is

primitive, and 2w1w2 ≡ 0 (mod 22a+3). However, no integer congruent to 22a+2

modulo 22a+3 is primitively represented by ⟨5, 5, 5, 22a⟩. This is absurd.
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U ∗
Z2
(n) = 2n for n ≥ 5

Every classical quadratic form of rank 4 except A⊥ 2A is primitively

represented by H3 ⊥ ⟨−1, 1⟩.

Using the above fact, it can be proven that H4 ⊥ ⟨−1, 1⟩ and H5 ⊥ ⟨−1, 1⟩
are P5U and P6U, respectively.

By induction on n, Hn−1 ⊥ ⟨−1, 1⟩ is classically PnU for all n ≥ 5.
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Main Theorem

Theorem(Oh–Y. 2024+)

We have U∗
R(n) = 2n.

If R ̸= Z2 is 2-adic, then cU∗
R(n) =

2n+ 1 if 1 ≤ n ≤ 2,

2n if n ≥ 3.

If R = Z2, then cU∗
Z2
(n) =

2n+ 1 if 1 ≤ n ≤ 4,

2n if n ≥ 5.
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Summary of minimal ranks

R R ̸= Z2 2-adic Z2 Z, pos. def.

n UR(n) U∗
R(n) cUR(n) cU∗

R(n) cUZ2(n) cU∗
Z2
(n) cUZ(n)

† cU∗
Z(n)

1 2 2 3 3 3 3 4 4

2 4 4 5 5 5 5 5 6

3 6 6 6 6 6 7 6 7

4 7 8 7 8 7 9 7

5 8 10 8 10 8 10 8

6 9 12 9 12 9 12 13
...

...
...

...
...

† Oh(1999)
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Thanks for your attention!
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