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Quadratic forms

Let F' be a nonarchimedean local field at the place p and let R be the ring of
integers in F'. We generally assume that ch F' # 2.

m For a positive integer n, a quadratic form of rank n is a quadratic

homogeneous polynomial
Jx) = ey, ) =Y fywia;  (fy = fii € F).
ij=1
m To every quadratic form f of rank n, there corresponds a unique symmetric

matrix My = (f;;) € Sym,,(F), called the (Gram) matrix of f.
m We call a quadratic form f nondegenerate if M/, is nondegenerate.

m We call a quadratic form f diagonal if M is diagonal.
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Integral quadratic forms

Let f be a quadratic form.
m We call f integral if f is a polynomial over R.
m We call f classical if My is a matrix over R.

m Clearly, a classical form is integral.

The converse is also true if R is nondyadic.

m If R is dyadic, then there exists an integral quadratic form that is not

classical, for instance, f(z,y) = xy.

m In this talk, we always assume that a quadratic form is nondegenerate and

integral, unless stated otherwise.
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Representability and universality

Let f and g be (integral) quadratic forms of rank n and m, respectively.

m We say f is represented by g if there is a matrix 7' € Mat,,, ,(R) such that
My =T'M,T.

m We say f is isometric to g if the above matrix T is invertible (unimodular).

m A (classical) quadratic form g is called n-universal if every (classical,

respectively) quadratic form of rank n is represented by g¢.
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n-Universal quadratic forms

m In 2023, He, He—Hu, and He—Hu—Xu provided criteria to determine whether
a given quadratic form is n-universal.

m Let Ugr(n) (cUg(n)) be the minimal rank of n-universal (classical,
respectively) quadratic forms over R.
2n if1<n<3,

We have Ug(n) =
n+3 ifn>3.

2n+1 if1<n<2,
If R is dyadic, then cUg(n) =
n+3 ifn>2.
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n-Universality criterion from n-representability

m If a quadratic form f is represented by another form g, then every subform
of f is also represented by g.

m There are finitely many quadratic forms of rank n that are “maximal” with
respect to a subform relation.

m There are effective criteria to determine whether a given quadratic form is
represented by another form.

m Therefore, criteria of n-universality are virtually equivalent to a logical
product of criteria of representability for finitely many “maximal” quadratic

forms of rank n.

7/36



Primitive matrices and primitive vectors

Let m, n be positive integers such that m > n.
m A matrix T' € Mat,, ,,(R) is called primitive if it satisfies the following
equivalent conditions:
(i) We can extend T to an invertible matrix in GL,,(R) by adding suitable
(m —n) columns;
(i) There exists a submatrix of 1" consisting of n rows that is invertible matrix
in GL,(R).
m In particular, a vector a = (ay,...,a,) in R" is primitive iff (i) there is a

basis for R™ containing a, or equivalently, iff (ii) some a; is a unit in R*.
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Primitive representability and primitive universality

Let m, n be positive integers such that m > n. Let f and g be quadratic forms
of rank n and m, respectively.

m We say that f is primitively represented by ¢ if there is a primitive matrix
T € Mat,, ,(R) such that

M;=T"'M,T.
m A (classical) quadratic form g is called primitively n-universal if every
(classical, respectively) quadratic form of rank n is primitively represented by
g.

m Let Up(n) (cUf(n)) be the minimal rank of primitively n-universal

(classical, respectively) quadratic forms over R.
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Previous results

m James(1993) provided criteria to determine whether a quadratic form is

primitively represented by another unimodular form.

m Budarina(2010) and Earnest-Gunawardana(2021) provided criteria of
primitive 1-universality.

m Budarina(2011) provided criteria of primitive 2-universality, for quadratic

forms with odd squarefree determinant.

Remark. There are no known general criteria to determine whether a given form

is primitively represented by another form (even locally).
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Main question

Let us abbreviate the phrase “primitively n-universal” as PnU.

1. Can we determine the minimal rank U} (n) of PnU quadratic forms?

2. Can we enumerate all PnU quadratic forms of rank Uj(n)?
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Lower bound for U}, (n)

12/36



PnU implies Witt index > n
Let g be a quadratic form.
We do not assume that a quadratic form is nondegenerate in this section.
m The discriminant dg of g is the square class (det M, )(R*).

m We say that a nondegenerate quadratic form g has (Witt) index > n if and

only if g is isometric over F' to a quadratic form with the matrix

O, | *
S S .
Clearly, this implies that g has rank > 2n.

If g is nondegenerate and primitively n-universal, then g has index > n.
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Representability modulo an ideal

Let m, n be positive integers such that m > n. Let f and ¢ be quadratic forms

of rank n and m, respectively. Let I be an ideal in R.

m We say that f is (primitively) represented modulo I by g if there is a
(primitive, respectively) matrix 7" € Mat,, ,,(R) such that

My —T*M,T € Sym,,(I).

m We say that f is isometric modulo [ by g if the above matrix T is

invertible.
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Primitive representability is determined modulo an ideal

Let g be a nondegenerate quadratic form of rank m.

Lemma 2

Let f be a quadratic form of rank n. Let I = 4p(dg)*R. If f is primitively
represented modulo I by g, then f is primitively represented by g.

(Sketch of proof) The problem of primitive representability of f by g is

(n+1)
2

. . n . . . .
equivalent to solving a system of quadratic equations in mn variables.

Apply a multivariable version of Hensel's lemma to approximate a solution

modulo I to a correct solution.
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Proof of Lemma 1

(Proof) Let f be a quadratic form with the matrix O,, and let [ be a

nondegenerate quadratic form with the matrix
My € Sym,, (4p(dg)*R).

Since g is PnU, f’ is primitively represented by g. This means that f is
represented by g modulo 4p(dg)*R. Now apply Lemma 2 to f and g to obtain

the conclusion.
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Consequences of Lemmas

m A primitively n-universal quadratic form has rank > 2n. Hence,
Uy(n) > 2n.

m We may determine in finite steps whether a given quadratic form is
primitively n-universal, for we only have to check primitive representability
modulo some ideal of finitely many quadratic forms of rank n chosen

modulo some ideal.
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Upper bound of U}, (n)

18/36



Ug(n) = 2n for nondyadic R

m Let H denote the quadratic form H = ]I:]I(x, y) = zy.

Clearly, every integer is primitively represented by H.

Let R be nondyadic. Then, every quadratic form can be diagonalized.

Hence, every lattice of rank n is primitively represented by

Hn:]I:]IJ_---J_]I:]I:xly1+---+mnyn.

n times
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Ugp(n) = 2n for dyadic R

m Let R be dyadic. Then, every quadratic form is isometric to a certain “block

diagonal” form, which is an orthogonal sum of quadratic forms of rank at

most 2.

m Every quadratic form of rank 2 is primitively represented by H L H, for

0

D=

a%ﬁzla
38 7 B 1 v

O N

= O

1
a f
1
N

O N

m Hence, every lattice of rank n is primitively represented by H".

20/36



Classification

A quadratic form of rank 4 is primitively 2-universal if and only if it is isometric
to H2.

Lemma 4

Let R be nondyadic and 2 < n < 4. A quadratic form of rank 2n is primitively

n-universal if and only if it is n-universal and isometric to H" over F.

mn=3: H or H? L 7H.
=41 L (—1, 7%, H® L (—m, 2", B2 L (—1) L ol L (72+2)
(7 is a uniformizer, a is a nonnegative integer).
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Classical case

22/36



Classical universality

In this section, we let R be dyadic.

m If n =1, then the problem of (primitive) n-universality for classical quadratic

forms is nothing more than a subset of that for integral quadratic forms.

m However, if n > 2, they become distinct problems that may be answered

separately, for classical lattices only represent classical lattices.
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Q*(<17 _1>>

m Hereafter, we assume that R is 2-adic. i.e., 2 is unramified.
m For ay, ..., o, € R, we mean by (ay,...,q,) the quadratic form
alx% + -+ Oznxi.
m For a quadratic form f of rank n, we mean by Q(f) (Q*(f)) the set of all

f(v), where v runs over all (primitive, respectively) vectors in R".
Let f = (1,—1). Then,

Q(f) it R # Zs,

Q(f) = R*U4R,  Q'(f) = ,
R*USR if R=1Z,.
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Proof of Lemma 5

(Proof) Define g(z,y) = x(x + 2y). Since (1,—1) = (}}), we have

Q(L) = {g(z,y) | (x,y) € R*},
Q*(L) = {g(z,y) | (x,y) € R? is primitive} .

If 2 is a unit in R, then so is g(z,y). If = is even, then 4 | g(z,y). Hence,
Q(L) C R* UAR.
Let € be any unit. Then, there exists a unit ) such that n* = ¢ — 2« for some

1

a € R; hence, g(n,n""a)) = e. For a nonnegative integer a,

g(2°72, € — 2971) = 2°"3¢_ Hence, R* USR C Q*(L).
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Proof of Lemma 5 (cont'd)

Suppose that R = Zs. In this case, it remains to show that Q*(L) N4R* = @.
Assume that g(x,y) € Q*(L) N4R*. Since x must be even, we have y € R™.
Since y = 1 (mod 2), we have 8 | g(z,y), which is absurd.

Now, suppose that R # Z,. In this case, it remains to show that 4R* C Q*(L).
Let € € R™. There exists a unit 7 such that n* # ¢ (mod 2). Then,

9(2n,n" e —n) = 4de.
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2n < cUp(n) <2n+1

m Let H denote the quadratic form H = H(z,y) = 2xy.

For every unit e in R, H L (e) = (1, —1,¢).

Hence, if R, then every quadratic form of rank n is primitively represented
by H" L (e) for any unit € in R.
m Hence, we have to determine between cUf(n) = 2n or 2n + 1.

Since cUS(2) > cUgr(2) = 5, we have cUj(2) = 5.
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Even unimodular quadratic forms

m Let A =1 — 4p be a fixed nonsquare unit in R such that p € R*.

m Let A denote the quadratic form A = A(z,y) = 22° + 2zy + 2py°.

m If f is an even unimodular quadratic form of rank 2, then either f = H or
f=A

m If f is a unimodular quadratic form of rank 3, then either f = H | (—dL) or
f=AL(-A-df).

m Foranyeec R*, HL (2¢) = AL (2A -¢).

B Wehave H 1L HH= A | A.

28/36



Improper modular quadratic forms

Let o be an integer in R.

m Scalings of H and A by « are denoted by
ol = 2azy and oA = 202? + 20y + 2apy?.

m If 2« is primitively represented by a quadratic form h, then aH and oA are

primitively represented by H L h.

m If a quadratic form A has nonzero index, then o is primitively represented

by H L A for any a € R.

29/36



cUgp(n) = 2n for n > 3 when R +# Z

Lemma

Let n > 3 and R # Z, be unramified dyadic. Then, the quadratic form

H"~ L (1,—1) is primitively n-universal. In particular, cUx(n) = 2n.

(Proof) Let £ be any lattice of rank n. By Lemma 2, ¢ is primitively represented
by the given form unless ¢ is an orthogonal sum of even unimodular and proper
2-modular components.

Suppose so. If s¢ = R, then / is orthogonally split by H. Otherwise, ¢ is proper
2-modular. Then, £ is orthogonally split by 2H or 2A.

Since H, 2H, and 2A are primitively represented by H L (1, —1), we are done.
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cUz,(3) =17

m Hereafter, we assume that R = Zs,.
m If there exists a P3U classical quadratic form of rank 6, then it must be a 3U
quadratic form that is isometric to H® over F.

m Hence, every P3U classical quadratic form of rank 6 is isometric to a unit

scaling of one of the following six quadratic forms:
(A) H? L (1,-1) (B) H? L (—1,4) (C) HL(1,-1,2,-2)
(D)H L (1,-1,-2,8) (E) HL1(—1,2,—2,4) (F) HL (—1,—2,4,8)

Lemma

No classical quadratic form of rank 6 over Zs is primitively 3-universal.
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* —
Uz, (4) =9
m If there exists a P4U classical quadratic form of rank 8, then it must be a 4U

quadratic form that is isometric to H* over F.

m Hence, every P4U classical quadratic form of rank 8 is isometric to a unit

scaling of one of the following seven family of forms (a > 0):

(A) H? L (—1,2%) (B) H? L (1,—1,—2,2%F!)
(C) H? L (—1,—1,4,2%*2) (D) H? L (—1,2,—2,2%%2)
(E) H? L (—1,—2,4,2%7%3) (F) H? L (—1,-2,8,2%)
(G) H? L (—1,2,-8,2%)

Lemma

No classical quadratic form of rank 8 over Z, is primitively 4-universal.
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Sketch of proof

Claim

A 1 22°F1A is not primitively represented by H® 1 (—1,2%).

(Sketch of Proof) Let M be a lattice such that M = H 1 (5,5,5,2%) in
ei1,...,eq. It suffices to show that 22T A is not primitively represented by M
Suppose if possible that there exist z, w € M such that Zy[z, w] is primitive,
Q(2) = Q(w) = 2**? and B(z,w) = 2***!. We may assume that z € H.
Hence, if we write w = 3% w;e;, then Zy|[z,w] is primitive iff (w3, wy, ws, we) is
primitive, and 2w w, = 0 (mod 22*T3). However, no integer congruent to 222

modulo 22**? is primitively represented by (5,5, 5, 2**). This is absurd.
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Uz, (n) =2n forn >5

m Every classical quadratic form of rank 4 except A 1 2A is primitively

represented by H® 1 (—1,1).

m Using the above fact, it can be proven that H* I (—1,1) and H° L (—1,1)
are P5U and P6U, respectively.

m By induction on n, H"™* 1 (—1,1) is classically PnU for all n > 5.
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Main Theorem

Theorem(Oh-Y. 2024+)

We have U} (n) = 2n.

2n+1 ifl<n<2,
If R # Zs is 2-adic, then cUp(n) =
2n if n > 3.

2n+1 if1<n <4,

If R =75, then cng(n) =
2n if n > 5.
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Summary of minimal ranks

n | Ugr(n)
1 2
2 4
3 6
4 7
5 8
6 9

+ Oh(1999)

10
12

R # 7, 2-adic

cUgr(n) - CUZ2(TL)- CUZ(n)T-

3

© 00 J O ot
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vz
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4 4
D
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7
8
13
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Thanks for your attention!
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