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SummarySummary (last (last thingsthings firstfirst))

• GPGPU programming
– Is traditionally seen, well, with some prejudice
– "Hacking the GPU"

• This is a misconception
– Admittedly (mostly) true until 2006

• My claim
– not (much) harder to write efficient code for GPUs than for multicores
– Heterogeneous memory hierarchies / NUMA already present in 

commodity CPUs

• It‘s all about algorithm design for 100s of cores
– And languages indicating how this can be exposed to us
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OverviewOverview

• "Old School": Graphics APIs

• GPGPU languages, GPU computing, stream computing

– CAL (AMD)
– CUDA (NVIDIA)
– RapidMind
– Brook, Brook+
– Accelerator

- Make programming GPUs
easier

- Allow to focus on the algorithm
and not on implementational
details

- Integrate the GPU as a 
computational resource into the
rest of the system



4

ARCS 2008

"Old School" GPGPU"Old School" GPGPU

• Use graphics APIs to access GPU
– DirectX, Direct3D (Windows, vendor-independent)
– OpenGL (platform-independent, vendor-dependent via extensions)

• Use high level shading languages to implement
computation kernels
– GLSL (OpenGL)
– HLSL (D3D)
– Cg (NVIDIA, both GL and D3D)

• Toolchain support
– D3D and GL: Libraries and headers, build around C++ and C 

(wrappers exist for many other languages)
– Shading languages with separate compilers (embedded into the driver

and standalone)
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"Old School" GPGPU"Old School" GPGPU

• Cast algorithms into graphics operations
– Arrays = Textures
– Need to cope with unrelated things such as viewport transformation
– Computing = Drawing

• Advantages
– Platform- and vendor-independent
– No license required

• Disadvantages
– No direct access to the hardware
– Steep learning curve
– Graphics-centric
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AMD AMD ComputeCompute AbstractionAbstraction LayerLayer (CAL)(CAL)

• http://ati.amd.com/technology/streamcomputing/resources.html

• Bottom-up approach to "stream computing"
– Allow low-level access to the hardware for those who want it
– Provide high-level implementations to those who don‘t

• Expose relevant parts of the GPU (R600+):
– Command processor
– Data parallel processors
– Memory controller

• Hide everything else
– In particular, graphics-specific features and constraints
– Take the driver out of the loop
– Direct communication to device
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AMD AMD ComputeCompute AbstractionAbstraction LayerLayer (CAL)(CAL)

• Design goals
– Interact with the processing cores on the lowest level if needed
– Maintain forward compatibility
– Device-specific code generation
– Device management
– Multi-device support
– Resource management
– Kernel loading and execution (written in AMD IL – intermediate

language, assembly-like)

• CAL SDK
– Small set of C routines and data types, e.g. to download IL code into

command processor and to trigger the computation
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AMD AMD StreamStream ComputingComputing Software Software StackStack

• Libraries
– AMD ACML (BLAS, LAPACK, FFT, RNG)
– Includes loadbalancer (suitability of a task for a 

particular architecture)
– AMD COBRA (video library)

• Compilers: Brook+ and RapidMind
– Target both GPUs and multicore CPUs

• Compute Abstraction Layer (CAL)

• Hardware: FireStream GPUs, HAL

• Currently in beta testing
– Check webpage for updates
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CUDACUDA

• http://www.nvidia.com/cuda

• See Simon‘s talks later today
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RapidMindRapidMind

• http://www.rapidmind.net

• Software development platform for both multicore and 
stream processors
– Multicore CPUs, Cell BE and GPUs

• Embedded within ISO C++ 
– No changes to toolchain, compilers etc.

• Portable code
– But exposes platform-specific functionality to allow fine-tuning if

needed

Slides based on talks by Mike Houston and Stefanus Du Toit
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RapidMindRapidMind

• Program definition

Slides based on talks by Mike Houston and Stefanus Du Toit
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RapidMindRapidMind

• SPMD data parallel programming model
– Data parallel arrays
– Programs return new arrays
– Programs may have control flow, may perform random reads from

other arrays
– Subarrays, ranges

• Collective Operations
– Reduce, gather, scatter, ...

• License
– sales@rapidmind.net
– Very supportive to academia, company founded out of University of 

Waterloo, Canada

Slides based on talks by Mike Houston and Stefanus Du Toit
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RapidMindRapidMind

• Example: Step 1 - Replace types

Slides based on talks by Mike Houston and Stefanus Du Toit
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RapidMindRapidMind

• Example: Step 2 - Capture computation

Slides based on talks by Mike Houston and Stefanus Du Toit
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RapidMindRapidMind

• Example: Step 3 - Parallel execution

Slides based on talks by Mike Houston and Stefanus Du Toit
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RapidMindRapidMind

• Usage:
– Include platform headers
– Link to runtime library

• Data
– Value tupels
– Data parallel arrays
– Remote data abstraction

• Programs
– Defined dynamically
– Execute on multicores and co-processors
– Remote procedure abstraction

Slides based on talks by Mike Houston and Stefanus Du Toit
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Brook, Brook+Brook, Brook+

• Developed at Stanford University
– http://graphics.stanford.edu/projects/brook
– SIGGRAPH 2004 paper by Buck et al.

• Brook: General purpose streaming language
– Compiler and runtime
– C with stream extensions
– Integrates seamlessly into C/C++ toolchains

• Cross-platform
– Windows and Linux
– Backends for OpenGL and DirectX, running on ATI and NVIDIA
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Brook, Brook+Brook, Brook+

• Actively being developed
– SVN tree *much* more up to date than downloadable tarballs
– http://www.sourceforge.net/projects/brook

• Open Source
– Compiler: GPL
– Runtime: BSD

• AMD‘s brook+
– Added backend and compiler support for IL/CAL
– Currently betatesting, will be released open source
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Brook, Brook+Brook, Brook+

• Streams
– Collection of records requiring similar computation
– Particle positions, FEM cells, voxels ...

float3 velocityfield<100,100,100>;

– Similar to arrays
– No index operations
– Explicit "memcpy" via streamRead(), streamWrite() from

standard C/C++ arrays

Slides courtesy of Mike Houston
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Brook, Brook+Brook, Brook+

• Kernels
– Functions applied to streams
– Similar to for_all
– No dependencies between stream elements

Slides courtesy of Mike Houston

void foo (float* a, float* b, 
float* c, int N) {

for (int i=0; i<N; i++) 
c[i] = a[i] + b[i]

}

int N=100;

float* a; float* b, float* c;

foo(a,b,c,N);

kernel void foo (
float a<>, float b<>,
out float result<> ) {

result = a + b;
}

float a<100>; 
float b<100>;
float c<100);
foo(a,b,c);
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Brook, Brook+Brook, Brook+

• Kernel arguments
– Input / output streams (different shape resolved by repeat and stride)

kernel void foo (float a<>, 
float b<>,
out float result) {

result = a + b;
}

Slides courtesy of Mike Houston
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Brook, Brook+Brook, Brook+

• Kernel arguments
– Input / output streams (different shape resolved by repeat and stride)
– Gather streams

kernel void foo (float array[], 
out float result) {

result = array[i];
}

Slides courtesy of Mike Houston
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Brook, Brook+Brook, Brook+

• Kernel arguments
– Input / output streams (different shape resolved by repeat and stride)
– Gather streams
– Iterator streams

kernel void foo (float a<>, 
iter float n<>, 
out float result) {

result = a+n;
}

Slides courtesy of Mike Houston
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Brook, Brook+Brook, Brook+

• Kernel arguments
– Input / output streams (different shape resolved by repeat and stride)
– Gather streams
– Iterator streams
– Constant parameters

kernel void foo (float a<>, 
float c, 
out float result) {

result = a+c;
}

Slides courtesy of Mike Houston
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Brook, Brook+Brook, Brook+

• Reductions
– Compute a single value from a stream
– Associative operations only

Slides courtesy of Mike Houston

r=a[0];
for (int i=1; i<100; i++)

r += a[i]

reduce void sum (float a<>,
reduce float r<> ) {

r += a;
}

float a<100>; 
float r;
sum(a,r);
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AcceleratorAccelerator

• Microsoft Research
– http://research.microsoft.com/act
– “Accelerator: Using data parallelism to program GPUs for general 

purpose uses”, D. Tarditi, S. Puri, J. Oglesby (ASPLOS 2006)
– Binaries available for noncommercial use

• Data parallel array library
– including a just-in-time compiler that generates pixel shader code
– runs on top of .NET, C#

• Explicit conversion to data parallel arrays triggers 
computation
– Functional programming: Each operation creates a new data parallel 

array
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AcceleratorAccelerator

• Available operations
– Array creation, explicit conversions
– Element-wise arithmetic and boolean operations
– Reductions: max, min, sum, product
– Transformations: expand, pad, shift, gather, scatter
– Basic linear algebra

• Unsupported operations:
– no aliasing, pointer arithmetic, access to individual elements
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AcceleratorAccelerator

• Example: 2D convolution

Taken from Tarditi et al.: Accelerator: Using data parallelism to program GPUs for general purpose uses
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AcceleratorAccelerator

• Example: 2D convolution

Taken from Tarditi et al.: Accelerator: Using data parallelism to program GPUs for general purpose uses

Convert C#-array to 
data-parallel array
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AcceleratorAccelerator

• Example: 2D convolution

Taken from Tarditi et al.: Accelerator: Using data parallelism to program GPUs for general purpose uses

Compute blur by shifting
the entire original image 

by i pixels and 
multiplying with the
appropriate weight
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AcceleratorAccelerator

• Example: 2D convolution

Taken from Tarditi et al.: Accelerator: Using data parallelism to program GPUs for general purpose uses

Operator overloading
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AcceleratorAccelerator

• Example: 2D convolution

Taken from Tarditi et al.: Accelerator: Using data parallelism to program GPUs for general purpose uses

Convert result back to 
C#-array
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