
ARCS 2008

Languages and Languages and 
Programming EnvironmentsProgramming Environments

Dominik Dominik GGööddekeddeke

ARCS 2008 ARCS 2008 –– Architecture of Computing SystemsArchitecture of Computing Systems
GPGPU and CUDA TutorialsGPGPU and CUDA Tutorials

Dresden, Germany, February 25 2008Dresden, Germany, February 25 2008



2

ARCS 2008

SummarySummary (last (last thingsthings firstfirst))

• GPGPU programming
– Is traditionally seen, well, with some prejudice
– "Hacking the GPU"

• This is a misconception
– Admittedly (mostly) true until 2006

• My claim
– not (much) harder to write efficient code for GPUs than for multicores
– Heterogeneous memory hierarchies / NUMA already present in 

commodity CPUs

• It‘s all about algorithm design for 100s of cores
– And languages indicating how this can be exposed to us



3

ARCS 2008

OverviewOverview

• "Old School": Graphics APIs

• GPGPU languages, GPU computing, stream computing

– CAL (AMD)
– CUDA (NVIDIA)
– RapidMind
– Brook, Brook+
– Accelerator

- Make programming GPUs
easier

- Allow to focus on the algorithm
and not on implementational
details

- Integrate the GPU as a 
computational resource into the
rest of the system



4

ARCS 2008

"Old School" GPGPU"Old School" GPGPU

• Use graphics APIs to access GPU
– DirectX, Direct3D (Windows, vendor-independent)
– OpenGL (platform-independent, vendor-dependent via extensions)

• Use high level shading languages to implement
computation kernels
– GLSL (OpenGL)
– HLSL (D3D)
– Cg (NVIDIA, both GL and D3D)

• Toolchain support
– D3D and GL: Libraries and headers, build around C++ and C 

(wrappers exist for many other languages)
– Shading languages with separate compilers (embedded into the driver

and standalone)



5

ARCS 2008

"Old School" GPGPU"Old School" GPGPU

• Cast algorithms into graphics operations
– Arrays = Textures
– Need to cope with unrelated things such as viewport transformation
– Computing = Drawing

• Advantages
– Platform- and vendor-independent
– No license required

• Disadvantages
– No direct access to the hardware
– Steep learning curve
– Graphics-centric



6

ARCS 2008

AMD AMD ComputeCompute AbstractionAbstraction LayerLayer (CAL)(CAL)

• http://ati.amd.com/technology/streamcomputing/resources.html

• Bottom-up approach to "stream computing"
– Allow low-level access to the hardware for those who want it
– Provide high-level implementations to those who don‘t

• Expose relevant parts of the GPU (R600+):
– Command processor
– Data parallel processors
– Memory controller

• Hide everything else
– In particular, graphics-specific features and constraints
– Take the driver out of the loop
– Direct communication to device



7

ARCS 2008

AMD AMD ComputeCompute AbstractionAbstraction LayerLayer (CAL)(CAL)

• Design goals
– Interact with the processing cores on the lowest level if needed
– Maintain forward compatibility
– Device-specific code generation
– Device management
– Multi-device support
– Resource management
– Kernel loading and execution (written in AMD IL – intermediate

language, assembly-like)

• CAL SDK
– Small set of C routines and data types, e.g. to download IL code into

command processor and to trigger the computation



8

ARCS 2008

AMD AMD StreamStream ComputingComputing Software Software StackStack

• Libraries
– AMD ACML (BLAS, LAPACK, FFT, RNG)
– Includes loadbalancer (suitability of a task for a 

particular architecture)
– AMD COBRA (video library)

• Compilers: Brook+ and RapidMind
– Target both GPUs and multicore CPUs

• Compute Abstraction Layer (CAL)

• Hardware: FireStream GPUs, HAL

• Currently in beta testing
– Check webpage for updates



9

ARCS 2008

CUDACUDA

• http://www.nvidia.com/cuda

• See Simon‘s talks later today



10

ARCS 2008

RapidMindRapidMind

• http://www.rapidmind.net

• Software development platform for both multicore and 
stream processors
– Multicore CPUs, Cell BE and GPUs

• Embedded within ISO C++ 
– No changes to toolchain, compilers etc.

• Portable code
– But exposes platform-specific functionality to allow fine-tuning if

needed

Slides based on talks by Mike Houston and Stefanus Du Toit



11

ARCS 2008

RapidMindRapidMind

• Program definition

Slides based on talks by Mike Houston and Stefanus Du Toit



12

ARCS 2008

RapidMindRapidMind

• SPMD data parallel programming model
– Data parallel arrays
– Programs return new arrays
– Programs may have control flow, may perform random reads from

other arrays
– Subarrays, ranges

• Collective Operations
– Reduce, gather, scatter, ...

• License
– sales@rapidmind.net
– Very supportive to academia, company founded out of University of 

Waterloo, Canada

Slides based on talks by Mike Houston and Stefanus Du Toit



13

ARCS 2008

RapidMindRapidMind

• Example: Step 1 - Replace types

Slides based on talks by Mike Houston and Stefanus Du Toit



14

ARCS 2008

RapidMindRapidMind

• Example: Step 2 - Capture computation

Slides based on talks by Mike Houston and Stefanus Du Toit



15

ARCS 2008

RapidMindRapidMind

• Example: Step 3 - Parallel execution

Slides based on talks by Mike Houston and Stefanus Du Toit



16

ARCS 2008

RapidMindRapidMind

• Usage:
– Include platform headers
– Link to runtime library

• Data
– Value tupels
– Data parallel arrays
– Remote data abstraction

• Programs
– Defined dynamically
– Execute on multicores and co-processors
– Remote procedure abstraction

Slides based on talks by Mike Houston and Stefanus Du Toit



17

ARCS 2008

Brook, Brook+Brook, Brook+

• Developed at Stanford University
– http://graphics.stanford.edu/projects/brook
– SIGGRAPH 2004 paper by Buck et al.

• Brook: General purpose streaming language
– Compiler and runtime
– C with stream extensions
– Integrates seamlessly into C/C++ toolchains

• Cross-platform
– Windows and Linux
– Backends for OpenGL and DirectX, running on ATI and NVIDIA



18

ARCS 2008

Brook, Brook+Brook, Brook+

• Actively being developed
– SVN tree *much* more up to date than downloadable tarballs
– http://www.sourceforge.net/projects/brook

• Open Source
– Compiler: GPL
– Runtime: BSD

• AMD‘s brook+
– Added backend and compiler support for IL/CAL
– Currently betatesting, will be released open source



19

ARCS 2008

Brook, Brook+Brook, Brook+

• Streams
– Collection of records requiring similar computation
– Particle positions, FEM cells, voxels ...

float3 velocityfield<100,100,100>;

– Similar to arrays
– No index operations
– Explicit "memcpy" via streamRead(), streamWrite() from

standard C/C++ arrays

Slides courtesy of Mike Houston



20

ARCS 2008

Brook, Brook+Brook, Brook+

• Kernels
– Functions applied to streams
– Similar to for_all
– No dependencies between stream elements

Slides courtesy of Mike Houston

void foo (float* a, float* b, 
float* c, int N) {

for (int i=0; i<N; i++) 
c[i] = a[i] + b[i]

}

int N=100;

float* a; float* b, float* c;

foo(a,b,c,N);

kernel void foo (
float a<>, float b<>,
out float result<> ) {

result = a + b;
}

float a<100>; 
float b<100>;
float c<100);
foo(a,b,c);



21

ARCS 2008

Brook, Brook+Brook, Brook+

• Kernel arguments
– Input / output streams (different shape resolved by repeat and stride)

kernel void foo (float a<>, 
float b<>,
out float result) {

result = a + b;
}

Slides courtesy of Mike Houston



22

ARCS 2008

Brook, Brook+Brook, Brook+

• Kernel arguments
– Input / output streams (different shape resolved by repeat and stride)
– Gather streams

kernel void foo (float array[], 
out float result) {

result = array[i];
}

Slides courtesy of Mike Houston



23

ARCS 2008

Brook, Brook+Brook, Brook+

• Kernel arguments
– Input / output streams (different shape resolved by repeat and stride)
– Gather streams
– Iterator streams

kernel void foo (float a<>, 
iter float n<>, 
out float result) {

result = a+n;
}

Slides courtesy of Mike Houston



24

ARCS 2008

Brook, Brook+Brook, Brook+

• Kernel arguments
– Input / output streams (different shape resolved by repeat and stride)
– Gather streams
– Iterator streams
– Constant parameters

kernel void foo (float a<>, 
float c, 
out float result) {

result = a+c;
}

Slides courtesy of Mike Houston



25

ARCS 2008

Brook, Brook+Brook, Brook+

• Reductions
– Compute a single value from a stream
– Associative operations only

Slides courtesy of Mike Houston

r=a[0];
for (int i=1; i<100; i++)

r += a[i]

reduce void sum (float a<>,
reduce float r<> ) {

r += a;
}

float a<100>; 
float r;
sum(a,r);



26

ARCS 2008

AcceleratorAccelerator

• Microsoft Research
– http://research.microsoft.com/act
– “Accelerator: Using data parallelism to program GPUs for general 

purpose uses”, D. Tarditi, S. Puri, J. Oglesby (ASPLOS 2006)
– Binaries available for noncommercial use

• Data parallel array library
– including a just-in-time compiler that generates pixel shader code
– runs on top of .NET, C#

• Explicit conversion to data parallel arrays triggers 
computation
– Functional programming: Each operation creates a new data parallel 

array



27

ARCS 2008

AcceleratorAccelerator

• Available operations
– Array creation, explicit conversions
– Element-wise arithmetic and boolean operations
– Reductions: max, min, sum, product
– Transformations: expand, pad, shift, gather, scatter
– Basic linear algebra

• Unsupported operations:
– no aliasing, pointer arithmetic, access to individual elements



28

ARCS 2008

AcceleratorAccelerator

• Example: 2D convolution

Taken from Tarditi et al.: Accelerator: Using data parallelism to program GPUs for general purpose uses



29

ARCS 2008

AcceleratorAccelerator

• Example: 2D convolution

Taken from Tarditi et al.: Accelerator: Using data parallelism to program GPUs for general purpose uses

Convert C#-array to 
data-parallel array



30

ARCS 2008

AcceleratorAccelerator

• Example: 2D convolution

Taken from Tarditi et al.: Accelerator: Using data parallelism to program GPUs for general purpose uses

Compute blur by shifting
the entire original image 

by i pixels and 
multiplying with the
appropriate weight



31

ARCS 2008

AcceleratorAccelerator

• Example: 2D convolution

Taken from Tarditi et al.: Accelerator: Using data parallelism to program GPUs for general purpose uses

Operator overloading



32

ARCS 2008

AcceleratorAccelerator

• Example: 2D convolution

Taken from Tarditi et al.: Accelerator: Using data parallelism to program GPUs for general purpose uses

Convert result back to 
C#-array



33

ARCS 2008

AcknowledgementsAcknowledgements

• Mike Houston, Ian Buck
– inspired by previous talks on the topic

• Stefanus Du Toit
– RapidMind examples


	Languages and Programming Environments
	Summary (last things first)
	Overview
	"Old School" GPGPU
	"Old School" GPGPU	
	AMD Compute Abstraction Layer (CAL)
	AMD Compute Abstraction Layer (CAL)
	AMD Stream Computing Software Stack
	CUDA
	RapidMind
	RapidMind
	RapidMind
	RapidMind
	RapidMind
	RapidMind
	RapidMind
	Brook, Brook+
	Brook, Brook+
	Brook, Brook+
	Brook, Brook+
	Brook, Brook+
	Brook, Brook+
	Brook, Brook+
	Brook, Brook+
	Brook, Brook+
	Accelerator
	Accelerator
	Accelerator
	Accelerator
	Accelerator
	Accelerator
	Accelerator
	Acknowledgements

