
ARCS 2008

Data parallel algorithms, Data parallel algorithms,
algorithmicalgorithmic building blocks, building blocks,

precision vs. accuracyprecision vs. accuracy

Robert Robert StrzodkaStrzodka

ARCS 2008 ARCS 2008 –– Architecture of Computing SystemsArchitecture of Computing Systems
GPGPU and CUDA GPGPU and CUDA TutorialsTutorials

Dresden, Germany, February 25 2008Dresden, Germany, February 25 2008

ARCS 2008

2

OverviewOverview

• Parallel Processing on GPUs

• Types of Parallel Data Flow

• Parallel Prefix or Scan

• Precision and Accuracy

ARCS 2008

3

The GPU is a Fast, Parallel Array ProcessorThe GPU is a Fast, Parallel Array Processor

Input Arrays:
1D, 3D,

2D (typical)

Output Arrays:
1D, 3D (slice),
2D (typical)

ARCS 2008

4

The GPU is a Fast, Parallel Array ProcessorThe GPU is a Fast, Parallel Array Processor

Input Arrays:
1D, 3D,

2D (typical)

Vertex Processor (VP)

Kernel changes index
regions of output arrays

Output Arrays:
1D, 3D (slice),
2D (typical)

ARCS 2008

5

The GPU is a Fast, Parallel Array ProcessorThe GPU is a Fast, Parallel Array Processor

Input Arrays:
1D, 3D,

2D (typical)

Vertex Processor (VP)

Kernel changes index
regions of output arrays

Rasterizer

Creates data streams
from index regions

Output Arrays:
1D, 3D (slice),
2D (typical)

ARCS 2008

6

The GPU is a Fast, Parallel Array ProcessorThe GPU is a Fast, Parallel Array Processor

Input Arrays:
1D, 3D,

2D (typical)

Vertex Processor (VP)

Kernel changes index
regions of output arrays

Rasterizer

Creates data streams
from index regions

Stream of array elements,
order unknown

Output Arrays:
1D, 3D (slice),
2D (typical)

ARCS 2008

7

The GPU is a Fast, Parallel Array ProcessorThe GPU is a Fast, Parallel Array Processor

Input Arrays:
1D, 3D,

2D (typical)

Vertex Processor (VP)

Kernel changes index
regions of output arrays

Rasterizer

Creates data streams
from index regions

Stream of array elements,
order unknown

Fragment Processor (FP)

Kernel changes each
datum independently,

reads more input arrays

Output Arrays:
1D, 3D (slice),
2D (typical)

ARCS 2008

8

The GPU is a Fast, Parallel Array ProcessorThe GPU is a Fast, Parallel Array Processor

Input Arrays:
1D, 3D,

2D (typical)

Vertex Processor (VP)

Kernel changes index
regions of output arrays

Rasterizer

Creates data streams
from index regions

Stream of array elements,
order unknown

Fragment Processor (FP)

Kernel changes each
datum independently,

reads more input arrays

Output Arrays:
1D, 3D (slice),
2D (typical)

ARCS 2008

9

The GPU is a Fast, Highly MultiThe GPU is a Fast, Highly Multi--Threaded ProcessorThreaded Processor

Input Arrays:
nD

Start thousands of
parallel threads in

groups of m, e.g. 32

Output Arrays:
nD

ARCS 2008

10

The GPU is a Fast, Highly MultiThe GPU is a Fast, Highly Multi--Threaded ProcessorThreaded Processor

Input Arrays:
nD

Start thousands of
parallel threads in

groups of m, e.g. 32

Each group operates in a
SIMD fashion, with

predication if necessary

Output Arrays:
nD

ARCS 2008

11

The GPU is a Fast, Highly MultiThe GPU is a Fast, Highly Multi--Threaded ProcessorThreaded Processor

Input Arrays:
nD

Start thousands of
parallel threads in

groups of m, e.g. 32

Each group operates in a
SIMD fashion, with

predication if necessary

In general all threads are independent
but certain collections of groups may

use local memory to exchange data

Output Arrays:
nD

ARCS 2008

12

Native Memory Layout Native Memory Layout –– Data LocalityData Locality

CPU
• 1D input
• 1D output
• Other dimensions with offsets

GPU
• 2D input
• 2D output
• Other dimensions with offsets

Input Input Output

Output

Color coded locality
red (near), blue (far)

ARCS 2008

13

Primitive Index Regions in Output ArraysPrimitive Index Regions in Output Arrays

Output region• Quads and Triangles
– Fastest option

Output region
• Line segments

– Slower, try to pair lines to 2xh,
wx2 quads

Output region
• Point Clouds

– Slowest, try to gather points into
larger forms

ARCS 2008

14

GPUsGPUs are Optimized for Local Data Accessare Optimized for Local Data Access

• CPU
– Large cache
– Few processing elements
– Optimized for spatial and

temporal data reuse

GeForceGeForce 7800 GTX7800 GTX Pentium 4Pentium 4

chart courtesy

of Ian Buck

Memory access types: Cache, Sequential, Random

• GPU
– Small cache
– Many processing elements
– Optimized for sequential

(streaming) data access

ARCS 2008

15

Input and Output ArraysInput and Output Arrays

CPU
• Input and output arrays may

overlap

GPU
• Input and output arrays must

not overlap

Input

Output

Input

Output

ARCS 2008

16

Configuration OverheadConfiguration Overhead

ConfiguConfigu--
rationration
limitedlimited

CompuCompu--
tationtation
limitedlimited

chart courtesy

of Ian Buck

ARCS 2008

17

OverviewOverview

• Parallel Processing on GPUs

• Types of Parallel Data Flow

• Parallel Prefix or Scan

• Precision and Accuracy

ARCS 2008

18

Parallel DataParallel Data--Flow: Map, Gather and ScatterFlow: Map, Gather and Scatter

Input Output

Input Output

Input Output
Scatter: x(2,3)= f(a), x(6,7)= g(a), …

Map: x= f(a)

General: x(2,3)= f(a(1,2), a(3,5), …),
x(6,7)= f(a(6,2), a(7,5), …),

Gather: x= f(a(1,2), a(3,5), …)

Input Output

ARCS 2008

Performance of Gather and ScatterPerformance of Gather and Scatter

19

chart courtesy of

Naga Govindaraju

ARCS 2008

20

Parallel Reduction, e.g. Maximum of an ArrayParallel Reduction, e.g. Maximum of an Array

input

ARCS 2008

21

Parallel Reduction, e.g. Maximum of an ArrayParallel Reduction, e.g. Maximum of an Array

input arrayN/2 x N/2 output

ARCS 2008

22

Parallel Reduction, e.g. Maximum of an ArrayParallel Reduction, e.g. Maximum of an Array

gather 2x2
regions for
each output

ARCS 2008

23

Parallel Reduction, e.g. Maximum of an ArrayParallel Reduction, e.g. Maximum of an Array

first output

ARCS 2008

24

Parallel Reduction, e.g. Maximum of an ArrayParallel Reduction, e.g. Maximum of an Array

maximum of
2x2 region

ARCS 2008

25

Parallel Reduction, e.g. Maximum of an ArrayParallel Reduction, e.g. Maximum of an Array

intermediates

ARCS 2008

26

Parallel Reduction, e.g. Maximum of an ArrayParallel Reduction, e.g. Maximum of an Array

input intermediates result

ARCS 2008

27

Parallel Reduction, e.g. Maximum of an ArrayParallel Reduction, e.g. Maximum of an Array

• For commutative operators (e.g. +,*,max) this is encapsulated into
a single function call.

• For a more detailed discussion see, Mark Harris' CUDA
optimization talk from SC 2007: http://www.gpgpu.org/sc2007/

ARCS 2008

28

OverviewOverview

• Parallel Processing on GPUs

• Types of Parallel Data Flow

• Parallel Prefix or Scan

• Precision and Accuracy

slides courtesy of

Shubho Sengupta

ARCS 2008

MotivationMotivation

30140703

31473

0 Null

• Stream Compaction

• Split

TTTFFFFF

FTFFTFFT

ARCS 2008

• Common scenarios in parallel computing
– Variable output per thread
– Threads want to perform a split – radix sort, building trees

• “What came before/after me?”
• “Where do I start writing my data?”
• Scan answers this question

MotivationMotivation

ARCS 2008

ScanScan

• Each element is a sum of all the elements to the left of it
(Exclusive)

• Each element is a sum of all the elements to the left of it
and itself (Inclusive)

2216151111430 Exclusive

25221615111143 Inclusive

36140713 Input

ARCS 2008

Scan Scan –– the pastthe past

• First proposed in APL (1962)
• Used as a data parallel primitive in the Connection

Machine (1990)
• Guy Blelloch used scan as a primitive for various

parallel algorithms (1990)

ARCS 2008

Scan Scan –– the presentthe present

• First GPU implementation by Daniel Horn (2004), O(n
logn)

• Subsequent GPU implementations by
– Hensley (2005) O(n logn), Sengupta (2006) O(n), Greß (2006)

O(n) 2D

• NVIDIA CUDA implementation by Mark Harris (2007),
O(n), space efficient

ARCS 2008

Scan Scan -- ReduceReduce

36140713

96547743

1465411743

2565411743

• log n steps

• Work halves each
step

• O(n) work

• In place, space
efficient

ARCS 2008

Scan Scan -- Down SweepDown Sweep

065411743

116540743

1661144703

2216151111430

2565411743 • log n steps

• Work doubles
each step

• O(n) work

• In place, space
efficient

ARCS 2008

Segmented ScanSegmented Scan

• Input

• Scan within each segment in parallel
• Output

30 770 710

13 407 361

ARCS 2008

Segmented ScanSegmented Scan

• Introduced by Schwartz (1980)
• Forms the basis for a wide variety of algorithms

– Radixsort, Quicksort
– Sparse Matrix-Vector Multiply
– Convex Hull
– Solving recurrences
– Tree operations

ARCS 2008

Segmented Scan Segmented Scan –– Large InputLarge Input

ARCS 2008

Segmented Scan Segmented Scan –– AdvantagesAdvantages

• Operations in parallel over all the segments
• Irregular workload since segments can be of any length
• Can simulate divide-and-conquer recursion since

additional segments can be generated

ARCS 2008

Segmented Scan Variant: Segmented Scan Variant: TridiagonalTridiagonal SolverSolver

• Tridiagonal system of n rows solved in parallel
• Then for each of the m columns in parallel
• Read pattern is similar to but more complex than scan

ARCS 2008

41

OverviewOverview

• Parallel Processing on GPUs

• Types of Parallel Data Flow

• Parallel Prefix or Scan

• Precision and Accuracy

ARCS 2008

42

The Erratic The Erratic RoundoffRoundoff ErrorError
S

m
al

le
r i

s
be

tte
r

-100

-90

-80

-70

-60

-50

-40

-30

-20

 0 10 20 30 40 50

y
=

lo
g2

(f
(a

))
,

 0
 --

>
2^

-1
00

x = log2(1/a), a = 1 / 2^x

Roundoff error for: 0 = f(a):= |(1+a)^3 - (1+3a^2) - (3a+a^3)|

single precision
double precision

ARCS 2008

43

Precision and AccuracyPrecision and Accuracy

• There is no monotonic relation between the computational precision and
the accuracy of the final result.

• Increasing precision can decrease accuracy !

• The increase or decrease of precision in different parts of a computation
can have very different impact on the accuracy.

• The above can be exploited to significantly reduce the precision in parts
of a computation without a loss in accuracy.

• We obtain a mixed precision method.

ARCS 2008

44

Quantization Quantization -- Preserving AccuracyPreserving Accuracy

– Watch out for cancellation
• a≈b, r = c*a-c*b
• r = c(a-b)

– Maximize operations on the same scale
• a∈[0,1], b,c∈[10-3,10-4], r = a+b+c
• r = a+(b+c)

– Make implicit relations between constants explicit
• ai=0.01, i=0..99 r = Σi<100ai ≠ 1
• a99=1-(Σi<99ai), r = Σi<100ai = 1

– Use symmetric intervals for multiplication
• a ~ [-1, 1], r = 0.1134*(a+1)
• r = 0.1134a+0.1134

– Minimize the number of multiplications
• r = 0.25a + 0.1b + 0.15c
• r = 0.1(a+b)+0.15(a+c)

ARCS 2008

45

Resources for Signed Integer OperationsResources for Signed Integer Operations

Operation Area Latency

min(r,0)
max(r,0) b+1 2

add(r1,r2)
sub(r1,r2)

2b b

add(r1,r2,r3)→add(r4,r5) 2b 1
mult(r1,r2)

sqr(r)
b(b-2) b ld(b)

sqrt(r) 2c(c-5) c(c+3)

b: bitlength of argument, c: bitlength of result

ARCS 2008

46

FPGA Results: Conjugate Gradient (CG)FPGA Results: Conjugate Gradient (CG)

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 20 25 30 35 40 45 50

N
um

be
r o

f s
lic

es

Bits of mantissa

Area of s??e11 float kernels on the xc2v500/xc2v8000(CG)

Adder
Multiplier

CG kernel normalized (1/30)

S
m

al
le

r i
s

be
tte

r

[Göddeke et al. Performance and accuracy of hardware-oriented native-, emulated- and mixed-
precision solvers in FEM simulations, IJPEDS 2007]

ARCS 2008

47

High Precision EmulationHigh Precision Emulation

• Given a m x m bit unsigned integer multiplier we want to build
a n x n multiplier with a n=k*m bit result

∑∑∑∑
+>+

=

+−

+≤+
=

+−

=

−

=

− +=⋅
k

kji
ji

ji
mji

k

kji
ji

ji
mji

k

j
j

jm
k

i
i

im bababa
1

1,

)(

1
1,

)(

11
2222

• The evaluation of the first sum requires k(k+1)/2 multiplications,
the evaluation of the second depends on the rounding mode

• For floating point numbers additional operations are necessary
because of the mantissa/exponent distinction

• A double emulation with two aligned s23e8 single floats is less
complex than an exact s52e11 double emulation, achieves a
s46e8 precision and still requires 10-20 single float operations

ARCS 2008

Precision Precision –– Performance Rough EstimatesPerformance Rough Estimates

• Reconfigurable device, e.g. FPGA
– 2x float add ≈ 1x double add
– 4x float mul ≈ 1x double mul

• Hardware emulation (compute area limited), e.g. GPU
– 2x float add ≈ 1x double add
– 5x float mul ≈ 1x double mul

• Hardware emulation (data path limited), e.g. CPU
– 2x float add ≈ 1x double add
– 2x float mul ≈ 1x double mul

• Software emulation
– 10x float add ≈ 1x double add
– 20x float mul ≈ 1x double mul

48

ARCS 2008

49

• Exploit the speed of low precision and obtain a result of
high accuracy

dk =b-Axk Compute in high precision (cheap)
Ack=dk Solve in low precision (fast)
xk+1=xk+ck Correct in high precision (cheap)
k=k+1 Iterate until convergence in high precision

• Low precision solution is used as a pre-conditioner in a
high precision iterative method
– A is small and dense: Solve Ack=dk directly
– A is large and sparse: Solve (approximately) Ack=dk with an iterative

method itself

Mixed Mixed PrecisionPrecision Iterative Iterative RefinementRefinement Ax=bAx=b

ARCS 2008

50

CPU Results: LU SolverCPU Results: LU Solver

chart courtesy

of Jack Dongarra

La
rg

er
 is

 b
et

te
r

[Langou et al. Exploiting the performance of 32 bit floating point arithmetic in obtaining 64 bit accuracy
(revisiting iterative refinement for linear systems), SC 2006]

ARCS 2008

51

GPU Results: Conjugate Gradient (CG) and GPU Results: Conjugate Gradient (CG) and MultigridMultigrid (MG)(MG)
S

m
al

le
r i

s
be

tte
r

5e-7

5e-6

5e-5

5e-4

 6 7 8 9 10

S
ec

on
ds

 p
er

 g
rid

 n
od

e

Data level

Performance of double precision CPU and mixed precision CPU-GPU solvers

CG CPU
CG GPU

MG2+2 CPU
MG2+2 GPU

[Göddeke et al. Performance and accuracy of hardware-oriented native-, emulated- and mixed-
precision solvers in FEM simulations, IJPEDS 2007]

ARCS 2008

52

ConclusionsConclusions

• Parallel Processing on GPUs is about identifying
independent work and preserving data locality

• Map, gather, scatter are basic types of parallel data-flow.

• Parallel prefix (scan) enables the parallelization of many
seemingly inherently sequential algorithms

• Precision ≠ accuracy! Mixed precision methods can
reduce resource requirements quadratically.

	Data parallel algorithms, algorithmic building blocks, precision vs. accuracy
	Overview
	The GPU is a Fast, Parallel Array Processor
	The GPU is a Fast, Parallel Array Processor
	The GPU is a Fast, Parallel Array Processor
	The GPU is a Fast, Parallel Array Processor
	The GPU is a Fast, Parallel Array Processor
	The GPU is a Fast, Parallel Array Processor
	The GPU is a Fast, Highly Multi-Threaded Processor
	The GPU is a Fast, Highly Multi-Threaded Processor
	The GPU is a Fast, Highly Multi-Threaded Processor
	Native Memory Layout – Data Locality
	Primitive Index Regions in Output Arrays
	GPUs are Optimized for Local Data Access
	Input and Output Arrays
	Configuration Overhead
	Overview
	Parallel Data-Flow: Map, Gather and Scatter
	Performance of Gather and Scatter
	Parallel Reduction, e.g. Maximum of an Array
	Parallel Reduction, e.g. Maximum of an Array
	Parallel Reduction, e.g. Maximum of an Array
	Parallel Reduction, e.g. Maximum of an Array
	Parallel Reduction, e.g. Maximum of an Array
	Parallel Reduction, e.g. Maximum of an Array
	Parallel Reduction, e.g. Maximum of an Array
	Parallel Reduction, e.g. Maximum of an Array
	Overview
	Motivation
	Motivation
	Scan
	Scan – the past
	Scan – the present
	Scan - Reduce
	Scan - Down Sweep
	Segmented Scan
	Segmented Scan
	Segmented Scan – Large Input
	Segmented Scan – Advantages
	Segmented Scan Variant: Tridiagonal Solver
	Overview
	The Erratic Roundoff Error
	Precision and Accuracy
	Quantization - Preserving Accuracy
	Resources for Signed Integer Operations
	FPGA Results: Conjugate Gradient (CG)
	High Precision Emulation
	Precision – Performance Rough Estimates
	Mixed Precision Iterative Refinement Ax=b
	CPU Results: LU Solver
	GPU Results: Conjugate Gradient (CG) and Multigrid (MG)
	Conclusions

