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The GPU is a Fast, Parallel Array ProcessorThe GPU is a Fast, Parallel Array Processor
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The GPU is a Fast, Highly MultiThe GPU is a Fast, Highly Multi--Threaded ProcessorThreaded Processor

Input Arrays:
nD

Start thousands of 
parallel threads in 

groups of m, e.g. 32

Each group operates in a 
SIMD fashion, with 

predication if necessary

In general all threads are independent
but certain collections of groups may

use local memory to exchange data 

Output Arrays:
nD
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Native Memory Layout Native Memory Layout –– Data LocalityData Locality

CPU
• 1D input
• 1D output
• Other dimensions with offsets

GPU
• 2D input
• 2D output
• Other dimensions with offsets

Input Input Output

Output

Color coded locality
red (near), blue (far)
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Primitive Index Regions in Output ArraysPrimitive Index Regions in Output Arrays

Output region• Quads and Triangles
– Fastest option

Output region
• Line segments

– Slower, try to pair lines to 2xh, 
wx2 quads

Output region
• Point Clouds

– Slowest, try to gather points into 
larger forms



ARCS 2008

14

GPUsGPUs are Optimized for Local Data Accessare Optimized for Local Data Access

• CPU
– Large cache
– Few processing elements
– Optimized for spatial and 

temporal data reuse

GeForceGeForce 7800 GTX7800 GTX Pentium 4Pentium 4

chart courtesy

of Ian Buck

Memory access types: Cache, Sequential, Random

• GPU
– Small cache
– Many processing elements
– Optimized for sequential

(streaming) data access
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Input and Output ArraysInput and Output Arrays

CPU
• Input and output arrays may

overlap

GPU
• Input and output arrays must 

not overlap

Input

Output

Input

Output
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Configuration OverheadConfiguration Overhead

ConfiguConfigu--
rationration
limitedlimited

CompuCompu--
tationtation
limitedlimited

chart courtesy

of Ian Buck
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Parallel DataParallel Data--Flow: Map, Gather and ScatterFlow: Map, Gather and Scatter

Input Output

Input Output

Input Output
Scatter: x(2,3)= f(a), x(6,7)= g(a),  …

Map: x= f(a)

General: x(2,3)= f( a(1,2), a(3,5), … ),
x(6,7)= f( a(6,2), a(7,5), … ),

Gather: x= f( a(1,2), a(3,5), … )

Input Output
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19

chart courtesy of

Naga Govindaraju
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Parallel Reduction, e.g. Maximum of an ArrayParallel Reduction, e.g. Maximum of an Array

input
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Parallel Reduction, e.g. Maximum of an ArrayParallel Reduction, e.g. Maximum of an Array

input arrayN/2 x N/2 output
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Parallel Reduction, e.g. Maximum of an ArrayParallel Reduction, e.g. Maximum of an Array

gather 2x2 
regions for 
each output
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Parallel Reduction, e.g. Maximum of an ArrayParallel Reduction, e.g. Maximum of an Array

first output
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Parallel Reduction, e.g. Maximum of an ArrayParallel Reduction, e.g. Maximum of an Array

maximum of 
2x2 region



ARCS 2008

25

Parallel Reduction, e.g. Maximum of an ArrayParallel Reduction, e.g. Maximum of an Array

intermediates
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Parallel Reduction, e.g. Maximum of an ArrayParallel Reduction, e.g. Maximum of an Array

input intermediates result
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Parallel Reduction, e.g. Maximum of an ArrayParallel Reduction, e.g. Maximum of an Array

• For commutative operators (e.g. +,*,max) this is encapsulated into 
a single function call.

• For a more detailed discussion see, Mark Harris' CUDA 
optimization talk from SC 2007: http://www.gpgpu.org/sc2007/ 
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OverviewOverview

• Parallel Processing on GPUs

• Types of Parallel Data Flow

• Parallel Prefix or Scan

• Precision and Accuracy

slides courtesy of

Shubho Sengupta
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30140703

31473

0 Null

• Stream Compaction

• Split

TTTFFFFF

FTFFTFFT
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• Common scenarios in parallel computing
– Variable output per thread
– Threads want to perform a split – radix sort, building trees

• “What came before/after me?”
• “Where do I start writing my data?”
• Scan answers this question

MotivationMotivation
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ScanScan

• Each element is a sum of all the elements to the left of it 
(Exclusive)

• Each element is a sum of all the elements to the left of it 
and itself (Inclusive)

2216151111430 Exclusive

25221615111143 Inclusive

36140713 Input
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Scan Scan –– the pastthe past

• First proposed in APL (1962)
• Used as a data parallel primitive in the Connection 

Machine (1990)
• Guy Blelloch used scan as a primitive for various 

parallel algorithms (1990)
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Scan Scan –– the presentthe present

• First GPU implementation by Daniel Horn (2004), O(n
logn)

• Subsequent GPU implementations by 
– Hensley (2005) O(n logn), Sengupta (2006) O(n), Greß (2006) 

O(n) 2D

• NVIDIA CUDA implementation by Mark Harris (2007), 
O(n), space efficient
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Scan Scan -- ReduceReduce

36140713

96547743

1465411743

2565411743

• log n steps

• Work halves each 
step

• O(n) work

• In place, space 
efficient
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Scan Scan -- Down SweepDown Sweep

065411743

116540743

1661144703

2216151111430

2565411743 • log n steps

• Work doubles 
each step

• O(n) work

• In place, space 
efficient



ARCS 2008

Segmented ScanSegmented Scan

• Input

• Scan within each segment in parallel
• Output

30 770 710

13 407 361
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Segmented ScanSegmented Scan

• Introduced by Schwartz (1980)
• Forms the basis for a wide variety of algorithms

– Radixsort, Quicksort
– Sparse Matrix-Vector Multiply
– Convex Hull
– Solving recurrences
– Tree operations
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Segmented Scan Segmented Scan –– Large InputLarge Input
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Segmented Scan Segmented Scan –– AdvantagesAdvantages

• Operations in parallel over all the segments
• Irregular workload since segments can be of any length
• Can simulate divide-and-conquer recursion since

additional segments can be generated
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Segmented Scan Variant: Segmented Scan Variant: TridiagonalTridiagonal SolverSolver

• Tridiagonal system of n rows solved in parallel
• Then for each of the m columns in parallel
• Read pattern is similar to but more complex than scan 
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The Erratic The Erratic RoundoffRoundoff ErrorError
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Precision and AccuracyPrecision and Accuracy

• There is no monotonic relation between the computational precision and 
the accuracy of the final result.

• Increasing precision can decrease accuracy !

• The increase or decrease of precision in different parts of a computation 
can have very different impact on the accuracy.

• The above can be exploited to significantly reduce the precision in parts 
of a computation without a loss in accuracy.

• We obtain a mixed precision method.
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Quantization Quantization -- Preserving AccuracyPreserving Accuracy

– Watch out for cancellation
• a≈b, r = c*a-c*b
• r = c(a-b)

– Maximize operations on the same scale
• a∈[0,1], b,c∈[10-3,10-4], r = a+b+c
• r = a+(b+c)

– Make implicit relations between constants explicit
• ai=0.01, i=0..99 r = Σi<100ai ≠ 1
• a99=1-(Σi<99ai ), r = Σi<100ai = 1

– Use symmetric intervals for multiplication
• a ~ [-1, 1], r = 0.1134*(a+1)
• r = 0.1134a+0.1134

– Minimize the number of multiplications
• r = 0.25a + 0.1b + 0.15c
• r = 0.1(a+b)+0.15(a+c)
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Resources for Signed Integer OperationsResources for Signed Integer Operations

Operation Area Latency

min(r,0)
max(r,0) b+1 2

add(r1,r2)
sub(r1,r2)

2b b

add(r1,r2,r3)→add(r4,r5) 2b 1
mult(r1,r2)

sqr(r)
b(b-2) b ld(b)

sqrt(r) 2c(c-5) c(c+3)

b: bitlength of argument,   c: bitlength of result
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FPGA Results: Conjugate Gradient (CG)FPGA Results: Conjugate Gradient (CG)
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[Göddeke et al. Performance and accuracy of hardware-oriented native-, emulated- and mixed-
precision solvers in FEM simulations, IJPEDS 2007]
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High Precision EmulationHigh Precision Emulation

• Given a m x m bit unsigned integer multiplier we want to build 
a n x n multiplier with a n=k*m bit result
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• The evaluation of the first sum requires k(k+1)/2 multiplications,
the evaluation of the second depends on the rounding mode

• For floating point numbers additional operations are necessary 
because of the mantissa/exponent distinction

• A double emulation with two aligned s23e8 single floats is less 
complex than an exact s52e11 double emulation, achieves a 
s46e8 precision and still requires 10-20 single float operations 
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Precision Precision –– Performance Rough EstimatesPerformance Rough Estimates

• Reconfigurable device, e.g. FPGA
– 2x float add ≈ 1x double add
– 4x float mul ≈ 1x double mul

• Hardware emulation (compute area limited), e.g.  GPU
– 2x float add ≈ 1x double add
– 5x float mul ≈ 1x double mul

• Hardware emulation (data path limited), e.g.  CPU
– 2x float add ≈ 1x double add
– 2x float mul ≈ 1x double mul

• Software emulation
– 10x float add ≈ 1x double add
– 20x float mul ≈ 1x double mul

48
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• Exploit the speed of low precision and obtain a result of 
high accuracy

dk =b-Axk Compute in high precision (cheap)
Ack=dk Solve in low precision (fast)
xk+1=xk+ck Correct in high precision (cheap)
k=k+1  Iterate until convergence in high precision

• Low precision solution is used as a pre-conditioner in a 
high precision iterative method
– A is small and dense: Solve Ack=dk directly
– A is large and sparse: Solve (approximately) Ack=dk with an iterative 

method itself

Mixed Mixed PrecisionPrecision Iterative Iterative RefinementRefinement Ax=bAx=b
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CPU Results: LU SolverCPU Results: LU Solver

chart courtesy

of Jack Dongarra
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[Langou et al. Exploiting the performance of 32 bit floating point arithmetic in obtaining 64 bit accuracy 
(revisiting iterative refinement for linear systems), SC 2006]
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GPU Results: Conjugate Gradient (CG) and GPU Results: Conjugate Gradient (CG) and MultigridMultigrid (MG)(MG)
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[Göddeke et al. Performance and accuracy of hardware-oriented native-, emulated- and mixed-
precision solvers in FEM simulations, IJPEDS 2007]
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ConclusionsConclusions

• Parallel Processing on GPUs is about identifying 
independent work and preserving data locality

• Map, gather, scatter are basic types of parallel data-flow.

• Parallel prefix (scan) enables the parallelization of many 
seemingly inherently sequential algorithms

• Precision ≠ accuracy! Mixed precision methods can 
reduce resource requirements quadratically.
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