
CUDA Libraries

2

Outline

CUDA includes 2 widely used libraries:
CUBLAS: BLAS implementation
CUFFT: FFT implementation

3

CUBLAS
CUBLAS is an implementation of BLAS (Basic Linear Algebra
Subprograms) on top of the CUDA driver. It allows access to the
computational resources of NVIDIA GPUs.

The library is self-contained at the API level, that is, no direct
interaction with the CUDA driver is necessary.

The basic model by which applications use the CUBLAS library is to:
•create matrix and vector objects in GPU memory space,
•fill them with data,
•call a sequence of CUBLAS functions,
•upload the results from GPU memory space back to the host.

CUBLAS provides helper functions for creating and destroying
objects in GPU space, and for writing data to and retrieving data
from these objects.

4

Supported features

• BLAS functions implemented (single precision only):
•Real data: Level 1, 2 and 3
•Complex data: Level1 and CGEMM

(Level 1=vector vector O(N), Level 2= matrix vector O(N2), Level 3=matrix matrix O(N3))

• For maximum compatibility with existing Fortran
environments, CUBLAS uses column-major storage, and
1-based indexing:

Since C and C++ use row-major storage, this means applications cannot use
the native C array semantics for two-dimensional arrays. Instead, macros or
inline functions should be defined to implement matrices on top of one-
dimensional arrays.

5

Using CUBLAS

•The interface to the CUBLAS library is the header file
cublas.h

•Function names: cublas(Original name).
cublasSGEMM

•Because the CUBLAS core functions (as opposed to the
helper functions) do not return error status directly, CUBLAS
provides a separate function to retrieve the last error that
was recorded, to aid in debugging

•CUBLAS is implemented using the C-based CUDA tool
chain, and thus provides a C-style API. This makes
interfacing to applications written in C or C++ trivial.

6

cublasInit, cublasShutdown
cublasStatus cublasInit()

initializes the CUBLAS library and must be called before any other
CUBLAS API function is invoked. It allocates hardware resources
necessary for accessing the GPU.

cublasStatus cublasShutdown()

releases CPU-side resources used by the CUBLAS library. The release
of GPU-side resources may be deferred until the application shuts

down.

7

CUBLAS performance

SGEMM performance

0

20

40

60
80

100

120

140

0 512 1024 1536 2048 2560

N

G
flo

ps

GPU+I/O GPU+I/O Pinned GPU only

8

cublasGetError, cublasAlloc, cublasFree
cublasStatus cublasGetError()

returns the last error that occurred on invocation of any of the CUBLAS core
functions. While the CUBLAS helper functions return status directly, the CUBLAS
core functions do not, improving compatibility with those existing environments
that do not expect BLAS functions to return status. Reading the error status via
cublasGetError() resets the internal error state to CUBLAS_STATUS_SUCCESS..

cublasStatus cublasAlloc (int n, int elemSize, void **devicePtr)

creates an object in GPU memory space capable of holding an array of n elements,
where each element requires elemSize bytes of storage.
Note that this is a device pointer that cannot be dereferenced in host code.
cublasAlloc() is a wrapper around cudaMalloc().
Device pointers returned by cublasAlloc() can therefore be passed to any CUDA
device kernels, not just CUBLAS functions.

cublasStatus cublasFree(const void *devicePtr)
destroys the object in GPU memory space referenced by devicePtr.

9

cublasSetVector, cublasGetVector
cublasStatus cublasSetVector(int n, int elemSize, const void *x,

int incx, void *y, int incy)

copies n elements from a vector x in CPU memory space to a vector y in GPU memory
space. Elements in both vectors are assumed to have a size of elemSize bytes. Storage
spacing between consecutive elements is incx for the source vector x and incy for the
destination vector y

cublasStatus cublasGetVector(int n, int elemSize, const void *x,
int incx, void *y, int incy)

copies n elements from a vector x in GPU memory space to a vector y in CPU memory
space. Elements in both vectors are assumed to have a size of elemSize bytes. Storage
spacing between consecutive elements is incx for the source vector x and incy for the
destination vector y

10

cublasSetMatrix, cublasGetMatrix
cublasStatus cublasSetMatrix(int rows, int cols, int elemSize,

const void *A, int lda, void *B, int ldb)

copies a tile of rows x cols elements from a matrix A in CPU memory space to a matrix B
in GPU memory space. Each element requires storage of elemSize bytes. Both matrices
are assumed to be stored in column-major format, with the leading dimension (that is, the
number of rows) of source matrix A provided in lda, and the leading dimension of
destination matrix B provided in ldb.

cublasStatus cublasGetMatrix(int rows, int cols, int elemSize,
const void *A, int lda, void *B, int ldb)

copies a tile of rows x cols elements from a matrix A in GPU memory space to a matrix B
in CPU memory space. Each element requires storage of elemSize bytes. Both matrices
are assumed to be stored in column-major format, with the leading dimension (that is, the
number of rows) of source matrix A provided in lda, and the leading dimension of
destination matrix B provided in ldb.

11

Calling CUBLAS from FORTRAN

Fortran-to-C calling conventions are not standardized and differ by
platform and toolchain.

In particular, differences may exist in the following areas:
•symbol names (capitalization, name decoration)
•argument passing (by value or reference)
•passing of string arguments (length information)
•passing of pointer arguments (size of the pointer)
•returning floating-point or compound data types (for example,
single-precision or complex data type)

•CUBLAS provides wrapper functions (in the file fortran.c) that
need to be compiled with the user preferred toolchain. Providing
source code allows users
to make any changes necessary for a particular platform and
toolchain.

12

Calling CUBLAS from FORTRAN

Two different interfaces:

•Thunking (define CUBLAS_USE_THUNKING when compiling fortran.c):
allow interfacing to existing Fortran applications without any changes to the
application. During each call, the wrappers allocate GPU memory, copy source
data from CPU memory space to GPU memory space, call CUBLAS, and finally
copy back the results to CPU memory space and deallocate the GPGPU
memory. As this process causes significant call overhead, these wrappers are
intended for light testing,not for production code.

•Non-Thunking (default):
intended for production code, substitute device pointers for vector and matrix
arguments in all BLAS functions. To use these interfaces, existing applications
need to be modified slightly to allocate and deallocate data structures in GPGPU
memory space (using CUBLAS_ALLOC and CUBLAS_FREE) and to copy data
between GPU and CPU memory spaces (using CUBLAS_SET_VECTOR,
CUBLAS_GET_VECTOR, CUBLAS_SET_MATRIX, and
CUBLAS_GET_MATRIX).

13

FORTRAN 77 Code example:

program matrixmod
implicit none
integer M, N
parameter (M=6, N=5)
real*4 a(M,N)
integer i, j

do j = 1, N
do i = 1, M

a(i,j) = (i-1) * M + j
enddo

enddo

call modify (a, M, N, 2, 3, 16.0, 12.0)

do j = 1, N
do i = 1, M

write(*,"(F7.0$)") a(i,j)
enddo
write (*,*) "”

enddo

stop
end

subroutine modify (m, ldm, n, p, q, alpha, beta)
implicit none
integer ldm, n, p, q
real*4 m(ldm,*), alpha, beta

external sscal

call sscal (n-p+1, alpha, m(p,q), ldm)

call sscal (ldm-p+1, beta, m(p,q), 1)

return
end

14

FORTRAN 77 Code example:
Non-thunking interface

program matrixmod
implicit none
integer M, N, sizeof_real, devPtrA
parameter (M=6, N=5, sizeof_real=4)
real*4 a(M,N)
integer i, j, stat
external cublas_init, cublas_set_matrix,cublas_get_matrix
external cublas_shutdown, cublas_alloc
integer cublas_alloc

do j = 1, N
do i = 1, M

a(i,j) = (i-1) * M + j
enddo

enddo

call cublas_init
stat = cublas_alloc(M*N, sizeof_real, devPtrA)
if (stat .NE. 0) then

write(*,*) "device memory allocation failed"
stop

endif

call cublas_set_matrix (M, N, sizeof_real, a, M, devPtrA, M)
call modify (devPtrA, M, N, 2, 3, 16.0, 12.0)
call cublas_get_matrix (M, N, sizeof_real, devPtrA, M, a, M)
call cublas_free(devPtrA)
call cublas_shutdown

do j = 1, N
do i = 1, M

write(*,"(F7.0$)") a(i,j)
enddo
write (*,*) "”

enddo

stop
end

#define IDX2F(i,j,ld) ((((j)-1)*(ld))+((i)-1)

subroutine modify (devPtrM, ldm, n, p, q, alpha, beta)
implicit none
integer ldm, n, p, q
integer sizeof_real, devPtrM
parameter (sizeof_real=4)
real*4 alpha, beta
call cublas_sscal (n-p+1, alpha,

devPtrM+IDX2F(p,q,ldm)*sizeof_real,
ldm)

call cublas_sscal (ldm-p+1, beta,
devPtrM+IDX2F(p,q,ldm)*sizeof_real,
1)

return
end

If using fixed format check that the line
length is below the 72 column limit !!!

15

CUFFT
The Fast Fourier Transform (FFT) is a divide-and-
conquer algorithm for efficiently computing discrete
Fourier transform of complex or real-valued data sets.

The FFT is one of the most important and widely used
numerical algorithms.

CUFFT, the “CUDA” FFT library, provides a simple
interface for computing parallel FFT on an NVIDIA GPU.
This allows users to leverage the floating-point power
and parallelism of the GPU without having to develop a
custom, GPU-based FFT implementation.

16

Supported features

• 1D, 2D and 3D transforms of complex and real-valued
data

• Batched execution for doing multiple 1D transforms in
parallel

• 1D transform size up to 8M elements
• 2D and 3D transform sizes in the range [2,16384]
• In-place and out-of-place transforms for real and

complex data.

17

CUFFT Types and Definitions

type cufftHandle:
is a handle type used to store and access CUFFT plans

type cufftResults:
is an enumeration of values used as API function values return values.

CUFFT_SUCCESS Any CUFFT operation is successful.
CUFFT_INVALID_PLAN CUFFT is passed an invalid plan handle.
CUFFT_ALLOC_FAILED CUFFT failed to allocate GPU memory.
CUFFT_INVALID_TYPE The user requests an unsupported type.
CUFFT_INVALID_VALUE The user specifies a bad memory pointer.
CUFFT_INTERNAL_ERROR Used for all internal driver errors.
CUFFT_EXEC_FAILED CUFFT failed to execute an FFT on the GPU.
CUFFT_SETUP_FAILED The CUFFT library failed to initialize.
CUFFT_SHUTDOWN_FAILED The CUFFT library failed to shut down.
CUFFT_INVALID_SIZE The user specifies an unsupported FFT size.

18

Transform types
The library supports complex and real data transforms:
CUFFT_C2C, CUFFT_C2R ,CUFFT_R2C
with directions:
CUFFT_FORWARD (-1) and CUFFT_BACKWARD (1)
according to the sign of the complex exponential term

For complex FFTs, the input and output arrays must interleave
the real and imaginary part (cufftComplex type is defined for this
purpose)

For real-to-complex FFTs, the output array holds only the non-
redundant complex coefficients:
N -> N/2+1
N0 x N1 x …. x Nn -> N0 x N1 x …. X (Nn/2+1)
To perform in-place transform the input/output needs to be

padded

19

More on transforms

For 2D and 3D transforms, CUFFT performs transforms in row-
major (C-order).
If calling from FORTRAN or MATLAB, remember to change the
order of size parameters during plan creation.
CUFFT performs un-normalized transforms:

IFFT(FFT(A))= length(A)*A
CUFFT API is modeled after FFTW. Based on plans, that
completely specify the optimal configuration to execute a
particular size of FFT.
Once a plan is created, the library stores whatever state is
needed to execute the plan multiple times without
recomputing the configuration: it works very well for CUFFT,
because different kinds of FFTs require different thread
configurations and GPU resources.

20

cufftPlan1d()
cufftResult cufftPlan1d(cufftHandle *plan, int nx, cufftType type, int batch

);

creates a 1D FFT plan configuration for a specified signal size and data type.
The batch input parameter tells CUFFT how many 1D transforms to configure.

Input:
plan Pointer to a cufftHandle object
nx The transform size (e.g., 256 for a 256-point FFT)
type The transform data type (e.g., CUFFT_C2C for complex-to-
complex)
batch Number of transforms of size nx

Output:
plan Contains a CUFFT 1D plan handle value

21

cufftPlan2d()
cufftResult cufftPlan2d(cufftHandle *plan, int nx, int ny, cufftType type);

creates a 2D FFT plan configuration for a specified signal size and data type.

Input:
plan Pointer to a cufftHandle object
nx The transform size in X dimension
ny The transform size in Y dimension
type The transform data type (e.g., CUFFT_C2C for complex-to-
complex)

Output:
plan Contains a CUFFT 2D plan handle value

22

cufftPlan3d()
cufftResult cufftPlan3d(cufftHandle *plan, int nx, int ny, int nz, cufftType type

);

creates a 3D FFT plan configuration for a specified signal size and data type.

Input:
plan Pointer to a cufftHandle object
nx The transform size in X dimension
ny The transform size in Y dimension
nz The transform size in Z dimension
type The transform data type (e.g., CUFFT_C2C for complex-to-complex)

Output:
plan Contains a CUFFT 3D plan handle value

23

cufftDestroy(),
cufftResult cufftDestroy(cufftHandle plan);

frees all GPU resources associated with a CUFFT plan and destroys the
internal plan data structure. This function should be called once a plan is no
longer needed to avoid wasting GPU memory.

Input:
plan cufftHandle object

24

cufftExecC2C()
cufftResult cufftExecC2C(cufftHandle plan,

cufftComplex *idata, cufftComplex *odata,
int direction);

executes a CUFFT complex to complex transform plan.CUFFT uses as input
data the GPU memory pointed to by the idata parameter. This function stores
the Fourier coefficients in the odata array. If idata and odata are the same,
this method does an in-place transform.

Input:
plan cufftHandle object for the plane to update
idataPointer to the input data (in GPU memory) to transform
odata Pointer to the output data (in GPU memory)
direction The transform direction (CUFFT_FORWARD or CUFFT_BACKWARD)

Output:
odata Contains the complex Fourier coefficients)

25

cufftExecR2C()
cufftResult cufftExecR2C(cufftHandle plan,

cufftReal *idata, cufftComplex *odata);

executes a CUFFT real to complex transform plan.CUFFT uses as input data
the GPU memory pointed to by the idata parameter. This function stores the
Fourier coefficients in the odata array. If idata and odata are the same, this
method does an in-place transform.
The output hold only the non-redundant complex Fourier coefficients.

Input:
plan Pointer to a cufftHandle object
idata Pointer to the input data (in GPU memory) to transform
odata Pointer to the output data (in GPU memory)

Output:
odata Contains the complex Fourier coefficients

26

cufftExecC2R()
cufftResult cufftExecC2R(cufftHandle plan,

cufftComplex *idata, cufftReal *odata);

executes a CUFFT complex to real transform plan. CUFFT uses as
input

data the GPU memory pointed to by the idata parameter. This function
stores the Fourier coefficients in the odata array. If idata and odata are
the same, this method does an in-place transform.
The input hold only the non-redundant complex Fourier coefficients.

Input:
plan Pointer to a cufftHandle object
idata Pointer to the complex input data (in GPU memory) to transform
odata Pointer to the real output data (in GPU memory)

Output:
odata Contains the real-valued Fourier coefficients

27

Accuracy and performance
The CUFFT library implements several FFT algorithms, each with different
performances and accuracy.

The best performance paths correspond to transform sizes that:
1. Fit in CUDA’a shared memory
2. Are powers of a single factor (e.g. power-of-two)

If only condition 1 is satisfied, CUFFT uses a more general mixed-radix factor
algorithm that is slower and less accurate numerically.

If none of the above conditions is satisfied, CUFFT uses an out-of-place, mixed-
radix algorithm that stores all intermediate results in global GPU memory.

One notable exception is for long 1D transforms, where CUFFT uses a distributed
algorithm that perform 1D FFT using 2D FFT.

CUFFT does not implement any specialized algorithms for real data, and so there is
no direct performance benefit to using real to complex (or complex to real) plans
instead of complex to complex. For this release,
the real data API exists primarily for convenience

28

Code example:
1D complex to complex transforms
#define NX 256
#define BATCH 10

cufftHandle plan;
cufftComplex *data;
cudaMalloc((void**)&data, sizeof(cufftComplex)*NX*BATCH);

/* Create a 1D FFT plan. */
cufftPlan1d(&plan, NX, CUFFT_C2C, BATCH);

/* Use the CUFFT plan to transform the signal in place. */
cufftExecC2C(plan, data, data, CUFFT_FORWARD);

/* Inverse transform the signal in place. */
cufftExecC2C(plan, data, data, CUFFT_INVERSE);

/* Note:
(1) Divide by number of elements in data-set to get back original data
(2) Identical pointers to input and output arrays implies in-place transformation

*/

/* Destroy the CUFFT plan. */
cufftDestroy(plan);

cudaFree(data);

29

Code example:
2D complex to complex transform
#define NX 256
#define NY 128

cufftHandle plan;
cufftComplex *idata, *odata;
cudaMalloc((void**)&idata, sizeof(cufftComplex)*NX*NY);
cudaMalloc((void**)&odata, sizeof(cufftComplex)*NX*NY);

/* Create a 1D FFT plan. */
cufftPlan2d(&plan, NX,NY, CUFFT_C2C);

/* Use the CUFFT plan to transform the signal out of place. */
cufftExecC2C(plan, idata, odata, CUFFT_FORWARD);

/* Inverse transform the signal in place. */
cufftExecC2C(plan, odata, odata, CUFFT_INVERSE);

/* Note:
Different pointers to input and output arrays implies out of place transformation

*/

/* Destroy the CUFFT plan. */
cufftDestroy(plan);

cudaFree(idata), cudaFree(odata);

	CUDA Libraries
	Outline
	CUBLAS
	Supported features
	Using CUBLAS
	cublasInit, cublasShutdown
	CUBLAS performance
	cublasGetError, cublasAlloc, cublasFree
	cublasSetVector, cublasGetVector
	cublasSetMatrix, cublasGetMatrix
	Calling CUBLAS from FORTRAN
	Calling CUBLAS from FORTRAN
	FORTRAN 77 Code example:�
	FORTRAN 77 Code example:�Non-thunking interface
	CUFFT
	Supported features
	CUFFT Types and Definitions
	Transform types
	More on transforms
	cufftPlan1d()
	cufftPlan2d()
	cufftPlan3d()
	cufftDestroy(),
	cufftExecC2C()
	cufftExecR2C()
	cufftExecC2R()
	Accuracy and performance
	Code example:�1D complex to complex transforms
	Code example:�2D complex to complex transform
	CUDA Libraries
	Outline
	CUBLAS
	Supported features
	Using CUBLAS
	cublasInit, cublasShutdown
	CUBLAS performance
	cublasGetError, cublasAlloc, cublasFree
	cublasSetVector, cublasGetVector
	cublasSetMatrix, cublasGetMatrix
	Calling CUBLAS from FORTRAN
	Calling CUBLAS from FORTRAN
	FORTRAN 77 Code example:�
	FORTRAN 77 Code example:�Non-thunking interface
	CUFFT
	Supported features
	CUFFT Types and Definitions
	Transform types
	More on transforms
	cufftPlan1d()
	cufftPlan2d()
	cufftPlan3d()
	cufftDestroy(),
	cufftExecC2C()
	cufftExecR2C()
	cufftExecC2R()
	Accuracy and performance
	Code example:�1D complex to complex transforms
	Code example:�2D complex to complex transform

