
CUDA Particle-based Fluid Simulation

Simon Green

© NVIDIA Corporation 2008

Overview

Fluid Simulation Techniques
CUDA particle simulation
Spatial subdivision techniques
Rendering methods
Future

© NVIDIA Corporation 2008

Fluid Simulation Techniques

Various approaches:

Grid based (Eulerian)
Stable fluids
Particle level set

Particle based (Lagrangian)
SPH (smoothed particle hydrodynamics)
MPS (Moving-Particle Semi-Implicit)

Height field
FFT (Tessendorf)
Wave propagation – e.g. Kass and Miller

© NVIDIA Corporation 2008

CUDA N-Body Demo

Computes gravitational attraction between n bodies
Computes all n2 interactions
Uses shared memory to reduce memory bandwidth

16K bodies @ 44 FPS
x 20 FLOPS / interaction
x 16K2 interactions /

frame
= 240 GFLOP/s

GeForce 8800 GTX

© NVIDIA Corporation 2008

Particle-based Fluid Simulation

Advantages
Conservation of mass is trivial
Easy to track free surface
Only performs computation where necessary
Not necessarily constrained to a finite grid
Easy to parallelize

Disadvantages
Hard to extract smooth surface from particles
Requires large number of particles for realistic results

© NVIDIA Corporation 2008

Particle Fluid Simulation Papers

Particle-Based Fluid
Simulation for Interactive
Applications,
M. Müller, 2003
3000 particles, 5fps

Particle-based Viscoelastic Fluid Simulation,
Clavet et al, 2005
1000 particles, 10fps
20,000 particles,
2 secs / frame

© NVIDIA Corporation 2008

CUDA SDK Particles Demo

Particles with simple
collisions
Uses uniform grid
based on sorting
Uses fast CUDA radix
sort

Current performance:
>100 fps for 65K
interacting particles
on 8800 GT

© NVIDIA Corporation 2008

Uniform Grid

Particle interaction requires finding neighbouring
particles
Exhaustive search requires n^2 comparisons
Solution: use spatial subdivision structure
Uniform grid is simplest possible subdivision

Divide world into cubical grid (cell size = particle size)
Put particles in cells
Only have to compare each particle with the particles in
neighbouring cells

Building data structures is hard on data parallel
machines like the GPU

possible in OpenGL (using stencil routing technique)
easier using CUDA (fast sorting, scattered writes)

© NVIDIA Corporation 2008

Grid is built from scratch each frame
Future work: incremental updates?

Algorithm:
Compute which grid cell each particle falls in (based on
center)
Calculate cell index
Sort particles based on cell index
Find start of each bucket in sorted list (store in array)
Process collisions by looking at 3x3x3 = 27 neighbouring
grid cells of each particle

Advantages
supports unlimited number of particles per grid cell
Sorting improves memory coherence during collisions

Uniform Grid using Sorting

© NVIDIA Corporation 2008

0

Example: Grid using Sorting

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

3

2

0

1

45

unsorted list
(cell id, particle id)

sorted by
cell id

cell start

0: (9, 0)
1: (6, 1)
2: (6, 2)
3: (4, 3)
4: (6, 4)
5: (4, 5)

0: (4, 3)
1: (4, 5)
2: (6, 1)
3: (6, 2)
4: (6, 4)
5: (9, 0)

0: -
1: -
2: -
3: -
4: 0
5: -
6: 2
7: -
8: -
9: 5
10: -
...
15: -

© NVIDIA Corporation 2008

Fluid Rendering Methods

3D isosurface extraction (marching cubes)
2.5D isosurfaces (Ageia screen-space meshes)
3D texture ray marching (expensive)
Image-space tricks (blur normals in screen space)

© NVIDIA Corporation 2008

Marching Cubes

Popular method for extracting isosurfaces from
volume data

Lorensen and Cline (Siggraph 1987!)
Polygonizes a scalar field
Isosurface is surface where field == n

Divides volume in cubical voxels
Outputs triangles based on field values at corners
Interpolates points along edges based on
field values
Based on look-up tables

Image courtesy Wikipedia

© NVIDIA Corporation 2008

Isosurface Extraction on the GPU

Difficult on GPUs because of variable output
0-5 triangles per voxel

Implementations on previous hardware generations
performed a lot of redundant computations
Possible on DirectX 10 class hardware using
geometry shader

Marching tetrahedrons matches hardware best (4 inputs)
Can we also do this in CUDA?

Yes, using prefix sums (scan) for stream compaction
Uses CUDPP library (Harris et al)

© NVIDIA Corporation 2008

CUDA Marching Cubes

Algorithm consists of several stages
tables are stored in 1D textures

Execute classifyVoxel kernel
computes number of vertices voxel will generate
evaluates field at each corners of each voxel
one thread per voxel
writes voxelOccupied flag and voxelVertices to global
memory

Scan voxelVertices array
gives start address for vertex data for each voxel

Read back total number of vertices from GPU to CPU
last element in scanned array

© NVIDIA Corporation 2008

CUDA Marching Cubes (cont.)

Scan voxelOccupied array
Read back total number of occupied voxels from
GPU to CPU
Compact voxelOccupied array to get rid of empty
voxels
Execute generateTriangles kernel

runs only on occupied voxels
looks up field values again
generates triangles, using results of scan to write output to
correct addresses

Render geometry
using number of vertices from readback

© NVIDIA Corporation 2008

Marching Cubes Performance

Up to 8x faster than OpenGL
geometry shader implementation
using marching tetrahedra
But still requires evaluating field
function at every point in space

E.g. 1283 = 2M points
Very expensive

© NVIDIA Corporation 2008

Density-based Shading

Can calculate per-particle density and normal based
on field function

SPH simulations often already have this data
Usually need to look at a larger neighbourhood (e.g. 5x5x5
cells) to get good results – expensive

Can use density and normal for point sprite shading
Normal only well defined when particles are close to
each other

treat isolated particles separately – e.g. render as spray

© NVIDIA Corporation 2008

Particle Density

© NVIDIA Corporation 2008

Particle Normal

© NVIDIA Corporation 2008

Flat Shaded Point Sprites

© NVIDIA Corporation 2008

Blended Points Sprites (Splats)

Scale up point size
so they overlap
Add alpha to points
with Gaussian falloff
Requires sorting
from back to front
Has effect of
interpolating shading
between points
Fill-rate intensive,
but interactive

© NVIDIA Corporation 2008

Alternative Shading (Lava)

Modifies particle
color based on
density

© NVIDIA Corporation 2008

Motion Blur

Create quads between previous and current particle
position

Using geometry shader
Try and orient quad towards view direction
Improves look of rapidly moving fluids (eliminates
gaps between particles)

p

p2

© NVIDIA Corporation 2008

Spheres

© NVIDIA Corporation 2008

Motion Blurred Spheres

© NVIDIA Corporation 2008

Oriented Discs

© NVIDIA Corporation 2008

The Future

Practical interactive fluids will need to combine
particle, height field, and grid techniques
GPU performance continues to double every
12 months – lots of room for improvement!

Two way coupled SPH and particle level set fluid simulation,
Losasso, F., Talton, J., Kwatra, N. and Fedkiw, R

Adaptively Sampled Particle Fluids, Adams 2007

© NVIDIA Corporation 2008

Questions?

	CUDA Particle-based Fluid Simulation
	Overview
	Fluid Simulation Techniques
	CUDA N-Body Demo
	Particle-based Fluid Simulation
	Particle Fluid Simulation Papers
	CUDA SDK Particles Demo
	Uniform Grid
	Uniform Grid using Sorting
	Example: Grid using Sorting
	Fluid Rendering Methods
	Marching Cubes
	Isosurface Extraction on the GPU
	CUDA Marching Cubes
	CUDA Marching Cubes (cont.)
	Marching Cubes Performance
	Density-based Shading
	Particle Density
	Particle Normal
	Flat Shaded Point Sprites
	Blended Points Sprites (Splats)
	Alternative Shading (Lava)
	Motion Blur
	Spheres
	Motion Blurred Spheres
	Oriented Discs
	The Future
	Questions?

