S

A A

CUDA Particle-based Fluid Simulation

Simon Green

Overview N Uios

® Fluid Simulation Techniques
® CUDA particle simulation
® Spatial subdivision techniques

® Rendering methods
® Future

© NVIDIA Corporation 2008

Fluid Simulation Techniques

® Various approaches:

® Grid based (Eulerian)
® Stable fluids
® Particle level set

® Particle based (Lagrangian)
® SPH (smoothed particle hydrodynamics)
® MPS (Moving-Particle Semi-Implicit)

® Height field
® FFT (Tessendorf)
® Wave propagation — e.g. Kass and Miller

© NVIDIA Corporation 2008

@D’ Y FEFSE N

CUDA N-Body Demo WD

® Computes gravitational attraction between n bodies

® Computes all n2interactions
® Uses shared memory to reduce memory bandwidth

16K bodies @ 44 FPS
X 20 FLOPS / Iinteraction

X 16K?2 interactions /

frame R Sl : g
= 240 GFLOP/s S
7*' : L3 b % s
GeForce 8800 GTX Gk

© NVIDIA Corporation 2008

Particle-based Fluid Simulation SANVIDIA

® Advantages

Conservation of mass is trivial

Easy to track free surface

Only performs computation where necessary
Not necessarily constrained to a finite grid
Easy to parallelize

P ®®®®

® Disadvantages
® Hard to extract smooth surface from particles
® Requires large number of particles for realistic results

© NVIDIA Corporation 2008

Particle Fluid Simulation Papers S nvIDIA

® Particle-Based Fluid
Simulation for Interactive
Applications,
M. Miuller, 2003

® 3000 particles, 5fps

® Particle-based Viscoelastic Fluid Simulation,
Clavet et al, 2005

® 1000 particles, 10fps

® 20,000 particles,
2 secs / frame

© NVIDIA Corporation 2008

CUDA SDK Particles Demo S nvipi

® Particles with simple Fwmwwmmwem 5
collisions

® Uses uniform grid
based on sorting

® Uses fast CUDA radix
sort

® Current performance:
>100 fps for 65K
Interacting particles
on 83800 GT

© NVIDIA Corporation 2008

Uniform Grid S ViDI

® Particle interaction requires finding neighbouring
particles

® Exhaustive search requires n*2 comparisons
® Solution: use spatial subdivision structure

® Uniform grid is simplest possible subdivision
® Divide world into cubical grid (cell size = particle size)
® Put particles in cells

® Only have to compare each particle with the particles in
neighbouring cells

® Building data structures is hard on data parallel
machines like the GPU

® possible in OpenGL (using stencil routing technique)
® easier using CUDA (fast sorting, scattered writes)

© NVIDIA Corporation 2008

Uniform Grid using Sorting A nvID!

® Grid is built from scratch each frame
® Future work: incremental updates?

® Algorithm:
® Compute which grid cell each particle falls in (based on
center)
® Calculate cell index
® Sort particles based on cell index
® Find start of each bucket in sorted list (store in array)
® Process collisions by looking at 3x3x3 = 27 neighbouring

grid cells of each particle

® Advantages
® supports unlimited number of particles per grid cell
® Sorting improves memory coherence during collisions

© NVIDIA Corporation 2008

© NVIDIA Corporation 2008

using Sorting SAnvi
unsorted list sorted by cell start
(cell id, particle id) cell id
0: (9, 0) 0: (4, 3) 0: -
1: (6, 1) 1: (4, 5) 1: -
2: (6, 2) 2:(6,1) 2. -
3:(4,3) 3: (6, 2) 3: -
4. (6, 4) 4: (6, 4) 4:0
5: (4, 5) 5: (9, 0) 5: -
6: 2
7 -
8: -
9:5
10: -
15: -

»Y

Fluid Rendering Methods S NVIDI~A

® 3D isosurface extraction (marching cubes)
® 25D isosurfaces (Ageia screen-space meshes)
® 3D texture ray marching (expensive)

® Image-space tricks (blur normals in screen space)

© NVIDIA Corporation 2008

Marching Cubes T

® Popular method for extracting isosurfaces from
volume data

® Lorensen and Cline (Siggraph 1987!)

® Polygonizes a scalar field

® |sosurface is surface where field ==n
® Divides volume in cubical voxels

® Outputs triangles based on field values at corners
® Interpolates points along edges based on

field values 7
® Based on look-up tables @ g g

YA

Image courtesy Wikipedia

© NVIDIA Corporation 2008

Isosurface Extraction on the GPU SANvIDI/

® Difficult on GPUs because of variable output
® 0-5triangles per voxel

® Implementations on previous hardware generations
performed a lot of redundant computations

® Possible on DirectX 10 class hardware using
geometry shader
® Marching tetrahedrons matches hardware best (

® Can we also do this in CUDA?

® Yes, using prefix sums (scan) for stream com
® Uses CUDPRP library (Harris et al)

'
v'e

© NVIDIA Corporation 2008

CUDA Marching Cubes SAn

® Algorithm consists of several stages
® tables are stored in 1D textures

® Execute classifyVoxel kernel
computes number of vertices voxel will geng
evaluates field at each corners of each voxe
one thread per voxel

writes voxelOccupied flag and voxelVertices to global
memory

® Scan voxelVertices array
® gives start address for vertex data for each voxel

® Read back total number of vertices from GPU to CPU
® last element in scanned array

|4

ra

© NVIDIA Corporation 2008

FOoEPr= B

® Scan voxelOccupied array

® Read back total number of occupied voxels from
GPU to CPU

® Compact voxelOccupied array to get rid of empty
voxels

® Execute generateTriangles kernel
® runs only on occupied voxels
® looks up field values again

® generates triangles, using results of scan to write output to
correct addresses

® Render geometry
® using number of vertices from readback

© NVIDIA Corporation 2008

Marching Cubes Performance SANVIDIA

® Up to 8x faster than OpenGL
geometry shader implementation
using marching tetrahedra

® But still requires evaluating field
function at every point in space
® E.g. 1283 = 2M points
® Very expensive

M=ESE

n
(n]

© NVIDIA Corporation 2008

Density-based Shading N

® Can calculate per-particle density and normal based
on field function
® SPH simulations often already have this data

® Usually need to look at a larger neighbourhood (e.g. 5x5x5
cells) to get good results — expensive

® Can use density and normal for point sprite shading

® Normal only well defined when particles are close to
each other
® treat isolated particles separately — e.g. render as spray

© NVIDIA Corporation 2008

Fomr="p "

«a YN N

Bl CUDA particles (32768 particles): 17461.2 fps

P

Particle Density

© NVIDIA Corporation 2008

Particle Normal

© NVIDIA Corporation 2008

@

YIS N

B CUDA particles (32768 particles): 17209.4 fps

DEX

Flat Shaded Point Sprites S nvIDIA

| _ - |
B CUDA particles (32768 particles): 17897.7 fps

© NVIDIA Corporation 2008

Blended Points Sprites (Splats) SAnvipI

ri CUDA particles (32768 particles): 159.2 fps 1
® Scale up point size 3 .
so they overlap

® Add alphato points
with Gaussian falloff

® Requires sorting
from back to front

® Has effect of
Interpolating shading
between points

® Fill-rate intensive,
but interactive

© NVIDIA Corporation 2008

Alternative Shading (Lava) S nviDI

= CUDA particles (32768 particles): 152.5 fps 1
® Modifies particle

color based on
density

© NVIDIA Corporation 2008

Motion Blur PR

® Create quads between previous and current particle
position
® Using geometry shader
® Try and orient quad towards view direction
® Improves look of rapidly moving fluids (eliminates

gaps between particles)

P

© NVIDIA Corporation 2008

SphereS SANvIDIA

Bl CUDA particles (32768 particles): 181.6 fps

© NVIDIA Corporation 2008

Motion Blurred Spheres

© NVIDIA Corporation 2008

Oriented Discs

© NVIDIA Corporation 2008

The Future SANVIDIA

® Practical interactive fluids will need to combine
particle, height field, and grid techniques

® GPU performance continues to double every
12 months — lots of room for improvement!

Adaptively Sampled Particle Fluids, Adams 2007 Two way coupled SPH and particle level set fluid simulation,
Losasso, F., Talton, J., Kwatra, N. and Fedkiw, R

© NVIDIA Corporation 2008

Questions? S nvipia

© NVIDIA Corporation 2008

	CUDA Particle-based Fluid Simulation
	Overview
	Fluid Simulation Techniques
	CUDA N-Body Demo
	Particle-based Fluid Simulation
	Particle Fluid Simulation Papers
	CUDA SDK Particles Demo
	Uniform Grid
	Uniform Grid using Sorting
	Example: Grid using Sorting
	Fluid Rendering Methods
	Marching Cubes
	Isosurface Extraction on the GPU
	CUDA Marching Cubes
	CUDA Marching Cubes (cont.)
	Marching Cubes Performance
	Density-based Shading
	Particle Density
	Particle Normal
	Flat Shaded Point Sprites
	Blended Points Sprites (Splats)
	Alternative Shading (Lava)
	Motion Blur
	Spheres
	Motion Blurred Spheres
	Oriented Discs
	The Future
	Questions?

