
Dominik Göddeke | TU Dortmund Page 1

GPU Computing with CUDA 

Part 1: GPU Computing Evolution

Dortmund, June 4, 2009
SFB 708, AK "Modellierung und Simulation"

dominik.goeddeke@math.tu-dortmund.de // http://www.mathematik.tu-dortmund.de/~goeddeke

Dominik Göddeke
Angewandte Mathematik und Numerik

TU Dortmund



Dominik Göddeke | TU Dortmund Page 2Page 2

Acknowledgements

• Slides based on previous courses by
• Mark Harris, Simon Green, Gregory Ruetsch (NVIDIA)
• Robert Strzodka (MPI Informatik)
• Dominik Göddeke (TU Dortmund)

• ARCS 2008 GPGPU and CUDA Tutorials
http://www.mathematik.tu-dortmund.de/~goeddeke/arcs2008/

• University of New South Wales Workshop on GPU Computing with 
CUDA

http://www.cse.unsw.edu.au/~pls/cuda-workshop09/



Dominik Göddeke | TU Dortmund Page 3Page 3

Outline

• Why GPUs need to be fast

• The graphics pipeline

• Evolution towards programmability

• The first wave of GPGPU: 2003-2006

• Example architecture: GeForce 6800 Ultra (2004)

• Consolidation with DirectX 10?



Dominik Göddeke | TU Dortmund Page 4Page 4

Why GPUs need to be fast

• Huge FLOP requirements
• Full HD 1080p screen resolution: 2 million pixels
• 50-100 Hz refresh rate
• 10-100 operations per vertex
• 100-1000 operations per fragment (proto-pixel)

• Huge bandwidth requirements
• Texturing from multiple texture maps
• Bilinear and anisotropic filtering
• Full-screen antialiasing

• Performance demands insatiable



Dominik Göddeke | TU Dortmund Page 5Page 5

Why GPUs are fast

Gaming market volume is
billions of $$$

We, the compute folks, can
ride the performance curve

CPU and GPU designs are
converging (parallelism)



Dominik Göddeke | TU Dortmund Page 6Page 6

Graphics workloads

• Inherently massively parallel
• Task- and data-parallelism
• Vertices in parallel
• Pixels (fragments) in parallel
• All simultaneously

• 6 orders of magnitude gap
• Human visual system: millisecond scale
• GHz processor: nanosecond scale

• Latency of individual operations not (so) important
• Throughput is maximised

• GPU hardware is designed around these observations



Dominik Göddeke | TU Dortmund Page 7Page 7

The graphics pipeline

• Common abstraction of graphics workloads and hardware since 1992

• Exploits parallelism on all scales

• Maximizes throughput over latency



Dominik Göddeke | TU Dortmund Page 8Page 8

Graphics APIs

• Expose pipeline, not hardware
• Configure pipeline stages

• OpenGL
• Extension model for rapid adoption of new features
• Vendor- and platform independent

• DirectX
• Windows only
• Rigorous mandatory feature set for 3-year+ product cycles
• DirectX version used to identify GPU generations



Dominik Göddeke | TU Dortmund Page 9Page 9

Evolution towards programmability

• 1999: NVIDIA GeForce 256
• Term GPU was coined during the launch
• First to implement the entire pipeline in hardware
• Limited „programmability“ (hardware T&L)
• Register combiners for fragment stage

• GPGPU:
• Very preliminary work by very few enthusiasts
• „Hacking the GPU“



Dominik Göddeke | TU Dortmund Page 10Page 10

Evolution towards programmability

• Late 2000: DirectX 8
• GeForce 3 and Radeon 8500
• Assembly language for vertex and fragment stage
• Programmable shading
• Very limited functionality

• Instruction count
• Precision
• ...

• GPGPU:
• Slow momentum build-up
• First PDE solvers mostly for physically-based effects, visually-accurate
• Cumbersome programming through graphics APIs
• Hacky, cumbersome and error-prone



Dominik Göddeke | TU Dortmund Page 11Page 11

Evolution towards programmability

• DirectX 9: The first wave of GPU computing 2003-2006
• Floating point support, proper render-to-texture
• Performance improvements faster than Moore‘s Law

• GPGPU:
• Growing community (http://gpgpu.org)
• Cumbersome programming through graphics APIs
• But: Early high level languages like BrookGPU and Sh
• Growing # of conference tutorials and workshops
• Many groundbreaking papers and algorithms published



Dominik Göddeke | TU Dortmund Page 12Page 12

GeForce 6800 Ultra

• April 2004

• 222 million transistors

• 35.6 GB/s bandwidth



Dominik Göddeke | TU Dortmund Page 13Page 13

Early GPGPU summary

• Main limitations
• Programming cumbersome and error-prone (graphics APIs)
• No scatter support (concurrent read exclusive write model)
• Loadbalancing between stages difficult (often only fragment stage used

at all)

• But:
• Lots of success by early adoptors
• First commercial ventures

• RapidMind
• Acceleware
• PeakStream (bought by google in 2007)

• People reluctantly started to take GPGPU seriously
• Hardware vendors saw market opportunity



Dominik Göddeke | TU Dortmund Page 14Page 14

DirectX 10

• Released 2006/2007
• Unified architecture

• Vertex, fragment and (new) geometry stage same virtual machine
• Hardware loadbalancing

• Many many hacky features now mandatory via clean interfaces
• Big leap forward in mandatory graphics features

• Consolidation?
• Plausible

• But something entirely different happened
• Unified graphics and compute
• NVIDIA CUDA and AMD Stream (CAL/HAL/CTM...)
• GPU computing started to take off


	Acknowledgements
	Outline
	Why GPUs need to be fast
	Why GPUs are fast
	Graphics workloads
	The graphics pipeline
	Graphics APIs
	Evolution towards programmability
	Evolution towards programmability
	Evolution towards programmability
	GeForce 6800 Ultra
	Early GPGPU summary
	DirectX 10

