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Outline

• Why GPUs need to be fast

• The graphics pipeline

• Evolution towards programmability

• The first wave of GPGPU: 2003-2006

• Example architecture: GeForce 6800 Ultra (2004)

• Consolidation with DirectX 10?
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Why GPUs need to be fast

• Huge FLOP requirements
• Full HD 1080p screen resolution: 2 million pixels
• 50-100 Hz refresh rate
• 10-100 operations per vertex
• 100-1000 operations per fragment (proto-pixel)

• Huge bandwidth requirements
• Texturing from multiple texture maps
• Bilinear and anisotropic filtering
• Full-screen antialiasing

• Performance demands insatiable
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Why GPUs are fast

Gaming market volume is
billions of $$$

We, the compute folks, can
ride the performance curve

CPU and GPU designs are
converging (parallelism)
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Graphics workloads

• Inherently massively parallel
• Task- and data-parallelism
• Vertices in parallel
• Pixels (fragments) in parallel
• All simultaneously

• 6 orders of magnitude gap
• Human visual system: millisecond scale
• GHz processor: nanosecond scale

• Latency of individual operations not (so) important
• Throughput is maximised

• GPU hardware is designed around these observations
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The graphics pipeline

• Common abstraction of graphics workloads and hardware since 1992

• Exploits parallelism on all scales

• Maximizes throughput over latency
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Graphics APIs

• Expose pipeline, not hardware
• Configure pipeline stages

• OpenGL
• Extension model for rapid adoption of new features
• Vendor- and platform independent

• DirectX
• Windows only
• Rigorous mandatory feature set for 3-year+ product cycles
• DirectX version used to identify GPU generations
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Evolution towards programmability

• 1999: NVIDIA GeForce 256
• Term GPU was coined during the launch
• First to implement the entire pipeline in hardware
• Limited „programmability“ (hardware T&L)
• Register combiners for fragment stage

• GPGPU:
• Very preliminary work by very few enthusiasts
• „Hacking the GPU“
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Evolution towards programmability

• Late 2000: DirectX 8
• GeForce 3 and Radeon 8500
• Assembly language for vertex and fragment stage
• Programmable shading
• Very limited functionality

• Instruction count
• Precision
• ...

• GPGPU:
• Slow momentum build-up
• First PDE solvers mostly for physically-based effects, visually-accurate
• Cumbersome programming through graphics APIs
• Hacky, cumbersome and error-prone
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Evolution towards programmability

• DirectX 9: The first wave of GPU computing 2003-2006
• Floating point support, proper render-to-texture
• Performance improvements faster than Moore‘s Law

• GPGPU:
• Growing community (http://gpgpu.org)
• Cumbersome programming through graphics APIs
• But: Early high level languages like BrookGPU and Sh
• Growing # of conference tutorials and workshops
• Many groundbreaking papers and algorithms published
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GeForce 6800 Ultra

• April 2004

• 222 million transistors

• 35.6 GB/s bandwidth
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Early GPGPU summary

• Main limitations
• Programming cumbersome and error-prone (graphics APIs)
• No scatter support (concurrent read exclusive write model)
• Loadbalancing between stages difficult (often only fragment stage used

at all)

• But:
• Lots of success by early adoptors
• First commercial ventures

• RapidMind
• Acceleware
• PeakStream (bought by google in 2007)

• People reluctantly started to take GPGPU seriously
• Hardware vendors saw market opportunity
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DirectX 10

• Released 2006/2007
• Unified architecture

• Vertex, fragment and (new) geometry stage same virtual machine
• Hardware loadbalancing

• Many many hacky features now mandatory via clean interfaces
• Big leap forward in mandatory graphics features

• Consolidation?
• Plausible

• But something entirely different happened
• Unified graphics and compute
• NVIDIA CUDA and AMD Stream (CAL/HAL/CTM...)
• GPU computing started to take off
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