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Optimize algorithms

• Maximize independent parallelism

• Maximize arithmetic intensity
• Math per bandwidth

• Sometimes it’s better to recompute than to cache
• GPU spends its transistors on ALUs, not memory

• Do more computation on the GPU to avoid costly data transfers
• Even low parallelism computations can sometimes be faster than 

transferring back and forth to host
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Optimize memory access

• Coalesced vs. non-coalesced = order of magnitude
• Global / local device memory

• Optimize for spatial locality in cached texture memory

• In shared memory, avoid high-degree bank conflicts

• Partition camping
• When global memory access not evenly distributed among partitions
• Problem-size dependent
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Take advantage of shared memory

• Hundreds of times faster than global memory
• Sometimes as fast as registers

• Threads can cooperate via shared memory
• Per thread block

• Use one (a few) threads to load or compute data shared by all 
threads

• Use it to avoid non-coalesced access
• Stage loads and stores in shared memory to re-order non-coalesceable

addressing
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Use parallelism efficiently

• Partition computation to keep the multiprocessors equally busy
• Many threads, many thread blocks
• Scalability on future devices

• Keep resource usage low enough to support multiple active threads
blocks per multiprocessor
• Registers, shared memory
• Occupancy
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GT200 architecture

• 240 thread processors execute kernel threads

• 30 multiprocessors, each contains
• 8 (single precision and integer) thread processors
• 1 double precision unit
• Shared memory enables thread cooperation

Thread
Processors

Multiprocessor

Shared
Memory

Double
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Execution model

Software Hardware

Threads are executed by thread processors

Thread

Thread 
Processor

Thread 
Block Multiprocessor

Thread blocks are executed on multiprocessors

Thread blocks do not migrate

Several concurrent thread blocks can reside on 
one multiprocessor - limited by multiprocessor 
resources (shared memory and register file)

...

Grid

A kernel is launched as a grid of thread blocks

Only one kernel can execute on a device at one 
time

Processor array
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Warps and half-warps

Thread 
Block Multiprocessor

32 Threads

32 Threads

32 Threads

...

Warps

16

Half Warps

16

DRAM

Global

Local

A thread block consists of 32-
thread warps

A warp is executed physically in 
parallel (SIMD) on a 
multiprocessor

Device 
Memory

=

A half-warp of 16 threads can 
coordinate global memory 
accesses into a single transaction
called coalescing
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Memory architecture

Host

CPU

Chipset

DRAM

Device
DRAM

Global

Constant

Texture

Local

GPU
Multiprocessor

Registers

Shared Memory
Multiprocessor

Registers

Shared Memory
Multiprocessor

Registers

Shared Memory

Constant and Texture 
Caches
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Memory spaces

Memory Location Cached Access Scope Lifetime

Register On-chip N/A R/W One thread Thread

Local Off-chip No R/W One thread Thread

Shared On-chip N/A R/W All threads in a block Block

Global Off-chip No R/W All threads + host Application

Constant Off-chip Yes R All threads + host Application

Texture Off-chip Yes R All threads + host Application
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Host device data transfers

• Device to host bandwidth much lower than device to device 
bandwidth
• 8 GB/s peak (PCIe x16 Gen 2) vs. 160 GB/s (GTX 285)

• Minimize transfers
• Intermediate data can be allocated, operated on, and deallocated

without even copying them to host memory

• Group transfers
• One large transfer is better than many small ones
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Page-locked data transfers

• cudaMallocHost() allows allocation of page-locked („pinned“) host 
memory

• Enables highest cudaMemcpy() performance
• 3.2 GB/s on PCIe x16 Gen 1
• 5.2 GB/s on PCIe x16 Gen 2

• Use with caution!!
• Allocating too much page-locked memory can reduce overall system 

performance and stability
• Test systems and learn their limits

• Live demo
• BandwidthTest CUDA SDK example
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Overlap data transfers and computation

• Async and stream APIs allow overlap of H2D or D2H data transfer 
with computation
• CPU computation can overlap data transfers on all CUDA capable 

devices
• Kernel computation can overlap data transfers on devices with 

„Concurrent copy and execution“ (roughly compute capability 1.1)

• Stream = sequence of operations that execute in order on GPU
• Operations from different streams can be interleaved
• Stream ID used as argument to async calls and kernel launches
• If not used, everything happens in stream 0
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• Asynchroneous host-device memory copy returns control 
immediately to CPU
• cudaMemcpyAsync(dst, src, size, dir, stream);
• Requires pinned host memory (allocated with cudaMallocHost())

• Overlap CPU computation with data transfer
• cudaMemcpyAsync(a_d, a_h, size,

cudaMemcpyHostToDevice, 0);
• cpuFunction();
• cudaThreadSynchronize();
• kernel<<<grid, block>>>(dst);

• Live demo
• streamTest

Asynchroneous data transfers

overlapped
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GPU/CPU synchronization

• Kernel based
• Implicit barrier between kernel invocations in the same stream

• Context based
• cudaThreadSynchronize(); 

• Blocks until all previously issued CUDA calls from a CPU thread complete

• Stream based
• cudaStreamSynchronize(streamID);

• Blocks until all CUDA calls issued to given stream complete
• cudaStreamQuery(streamID);

• Indicates whether stream is idle
• Returns cudaSuccess, cudaErrorNotReady, ...
• Does not block CPU thread
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GPU/CPU synchronization

• Stream based using events
• Event = simple label created by cudaEventCreate(&(cudaEvent_t e));
• Events can be inserted into streams

• cudaEventRecord(event, streamID);
• Event is recorded then GPU reaches it in a stream

• Recorded = assigned a timestamp (GPU clocktick)
• Useful for fine-granular timing

• cudaEventSynchronize(event);
• Blocks until given event is recorded

• cudaEventQuery(event);
• Indicates whether event has recorded
• Returns cudaSuccess, cudaErrorNotReady, ...
• Does not block CPU thread
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Matrix transpose

• Transpose 2048x2048 matrix of floats

• Performed out-of-place 
• Separate input and output matrices

• Use tile of 32x32 elements, block of 32x8 threads
• Each thread processes 4 matrix elements
• In general tile and block size are fair game for optimization

• Process
• Get the right answer
• Measure effective bandwidth (relative to theoretical or reference 

case)
• Address global memory coalescing, shared memory bank conflicts, 

and partition camping while repeating above steps
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Theoretical bandwidth

• Device bandwidth of GTX 280

• 1107 * 10^6 *  (512 / 8) * 2 / 1024^3 =  131.9 GB/s

• Specs report 141 GB/s 
• Use 10^9 B/GB conversion rather than 1024^3
• Whichever you use, be consistent

Memory
clock (Hz)

Memory
interface
(bytes)

DDR
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Effective bandwidth

• Transpose effective bandwidth

• 2048^2 * 4 B/element / 1024^3 * 2 / (time in secs) = GB/s  

• Reference case - matrix copy
• Transpose operates on tiles - need better comparison than raw 

device bandwidth 
• Look at effective bandwidth of copy that uses tiles

Matrix size
(bytes) Read and

write
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Matrix copy kernel

__global__ void copy(float *odata, float *idata, int width, 
int height)

{  
int xIndex = blockIdx.x * TILE_DIM + threadIdx.x;  
int yIndex = blockIdx.y * TILE_DIM + threadIdx.y;  
int index  = xIndex + width*yIndex;

for (int i = 0; i < TILE_DIM;  i += BLOCK_ROWS) { 
odata[index+i*width] = idata[index+i*width];  

}
} TILE_DIM = 32

BLOCK_ROWS = 8

32x32 tile
32x8 thread block

idata and odata 
in global memory

idata odata

Elements copied by a half-warp of threads
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Matrix copy kernel timing

• Measure elapsed time over loop
• Looping/timing done in two ways:

• Over kernel launches (nreps = 1)
• Includes launch/indexing overhead

• Within the kernel over loads/stores (nreps > 1)
• Amortizes launch/indexing overhead

__global__ void copy(float *odata, float* idata, int width, 
int height, int nreps)

{  
int xIndex = blockIdx.x * TILE_DIM + threadIdx.x;  
int yIndex = blockIdx.y * TILE_DIM + threadIdx.y;  
int index  = xIndex + width*yIndex;

for (int r = 0; r < nreps; r++) {    
for (int i = 0; i < TILE_DIM;  i += BLOCK_ROWS) {     
odata[index+i*width] = idata[index+i*width];    

}  
}

}



Page 27Page 27Dominik Göddeke | TU Dortmund 

Naïve transpose

• Similar to copy
• Input and output matrices have different indices

__global__ void transposeNaive(float *odata, float* idata, int width, 
int height, int nreps)

{  
int xIndex = blockIdx.x * TILE_DIM + threadIdx.x;  
int yIndex = blockIdx.y * TILE_DIM + threadIdx.y;

int index_in = xIndex + width * yIndex;  
int index_out = yIndex + height * xIndex;

for (int r=0; r < nreps; r++) {    
for (int i=0; i<TILE_DIM; i+=BLOCK_ROWS) {      
odata[index_out+i] = idata[index_in+i*width];    

}  
}

}

idata odata
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Effective bandwidth

Effective Bandwidth (GB/s)
2048x2048, GTX 280

Loop over 
kernel

Loop in kernel

Simple Copy 96.9 81.6

Naïve Transpose 2.2 2.2
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• Global memory access of 32, 64, or 128-bit words by a half-warp of 
threads can result in as few as one (or two) transaction(s) if certain access 
requirements are met

• Depends on compute capability
• 1.0 and 1.1 have stricter access requirements

Coalescing

Global Memory

Half-warp of threads

}  64B aligned segment (16 floats)

}128B aligned segment (32 floats)

Examples – float (32-bit) data
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• Compute capability 1.0 and 1.1
• K-th thread must access k-th word in the segment (or k-th word in 

two contiguous 128B segments for 128-bit words)
• Not all threads need to participate

Coalescing

Coalesces – 1 transaction

Out of sequence – 16 transactions Misaligned – 16 transactions
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• Compute capability 1.2 and higher
• Coalescing is achieved for any pattern of addresses that fits into a 

segment of size: 32B for 8-bit words, 64B for 16-bit words, 128B for 32-
and 64-bit words

• Smaller transactions may be issued to avoid wasted bandwidth due to 
unused words

Coalescing

1 transaction - 64B segment

2 transactions - 64B and 32B segments 
1 transaction - 128B segment
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• Naïve transpose coalesces reads, but not writes

Coalescing in transpose

idata odata

Elements transposed by a half-warp of threads
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Take advantage of shared memory

• Hundreds of times faster than global memory

• Threads can cooperate via shared memory

• Use one (a few) threads to load or compute data shared by all 
threads

• Use it to avoid non-coalesced access
• Stage loads and stores in shared memory to re-order non-coalesceable 

addressing
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• Access columns of a tile in shared memory to write contiguous data 
to global memory

• Requires __syncthreads() since threads write data read by other 
threads

Coalescing through shared memory

Elements transposed by a half-warp of threads

idata odata
tile
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Coalescing through shared memory

__global__ void transposeCoalesced(float *odata, float *idata, int width, 
int height, int nreps)

{  
__shared__ float tile[TILE_DIM][TILE_DIM];  

int xIndex = blockIdx.x * TILE_DIM + threadIdx.x;  
int yIndex = blockIdx.y * TILE_DIM + threadIdx.y;    
int index_in = xIndex + (yIndex)*width;  

xIndex = blockIdx.y * TILE_DIM + threadIdx.x;  
yIndex = blockIdx.x * TILE_DIM + threadIdx.y;  
int index_out = xIndex + (yIndex)*height;  

for (int r=0; r < nreps; r++) {    
for (int i=0; i<TILE_DIM; i+=BLOCK_ROWS) {       
tile[threadIdx.y+i][threadIdx.x] = idata[index_in+i*width];    

}  

__syncthreads();

for (int i=0; i<TILE_DIM; i+=BLOCK_ROWS) {      
odata[index_out+i*height] = tile[threadIdx.x][threadIdx.y+i];    

}    
}

}
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Effective bandwidth

3
7

© NVIDIA Corporation 2008

Effective Bandwidth (GB/s)
2048x2048, GTX 280

Loop over kernel Loop in kernel

Simple Copy 96.9 81.6

Shared Memory Copy 80.9 81.1

Naïve Transpose 2.2 2.2

Coalesced Transpose 16.5 17.1
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Shared memory architecture

• Many threads accessing memory
• Therefore, memory is divided in banks
• Successive 32-bit words assigned to successive 

banks

• Each bank can serve one address per cycle
• A memory can service as many simultaneous 

accesses as it has banks

• Multiple simultaneous accesses to a bank result 
in a bank conflict
• Conflicting addresses are serialized Bank 15

Bank 7
Bank 6
Bank 5
Bank 4
Bank 3
Bank 2
Bank 1
Bank 0
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Bank addressing examples

No bank conflicts
Linear addressing 
stride == 1

No bank conflicts
Random 1:1 permutation

Bank 15

Bank 7
Bank 6
Bank 5
Bank 4
Bank 3
Bank 2
Bank 1
Bank 0

Thread 15

Thread 7
Thread 6
Thread 5
Thread 4
Thread 3
Thread 2
Thread 1
Thread 0

Bank 15

Bank 7
Bank 6
Bank 5
Bank 4
Bank 3
Bank 2
Bank 1
Bank 0

Thread 15

Thread 7
Thread 6
Thread 5
Thread 4
Thread 3
Thread 2
Thread 1
Thread 0
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Bank addressing examples

2-way bank conflicts
Linear addressing 
stride == 2

8-way bank conflicts
Linear addressing 
stride == 8

Thread 11
Thread 10
Thread 9
Thread 8

Thread 4
Thread 3
Thread 2
Thread 1
Thread 0

Bank 15

Bank 7
Bank 6
Bank 5
Bank 4
Bank 3
Bank 2
Bank 1
Bank 0

Thread 15

Thread 7
Thread 6
Thread 5
Thread 4
Thread 3
Thread 2
Thread 1
Thread 0

Bank 9
Bank 8

Bank 15

Bank 7

Bank 2
Bank 1
Bank 0

x8

x8
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Shared memory bank conflicts

• Shared memory is ~ as fast as registers
• If there are no bank conflicts
• warp_serialize profiler signal

• The fast case
• If all threads of a half-warp access different banks, there are no bank 

conflicts
• If all threads of a half-warp read the identical address, there is no bank 

conflict (broadcast)

• The slow case
• Bank conflict: multiple threads in the same half-warp access the same 

bank
• Must serialize the accesses
• Cost = max # of simultaneous accesses to a single bank
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• 32x32 shared memory tile of floats
• Data in columns k and k+16 are in same bank
• 16-way bank conflict reading half columns in tile  

• Solution - pad shared memory array
• __shared__ float tile[TILE_DIM][TILE_DIM+1];
• Data in anti-diagonals are in same bank 

Bank conflicts in transpose

Elements transposed by a half-warp of threads

idata odata
tile
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Effective bandwidth

Effective Bandwidth (GB/s)
2048x2048, GTX 280

Loop over 
kernel

Loop in kernel

Simple Copy 96.9 81.6

Shared Memory Copy 80.9 81.1

Naïve Transpose 2.2 2.2

Coalesced Transpose 16.5 17.1

Bank Conflict Free Transpose 16.6 17.2
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Partition camping

• Global memory accesses go through partitions
• 6 partitions on 8-series GPUs, 8 partitions on 10-series GPUs
• Successive 256-byte regions of global memory are assigned to 

successive partitions

• For best performance:
• Simultaneous global memory accesses GPU-wide should be 

distributed evenly amongst partitions

• Partition camping occurs when global memory accesses at an 
instant use a subset of partitions

• Directly analogous to shared memory bank conflicts, but on a larger 
scale
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Partition camping in transpose

• Partition width = 256 bytes = 64 floats
• Twice size of tile

• On GTX 280 (8 partitions), data 2K apart map to same partition
• 2048 floats divides evenly by 2kB => columns of matrices map to same 

partition

0 1 2 3 4 5

64 65 66 67 68 69

128 129 130 ...

0 64 128

1 65 129

2 66 130

3 67 ...

4 68

5 69

odataidata
tiles in matrices

colors = partitions

blockId = gridDim.x * blockIdx.y + blockIdx.x
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Partition camping solutions

• Pad matrices (by two tiles)
• In general might be expensive (prohibitive) memory-wise

• Diagonally (virtually) reorder blocks
• Interpret blockIdx.y as different diagonal slices and blockIdx.x as 

distance along a diagonal

blockId = gridDim.x * blockIdx.y + blockIdx.x

odataidata
0 64 128

1 65 129

2 66 130

3 67 ...

4 68

5

0

64 1

128 65 2

129 66 3

130 67 4

... 68 5
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__global__ void transposeDiagonal(float *odata, float *idata, int width, 
int height, int nreps)

{  
__shared__ float tile[TILE_DIM][TILE_DIM+1];  

int blockIdx_y = blockIdx.x;  
int blockIdx_x = (blockIdx.x+blockIdx.y)%gridDim.x;  

int xIndex = blockIdx_x * TILE_DIM + threadIdx.x;  
int yIndex = blockIdx_y * TILE_DIM + threadIdx.y;    
int index_in = xIndex + (yIndex)*width;  

xIndex = blockIdx_y * TILE_DIM + threadIdx.x;  
yIndex = blockIdx_x * TILE_DIM + threadIdx.y;  
int index_out = xIndex + (yIndex)*height;  

for (int r=0; r < nreps; r++) {    
for (int i=0; i<TILE_DIM; i+=BLOCK_ROWS) {        
tile[threadIdx.y+i][threadIdx.x] = idata[index_in+i*width];    

}    
__syncthreads();
for (int i=0; i<TILE_DIM; i+=BLOCK_ROWS) {      
odata[index_out+i*height] = tile[threadIdx.x][threadIdx.y+i];    

}  
}

}

Diagonal transpose

Add lines to map diagonal 
to Cartesian coordinates

Replace 
blockIdx.x

with 
blockIdx_x,
blockIdx.y

with 
blockIdx_y 
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Diagonal transpose

• Previous slide for square matrices

• More generally

if (width == height) {    
blockIdx_y = blockIdx.x;    
blockIdx_x = (blockIdx.x+blockIdx.y)%gridDim.x;  

} else {    
int bid = blockIdx.x + gridDim.x*blockIdx.y;    
blockIdx_y = bid%gridDim.y;    
blockIdx_x = ((bid/gridDim.y)+blockIdx_y)%gridDim.x;  

}    
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Effective bandwidth

Effective Bandwidth (GB/s)
2048x2048, GTX 280

Loop over kernel Loop in kernel

Simple Copy 96.9 81.6

Shared Memory Copy 80.9 81.1

Naïve Transpose 2.2 2.2

Coalesced Transpose 16.5 17.1

Bank Conflict Free Transpose 16.6 17.2

Diagonal 69.5 78.3
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Transpose summary

• Coalescing and shared memory bank conflicts are small-scale 
phenomena

• Deal with memory access within half-warp
• Problem-size independent

• Partition camping is a large-scale phenomena
• Deals with simultaneous memory accesses by warps on different 

multiprocessors
• Problem size dependent 

• Wouldn’t see in (2048+32)^2 matrix

• Coalescing is generally the most critical
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Texture addressing

Wrap Clamp
Out-of-bounds coordinate is wrapped 

(modulo arithmetic)
Out-of-bounds coordinate is replaced 

with the closest boundary

0    1    2    3    4

1

2

3

0
(5.5, 1.5)

0    1    2    3    4

1

2

3

0
(2.5, 0.5)
(1.0, 1.0)

0    1    2    3    4

1

2

3

0
(5.5, 1.5)

Read-only access!
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Two CUDA texture types

• Bound to linear memory
• Standard way to get cached access to 1D arrays
• Global memory address is bound to a texture
• Only 1D
• Integer addressing
• No filtering, no addressing modes

• Bound to CUDA arrays
• Full graphics functionality
• CUDA array is bound to a texture
• 1D, 2D, 3D
• Float addressing (size-based or normalized)
• Filtering
• Address modes (clamping, repeat)
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CUDA texturing steps

• Host (CPU) code
• Allocate/obtain memory (global linear or CUDA array)
• Create a texture reference object

• Currently must be at file scope
• Bind the texture reference to memory/array
• Compute
• Unbind the texture reference, free resources

• Device (kernel) code
• Fetch using texture reference
• Linear memory textures

• tex1Dfetch()
• Array textures

• tex1D() or tex2D() or tex3D()
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Occupancy

• Thread instructions are executed sequentially (in order)
• So executing other warps is the only way to hide latencies and keep 

the hardware busy

• Occupancy
• Number of warps running concurrently on a multiprocessor divided

by maximum number of warps that can run concurrently

• Limited by resource usage
• Registers
• Shared memory
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Grid/Block size heuristics

• # of blocks > # of multiprocessors
• So all multiprocessors have at least one block to execute

• # of blocks / # of multiprocessors > 2
• Multiple blocks can run concurrently in a multiprocessor
• Blocks that aren‘t waiting at a __syncthreads() barrier keep the 

hardware busy
• Subject to resource availability (registers, shared memory)

• # of blocks > 100 to scale to future devices
• Blocks executed in pipeline fashion
• 1000 blocks per grid will scale across multiple generations
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• Read after write register dependency
• Instruction‘s result can be read ~11 cycles later
• Scenarios:       CUDA                         PTX

• To completely hide the latency
• Run at least 192 threads (6 warps) per multiprocessor
• Equivalent: at least 25% occupancy
• Threads do not have to belong to the same thread block

Register dependency

add.f32   $f3, $f1, $f2

add.f32   $f5, $f3, $f4

x = y + 5;

z = x + 3;

ld.shared.f32  $f3, [$r31+0] 

add.f32           $f3, $f3, $f4

s_data[0] += 3;
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Register pressure

• Hide latencies by using more threads per multiprocessor

• Limiting factors
• Number of registers per kernel

• 16K (8K on G8x) per SM, partitioned among concurrent threads
• Amount of shared memory

• 16kB per SM, partitioned among concurrent thread blocks

• Compile with –ptxas-options=v flag
• Verbose mode, study carefully

• Use –maxregcount=N flag
• N = desired maximum registers per kernel
• At some point spilling into local memory may occur
• Reduces performance, local memory is slow (implemented in global

memory)
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Occupancy calculator
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Optimizing threads per block

• Choose threads per block as a multiple of warp size
• Avoid wasting computation on under-populated warps (SIMD)

• More threads per block = better memory latency hiding
• But: fewer registers per thread
• Kernel invocations can fail if too many registers are used

• Heuristics
• Minimum: 64 threads per block

• Only if multiple concurrent blocks
• 192 or 256 threads a better choice

• Usually still enough registers to compile and invoke successfully
• This all depends on your computation, so experiment
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Occupancy != performance

• Increasing occupancy does not necessarily increase performance

BUT ...

• Low occupancy microprocessors cannot adequately hide latency 
on memory-bound kernels

• It all comes down to arithmetic intensity and available parallelism
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Parameterize your application

• Parameterization helps adaptation to different GPUs

• GPUs vary in many ways
• # of multiprocessors
• Memory bandwidth
• Shared memory size
• Register file size
• Max. Threads per block

• You can even make apps self-tuning
• Like FFTW or ATLAS
• Experiment mode discovers and saves optimal configuration

• Recall transpose example
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Outline

• Overview

• Hardware

• Memory optimizations

• Execution configuration optimizations

• Instruction optimizations

• Summary
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CUDA instruction performance

• Instruction cycles (per warp) = sum of
• Operand read cycles
• Instruction execution cycles
• Result update cycles

• Therefore instruction throughput depends on
• Nominal instruction throughput
• Memory latency
• Memory bandwidth

• Cycle refers to the multiprocessor clock rate
• 1.3 GHz on GTX 280
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Maximizing instruction throughput

• Maximize use of high-bandwidth memory
• Maximize use of shared memory
• Minimize accesses to global memory
• Maximize coalescing of global memory accesses

• Optimize performance by overlapping memory accesses with 
hardware computations

• High arithmetic intensity programs
• High ratio of math to memory transactions

• Many concurrent threads
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Arithmetic instruction throughput

• int and float add, shift, min, max and float mul, mad
• 4 cycles per warp
• int multiply is by default 32-bit
• Requires multiple cycles per warp
• Use __mul24(), __umul24() intrinsics for 4-cycle 24-bit int multiply

• Integer divide and modulo are more expensive
• Compiler tries to convert literal power-of-two divides to shifts
• Be explicit in cases where compiler can‘t tell that divisor is power of 2
• Useful trick: foo % n == foo & (n-1) if n is a power of two
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Arithmetic instruction throughput

• Intrinsics reciprocal, reciprocal square root, sin/cos, log, exp
prefixed with „__“

• 16 cycles per warp
• Example: __rcp()

• Other functions are combinations of the above
• y/x == rcp(x) * y takes 20 cycles per warp
• Sqrt(x) == x*rsqrt(x) takes 20 cycles per warp
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Runtime math library

• There are two types of runtime math operations
• __func(): direct mapping to hardware ISA

• Fast
• But lower accuracy (see progguide)
• Example: __sin(x)

• func(): compiles to multiple instructions
• Slower but higher accuracy (5 ULP or less)
• Example: sin(x)

• –use-fast-math compiler flag 
• Forces every func() to compile to __func()

• Double precision always IEEE-754 compliant
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CPU results do not match GPU 

• Many, many variables
• Hardware, compiler, optimization flags...

• CPU operations aren‘t strictly limited to 0.5 ulp
• Sequences of operations can be more accurate due to 80-bit 

extended precision ALUs
• CPU-SSE code usually closest to GPU code

• Floating point arithmetic is not associative and commutative!
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FP math is not associative

• Symbolic
• (x+y)+z = x+(y+z)

• Not necessarily true for floating-point addition
• Try x=10^30, y = -10^30 and z=1 in the above equation

• Parallelizing computations
• Potentially changes the order of operations
• Results may not exactly match sequential results
• This is not specific to CUDA or GPU
• Inherent part of parallel computation
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Control flow instructions

• Main performance concern with branching is divergence
• Overhead of simple branch: ~4 cycles per warp
• Divergence: Threads within a single warp take different paths
• Different execution paths must be serialized

• Avoid divergence when branch condition is a function of the 
thread ID

• Example with divergence
• If (threadIdx.x > 2) { ... }
• Branch granularity < warp size

• Example without divergence
• If (threadIdx.x / WARP_SIZE > 2) { ... }
• Branch granularity is a a whole multiple of warp size
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Summary

• GPU hardware can achieve great performance on data-parallel
computations if you follow a few simple guidelines

• Use parallelism efficiently
• Coalesce memory accesses if possible
• Take advantage of shared memory
• Explore other memory spaces

• Texture
• Constant

• Reduce bank conflicts
• Avoid partition camping
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