
Dominik Göddeke | TU Dortmund Page 1

GPU Computing with CUDA

Part 3: CUDA Performance Tips and Tricks

Dortmund, June 4, 2009
SFB 708, AK "Modellierung und Simulation"

Dominik Göddeke
Angewandte Mathematik und Numerik

TU Dortmund

dominik.goeddeke@math.tu-dortmund.de // http://www.mathematik.tu-dortmund.de/~goeddeke

Page 2Page 2Dominik Göddeke | TU Dortmund

Acknowledgements

• Slides based on previous courses by
• Mark Harris, Simon Green, Gregory Ruetsch (NVIDIA)
• Robert Strzodka (MPI Informatik)
• Dominik Göddeke (TU Dortmund)

• ARCS 2008 GPGPU and CUDA Tutorials
http://www.mathematik.tu-dortmund.de/~goeddeke/arcs2008/

• University of New South Wales Workshop on GPU Computing with
CUDA

http://www.cse.unsw.edu.au/~pls/cuda-workshop09/

Page 3Page 3Dominik Göddeke | TU Dortmund

Outline

• Overview

• Hardware

• Memory optimizations

• Execution configuration optimizations

• Instruction optimizations

• Summary

Page 4Page 4Dominik Göddeke | TU Dortmund

Optimize algorithms

• Maximize independent parallelism

• Maximize arithmetic intensity
• Math per bandwidth

• Sometimes it’s better to recompute than to cache
• GPU spends its transistors on ALUs, not memory

• Do more computation on the GPU to avoid costly data transfers
• Even low parallelism computations can sometimes be faster than

transferring back and forth to host

Page 5Page 5Dominik Göddeke | TU Dortmund

Optimize memory access

• Coalesced vs. non-coalesced = order of magnitude
• Global / local device memory

• Optimize for spatial locality in cached texture memory

• In shared memory, avoid high-degree bank conflicts

• Partition camping
• When global memory access not evenly distributed among partitions
• Problem-size dependent

Page 6Page 6Dominik Göddeke | TU Dortmund

Take advantage of shared memory

• Hundreds of times faster than global memory
• Sometimes as fast as registers

• Threads can cooperate via shared memory
• Per thread block

• Use one (a few) threads to load or compute data shared by all
threads

• Use it to avoid non-coalesced access
• Stage loads and stores in shared memory to re-order non-coalesceable

addressing

Page 7Page 7Dominik Göddeke | TU Dortmund

Use parallelism efficiently

• Partition computation to keep the multiprocessors equally busy
• Many threads, many thread blocks
• Scalability on future devices

• Keep resource usage low enough to support multiple active threads
blocks per multiprocessor
• Registers, shared memory
• Occupancy

Page 8Page 8Dominik Göddeke | TU Dortmund

Outline

• Overview

• Hardware

• Memory optimizations

• Execution configuration optimizations

• Instruction optimizations

• Summary

8

Page 9Page 9Dominik Göddeke | TU Dortmund

GT200 architecture

• 240 thread processors execute kernel threads

• 30 multiprocessors, each contains
• 8 (single precision and integer) thread processors
• 1 double precision unit
• Shared memory enables thread cooperation

Thread
Processors

Multiprocessor

Shared
Memory

Double

Page 10Page 10Dominik Göddeke | TU Dortmund

Execution model

Software Hardware

Threads are executed by thread processors

Thread

Thread
Processor

Thread
Block Multiprocessor

Thread blocks are executed on multiprocessors

Thread blocks do not migrate

Several concurrent thread blocks can reside on
one multiprocessor - limited by multiprocessor
resources (shared memory and register file)

...

Grid

A kernel is launched as a grid of thread blocks

Only one kernel can execute on a device at one
time

Processor array

Page 11Page 11Dominik Göddeke | TU Dortmund

Warps and half-warps

Thread
Block Multiprocessor

32 Threads

32 Threads

32 Threads

...

Warps

16

Half Warps

16

DRAM

Global

Local

A thread block consists of 32-
thread warps

A warp is executed physically in
parallel (SIMD) on a
multiprocessor

Device
Memory

=

A half-warp of 16 threads can
coordinate global memory
accesses into a single transaction
called coalescing

Page 12Page 12Dominik Göddeke | TU Dortmund

Memory architecture

Host

CPU

Chipset

DRAM

Device
DRAM

Global

Constant

Texture

Local

GPU
Multiprocessor

Registers

Shared Memory
Multiprocessor

Registers

Shared Memory
Multiprocessor

Registers

Shared Memory

Constant and Texture
Caches

Page 13Page 13Dominik Göddeke | TU Dortmund

Memory spaces

Memory Location Cached Access Scope Lifetime

Register On-chip N/A R/W One thread Thread

Local Off-chip No R/W One thread Thread

Shared On-chip N/A R/W All threads in a block Block

Global Off-chip No R/W All threads + host Application

Constant Off-chip Yes R All threads + host Application

Texture Off-chip Yes R All threads + host Application

Page 14Page 14Dominik Göddeke | TU Dortmund

Outline

• Overview

• Hardware

• Memory optimizations
• Data transfers between host and device
• Device memory optimizations

• Execution configuration optimizations

• Instruction optimizations

• Summary

1
4

Page 15Page 15Dominik Göddeke | TU Dortmund

Host device data transfers

• Device to host bandwidth much lower than device to device
bandwidth
• 8 GB/s peak (PCIe x16 Gen 2) vs. 160 GB/s (GTX 285)

• Minimize transfers
• Intermediate data can be allocated, operated on, and deallocated

without even copying them to host memory

• Group transfers
• One large transfer is better than many small ones

Page 16Page 16Dominik Göddeke | TU Dortmund

Page-locked data transfers

• cudaMallocHost() allows allocation of page-locked („pinned“) host
memory

• Enables highest cudaMemcpy() performance
• 3.2 GB/s on PCIe x16 Gen 1
• 5.2 GB/s on PCIe x16 Gen 2

• Use with caution!!
• Allocating too much page-locked memory can reduce overall system

performance and stability
• Test systems and learn their limits

• Live demo
• BandwidthTest CUDA SDK example

Page 17Page 17Dominik Göddeke | TU Dortmund

Overlap data transfers and computation

• Async and stream APIs allow overlap of H2D or D2H data transfer
with computation
• CPU computation can overlap data transfers on all CUDA capable

devices
• Kernel computation can overlap data transfers on devices with

„Concurrent copy and execution“ (roughly compute capability 1.1)

• Stream = sequence of operations that execute in order on GPU
• Operations from different streams can be interleaved
• Stream ID used as argument to async calls and kernel launches
• If not used, everything happens in stream 0

Page 18Page 18Dominik Göddeke | TU Dortmund

• Asynchroneous host-device memory copy returns control
immediately to CPU
• cudaMemcpyAsync(dst, src, size, dir, stream);
• Requires pinned host memory (allocated with cudaMallocHost())

• Overlap CPU computation with data transfer
• cudaMemcpyAsync(a_d, a_h, size,

cudaMemcpyHostToDevice, 0);
• cpuFunction();
• cudaThreadSynchronize();
• kernel<<<grid, block>>>(dst);

• Live demo
• streamTest

Asynchroneous data transfers

overlapped

Page 19Page 19Dominik Göddeke | TU Dortmund

GPU/CPU synchronization

• Kernel based
• Implicit barrier between kernel invocations in the same stream

• Context based
• cudaThreadSynchronize();

• Blocks until all previously issued CUDA calls from a CPU thread complete

• Stream based
• cudaStreamSynchronize(streamID);

• Blocks until all CUDA calls issued to given stream complete
• cudaStreamQuery(streamID);

• Indicates whether stream is idle
• Returns cudaSuccess, cudaErrorNotReady, ...
• Does not block CPU thread

Page 20Page 20Dominik Göddeke | TU Dortmund

GPU/CPU synchronization

• Stream based using events
• Event = simple label created by cudaEventCreate(&(cudaEvent_t e));
• Events can be inserted into streams

• cudaEventRecord(event, streamID);
• Event is recorded then GPU reaches it in a stream

• Recorded = assigned a timestamp (GPU clocktick)
• Useful for fine-granular timing

• cudaEventSynchronize(event);
• Blocks until given event is recorded

• cudaEventQuery(event);
• Indicates whether event has recorded
• Returns cudaSuccess, cudaErrorNotReady, ...
• Does not block CPU thread

Page 21Page 21Dominik Göddeke | TU Dortmund

Outline

• Overview
• Hardware

• Memory optimizations
• Data transfers between host and device
• Device memory optimizations

• Matrix transpose study
• Measuring performance - effective bandwidth
• Coalescing
• Shared memory bank conflicts
• Partition camping

• Execution configuration optimizations
• Instruction optimizations
• Summary

Page 22Page 22Dominik Göddeke | TU Dortmund

Matrix transpose

• Transpose 2048x2048 matrix of floats

• Performed out-of-place
• Separate input and output matrices

• Use tile of 32x32 elements, block of 32x8 threads
• Each thread processes 4 matrix elements
• In general tile and block size are fair game for optimization

• Process
• Get the right answer
• Measure effective bandwidth (relative to theoretical or reference

case)
• Address global memory coalescing, shared memory bank conflicts,

and partition camping while repeating above steps

Page 23Page 23Dominik Göddeke | TU Dortmund

Theoretical bandwidth

• Device bandwidth of GTX 280

• 1107 * 10^6 * (512 / 8) * 2 / 1024^3 = 131.9 GB/s

• Specs report 141 GB/s
• Use 10^9 B/GB conversion rather than 1024^3
• Whichever you use, be consistent

Memory
clock (Hz)

Memory
interface
(bytes)

DDR

Page 24Page 24Dominik Göddeke | TU Dortmund

Effective bandwidth

• Transpose effective bandwidth

• 2048^2 * 4 B/element / 1024^3 * 2 / (time in secs) = GB/s

• Reference case - matrix copy
• Transpose operates on tiles - need better comparison than raw

device bandwidth
• Look at effective bandwidth of copy that uses tiles

Matrix size
(bytes) Read and

write

Page 25Page 25Dominik Göddeke | TU Dortmund

Matrix copy kernel

__global__ void copy(float *odata, float *idata, int width,
int height)

{
int xIndex = blockIdx.x * TILE_DIM + threadIdx.x;
int yIndex = blockIdx.y * TILE_DIM + threadIdx.y;
int index = xIndex + width*yIndex;

for (int i = 0; i < TILE_DIM; i += BLOCK_ROWS) {
odata[index+i*width] = idata[index+i*width];

}
} TILE_DIM = 32

BLOCK_ROWS = 8

32x32 tile
32x8 thread block

idata and odata
in global memory

idata odata

Elements copied by a half-warp of threads

Page 26Page 26Dominik Göddeke | TU Dortmund

Matrix copy kernel timing

• Measure elapsed time over loop
• Looping/timing done in two ways:

• Over kernel launches (nreps = 1)
• Includes launch/indexing overhead

• Within the kernel over loads/stores (nreps > 1)
• Amortizes launch/indexing overhead

__global__ void copy(float *odata, float* idata, int width,
int height, int nreps)

{
int xIndex = blockIdx.x * TILE_DIM + threadIdx.x;
int yIndex = blockIdx.y * TILE_DIM + threadIdx.y;
int index = xIndex + width*yIndex;

for (int r = 0; r < nreps; r++) {
for (int i = 0; i < TILE_DIM; i += BLOCK_ROWS) {
odata[index+i*width] = idata[index+i*width];

}
}

}

Page 27Page 27Dominik Göddeke | TU Dortmund

Naïve transpose

• Similar to copy
• Input and output matrices have different indices

__global__ void transposeNaive(float *odata, float* idata, int width,
int height, int nreps)

{
int xIndex = blockIdx.x * TILE_DIM + threadIdx.x;
int yIndex = blockIdx.y * TILE_DIM + threadIdx.y;

int index_in = xIndex + width * yIndex;
int index_out = yIndex + height * xIndex;

for (int r=0; r < nreps; r++) {
for (int i=0; i<TILE_DIM; i+=BLOCK_ROWS) {
odata[index_out+i] = idata[index_in+i*width];

}
}

}

idata odata

Page 28Page 28Dominik Göddeke | TU Dortmund

Effective bandwidth

Effective Bandwidth (GB/s)
2048x2048, GTX 280

Loop over
kernel

Loop in kernel

Simple Copy 96.9 81.6

Naïve Transpose 2.2 2.2

Page 29Page 29Dominik Göddeke | TU Dortmund

Outline

• Overview
• Hardware

• Memory optimizations
• Data transfers between host and device
• Device memory optimizations

• Matrix transpose study
• Measuring performance - effective bandwidth
• Coalescing
• Shared memory bank conflicts
• Partition camping

• Execution configuration optimizations
• Instruction optimizations
• Summary

Page 30Page 30Dominik Göddeke | TU Dortmund

• Global memory access of 32, 64, or 128-bit words by a half-warp of
threads can result in as few as one (or two) transaction(s) if certain access
requirements are met

• Depends on compute capability
• 1.0 and 1.1 have stricter access requirements

Coalescing

Global Memory

Half-warp of threads

} 64B aligned segment (16 floats)

}128B aligned segment (32 floats)

Examples – float (32-bit) data

Page 31Page 31Dominik Göddeke | TU Dortmund

• Compute capability 1.0 and 1.1
• K-th thread must access k-th word in the segment (or k-th word in

two contiguous 128B segments for 128-bit words)
• Not all threads need to participate

Coalescing

Coalesces – 1 transaction

Out of sequence – 16 transactions Misaligned – 16 transactions

Page 32Page 32Dominik Göddeke | TU Dortmund

• Compute capability 1.2 and higher
• Coalescing is achieved for any pattern of addresses that fits into a

segment of size: 32B for 8-bit words, 64B for 16-bit words, 128B for 32-
and 64-bit words

• Smaller transactions may be issued to avoid wasted bandwidth due to
unused words

Coalescing

1 transaction - 64B segment

2 transactions - 64B and 32B segments
1 transaction - 128B segment

Page 33Page 33Dominik Göddeke | TU Dortmund

• Naïve transpose coalesces reads, but not writes

Coalescing in transpose

idata odata

Elements transposed by a half-warp of threads

Page 34Page 34Dominik Göddeke | TU Dortmund

Take advantage of shared memory

• Hundreds of times faster than global memory

• Threads can cooperate via shared memory

• Use one (a few) threads to load or compute data shared by all
threads

• Use it to avoid non-coalesced access
• Stage loads and stores in shared memory to re-order non-coalesceable

addressing

Page 35Page 35Dominik Göddeke | TU Dortmund

• Access columns of a tile in shared memory to write contiguous data
to global memory

• Requires __syncthreads() since threads write data read by other
threads

Coalescing through shared memory

Elements transposed by a half-warp of threads

idata odata
tile

Page 36Page 36Dominik Göddeke | TU Dortmund

Coalescing through shared memory

__global__ void transposeCoalesced(float *odata, float *idata, int width,
int height, int nreps)

{
__shared__ float tile[TILE_DIM][TILE_DIM];

int xIndex = blockIdx.x * TILE_DIM + threadIdx.x;
int yIndex = blockIdx.y * TILE_DIM + threadIdx.y;
int index_in = xIndex + (yIndex)*width;

xIndex = blockIdx.y * TILE_DIM + threadIdx.x;
yIndex = blockIdx.x * TILE_DIM + threadIdx.y;
int index_out = xIndex + (yIndex)*height;

for (int r=0; r < nreps; r++) {
for (int i=0; i<TILE_DIM; i+=BLOCK_ROWS) {
tile[threadIdx.y+i][threadIdx.x] = idata[index_in+i*width];

}

__syncthreads();

for (int i=0; i<TILE_DIM; i+=BLOCK_ROWS) {
odata[index_out+i*height] = tile[threadIdx.x][threadIdx.y+i];

}
}

}

Page 37Page 37Dominik Göddeke | TU Dortmund

Effective bandwidth

3
7

© NVIDIA Corporation 2008

Effective Bandwidth (GB/s)
2048x2048, GTX 280

Loop over kernel Loop in kernel

Simple Copy 96.9 81.6

Shared Memory Copy 80.9 81.1

Naïve Transpose 2.2 2.2

Coalesced Transpose 16.5 17.1

Page 38Page 38Dominik Göddeke | TU Dortmund

Outline

• Overview
• Hardware

• Memory Optimizations
• Data transfers between host and device
• Device memory optimizations

• Matrix transpose study
• Measuring performance - effective bandwidth
• Coalescing
• Shared memory bank conflicts
• Partition camping

• Execution Configuration Optimizations
• Instruction Optimizations
• Summary

3
8

© NVIDIA Corporation 2008

Page 39Page 39Dominik Göddeke | TU Dortmund

Shared memory architecture

• Many threads accessing memory
• Therefore, memory is divided in banks
• Successive 32-bit words assigned to successive

banks

• Each bank can serve one address per cycle
• A memory can service as many simultaneous

accesses as it has banks

• Multiple simultaneous accesses to a bank result
in a bank conflict
• Conflicting addresses are serialized Bank 15

Bank 7
Bank 6
Bank 5
Bank 4
Bank 3
Bank 2
Bank 1
Bank 0

Page 40Page 40Dominik Göddeke | TU Dortmund

Bank addressing examples

No bank conflicts
Linear addressing
stride == 1

No bank conflicts
Random 1:1 permutation

Bank 15

Bank 7
Bank 6
Bank 5
Bank 4
Bank 3
Bank 2
Bank 1
Bank 0

Thread 15

Thread 7
Thread 6
Thread 5
Thread 4
Thread 3
Thread 2
Thread 1
Thread 0

Bank 15

Bank 7
Bank 6
Bank 5
Bank 4
Bank 3
Bank 2
Bank 1
Bank 0

Thread 15

Thread 7
Thread 6
Thread 5
Thread 4
Thread 3
Thread 2
Thread 1
Thread 0

Page 41Page 41Dominik Göddeke | TU Dortmund

Bank addressing examples

2-way bank conflicts
Linear addressing
stride == 2

8-way bank conflicts
Linear addressing
stride == 8

Thread 11
Thread 10
Thread 9
Thread 8

Thread 4
Thread 3
Thread 2
Thread 1
Thread 0

Bank 15

Bank 7
Bank 6
Bank 5
Bank 4
Bank 3
Bank 2
Bank 1
Bank 0

Thread 15

Thread 7
Thread 6
Thread 5
Thread 4
Thread 3
Thread 2
Thread 1
Thread 0

Bank 9
Bank 8

Bank 15

Bank 7

Bank 2
Bank 1
Bank 0

x8

x8

Page 42Page 42Dominik Göddeke | TU Dortmund

Shared memory bank conflicts

• Shared memory is ~ as fast as registers
• If there are no bank conflicts
• warp_serialize profiler signal

• The fast case
• If all threads of a half-warp access different banks, there are no bank

conflicts
• If all threads of a half-warp read the identical address, there is no bank

conflict (broadcast)

• The slow case
• Bank conflict: multiple threads in the same half-warp access the same

bank
• Must serialize the accesses
• Cost = max # of simultaneous accesses to a single bank

Page 43Page 43Dominik Göddeke | TU Dortmund

• 32x32 shared memory tile of floats
• Data in columns k and k+16 are in same bank
• 16-way bank conflict reading half columns in tile

• Solution - pad shared memory array
• __shared__ float tile[TILE_DIM][TILE_DIM+1];
• Data in anti-diagonals are in same bank

Bank conflicts in transpose

Elements transposed by a half-warp of threads

idata odata
tile

Page 44Page 44Dominik Göddeke | TU Dortmund

Effective bandwidth

Effective Bandwidth (GB/s)
2048x2048, GTX 280

Loop over
kernel

Loop in kernel

Simple Copy 96.9 81.6

Shared Memory Copy 80.9 81.1

Naïve Transpose 2.2 2.2

Coalesced Transpose 16.5 17.1

Bank Conflict Free Transpose 16.6 17.2

Page 45Page 45Dominik Göddeke | TU Dortmund

Outline

• Overview
• Hardware

• Memory optimizations
• Data transfers between host and device
• Device memory optimizations

• Matrix transpose study
• Measuring performance - effective bandwidth
• Coalescing
• Shared memory bank conflicts
• Partition camping

• Execution configuration optimizations
• Instruction optimizations
• Summary

Page 46Page 46Dominik Göddeke | TU Dortmund

Partition camping

• Global memory accesses go through partitions
• 6 partitions on 8-series GPUs, 8 partitions on 10-series GPUs
• Successive 256-byte regions of global memory are assigned to

successive partitions

• For best performance:
• Simultaneous global memory accesses GPU-wide should be

distributed evenly amongst partitions

• Partition camping occurs when global memory accesses at an
instant use a subset of partitions

• Directly analogous to shared memory bank conflicts, but on a larger
scale

Page 47Page 47Dominik Göddeke | TU Dortmund

Partition camping in transpose

• Partition width = 256 bytes = 64 floats
• Twice size of tile

• On GTX 280 (8 partitions), data 2K apart map to same partition
• 2048 floats divides evenly by 2kB => columns of matrices map to same

partition

0 1 2 3 4 5

64 65 66 67 68 69

128 129 130 ...

0 64 128

1 65 129

2 66 130

3 67 ...

4 68

5 69

odataidata
tiles in matrices

colors = partitions

blockId = gridDim.x * blockIdx.y + blockIdx.x

Page 48Page 48Dominik Göddeke | TU Dortmund

Partition camping solutions

• Pad matrices (by two tiles)
• In general might be expensive (prohibitive) memory-wise

• Diagonally (virtually) reorder blocks
• Interpret blockIdx.y as different diagonal slices and blockIdx.x as

distance along a diagonal

blockId = gridDim.x * blockIdx.y + blockIdx.x

odataidata
0 64 128

1 65 129

2 66 130

3 67 ...

4 68

5

0

64 1

128 65 2

129 66 3

130 67 4

... 68 5

Page 49Page 49Dominik Göddeke | TU Dortmund

__global__ void transposeDiagonal(float *odata, float *idata, int width,
int height, int nreps)

{
__shared__ float tile[TILE_DIM][TILE_DIM+1];

int blockIdx_y = blockIdx.x;
int blockIdx_x = (blockIdx.x+blockIdx.y)%gridDim.x;

int xIndex = blockIdx_x * TILE_DIM + threadIdx.x;
int yIndex = blockIdx_y * TILE_DIM + threadIdx.y;
int index_in = xIndex + (yIndex)*width;

xIndex = blockIdx_y * TILE_DIM + threadIdx.x;
yIndex = blockIdx_x * TILE_DIM + threadIdx.y;
int index_out = xIndex + (yIndex)*height;

for (int r=0; r < nreps; r++) {
for (int i=0; i<TILE_DIM; i+=BLOCK_ROWS) {
tile[threadIdx.y+i][threadIdx.x] = idata[index_in+i*width];

}
__syncthreads();
for (int i=0; i<TILE_DIM; i+=BLOCK_ROWS) {
odata[index_out+i*height] = tile[threadIdx.x][threadIdx.y+i];

}
}

}

Diagonal transpose

Add lines to map diagonal
to Cartesian coordinates

Replace
blockIdx.x

with
blockIdx_x,
blockIdx.y

with
blockIdx_y

Page 50Page 50Dominik Göddeke | TU Dortmund

Diagonal transpose

• Previous slide for square matrices

• More generally

if (width == height) {
blockIdx_y = blockIdx.x;
blockIdx_x = (blockIdx.x+blockIdx.y)%gridDim.x;

} else {
int bid = blockIdx.x + gridDim.x*blockIdx.y;
blockIdx_y = bid%gridDim.y;
blockIdx_x = ((bid/gridDim.y)+blockIdx_y)%gridDim.x;

}

Page 51Page 51Dominik Göddeke | TU Dortmund

Effective bandwidth

Effective Bandwidth (GB/s)
2048x2048, GTX 280

Loop over kernel Loop in kernel

Simple Copy 96.9 81.6

Shared Memory Copy 80.9 81.1

Naïve Transpose 2.2 2.2

Coalesced Transpose 16.5 17.1

Bank Conflict Free Transpose 16.6 17.2

Diagonal 69.5 78.3

Page 52Page 52Dominik Göddeke | TU Dortmund

Transpose summary

• Coalescing and shared memory bank conflicts are small-scale
phenomena

• Deal with memory access within half-warp
• Problem-size independent

• Partition camping is a large-scale phenomena
• Deals with simultaneous memory accesses by warps on different

multiprocessors
• Problem size dependent

• Wouldn’t see in (2048+32)^2 matrix

• Coalescing is generally the most critical

Page 53Page 53Dominik Göddeke | TU Dortmund

Outline

• Overview
• Hardware

• Memory optimizations
• Data transfers between host and device
• Device memory optimizations

• Matrix transpose study
• Textures

• Execution configuration optimizations
• Instruction optimizations
• Summary

Page 54Page 54Dominik Göddeke | TU Dortmund

Texture addressing

Wrap Clamp
Out-of-bounds coordinate is wrapped

(modulo arithmetic)
Out-of-bounds coordinate is replaced

with the closest boundary

0 1 2 3 4

1

2

3

0
(5.5, 1.5)

0 1 2 3 4

1

2

3

0
(2.5, 0.5)
(1.0, 1.0)

0 1 2 3 4

1

2

3

0
(5.5, 1.5)

Read-only access!

Page 55Page 55Dominik Göddeke | TU Dortmund

Two CUDA texture types

• Bound to linear memory
• Standard way to get cached access to 1D arrays
• Global memory address is bound to a texture
• Only 1D
• Integer addressing
• No filtering, no addressing modes

• Bound to CUDA arrays
• Full graphics functionality
• CUDA array is bound to a texture
• 1D, 2D, 3D
• Float addressing (size-based or normalized)
• Filtering
• Address modes (clamping, repeat)

Page 56Page 56Dominik Göddeke | TU Dortmund

CUDA texturing steps

• Host (CPU) code
• Allocate/obtain memory (global linear or CUDA array)
• Create a texture reference object

• Currently must be at file scope
• Bind the texture reference to memory/array
• Compute
• Unbind the texture reference, free resources

• Device (kernel) code
• Fetch using texture reference
• Linear memory textures

• tex1Dfetch()
• Array textures

• tex1D() or tex2D() or tex3D()

Page 57Page 57Dominik Göddeke | TU Dortmund

Outline

• Overview

• Hardware

• Memory optimizations

• Execution configuration optimizations

• Instruction optimizations

• Summary

Page 58Page 58Dominik Göddeke | TU Dortmund

Occupancy

• Thread instructions are executed sequentially (in order)
• So executing other warps is the only way to hide latencies and keep

the hardware busy

• Occupancy
• Number of warps running concurrently on a multiprocessor divided

by maximum number of warps that can run concurrently

• Limited by resource usage
• Registers
• Shared memory

Page 59Page 59Dominik Göddeke | TU Dortmund

Grid/Block size heuristics

• # of blocks > # of multiprocessors
• So all multiprocessors have at least one block to execute

• # of blocks / # of multiprocessors > 2
• Multiple blocks can run concurrently in a multiprocessor
• Blocks that aren‘t waiting at a __syncthreads() barrier keep the

hardware busy
• Subject to resource availability (registers, shared memory)

• # of blocks > 100 to scale to future devices
• Blocks executed in pipeline fashion
• 1000 blocks per grid will scale across multiple generations

Page 60Page 60Dominik Göddeke | TU Dortmund

• Read after write register dependency
• Instruction‘s result can be read ~11 cycles later
• Scenarios: CUDA PTX

• To completely hide the latency
• Run at least 192 threads (6 warps) per multiprocessor
• Equivalent: at least 25% occupancy
• Threads do not have to belong to the same thread block

Register dependency

add.f32 $f3, $f1, $f2

add.f32 $f5, $f3, $f4

x = y + 5;

z = x + 3;

ld.shared.f32 $f3, [$r31+0]

add.f32 $f3, $f3, $f4

s_data[0] += 3;

Page 61Page 61Dominik Göddeke | TU Dortmund

Register pressure

• Hide latencies by using more threads per multiprocessor

• Limiting factors
• Number of registers per kernel

• 16K (8K on G8x) per SM, partitioned among concurrent threads
• Amount of shared memory

• 16kB per SM, partitioned among concurrent thread blocks

• Compile with –ptxas-options=v flag
• Verbose mode, study carefully

• Use –maxregcount=N flag
• N = desired maximum registers per kernel
• At some point spilling into local memory may occur
• Reduces performance, local memory is slow (implemented in global

memory)

Page 62Page 62Dominik Göddeke | TU Dortmund

Occupancy calculator

Page 63Page 63Dominik Göddeke | TU Dortmund

Optimizing threads per block

• Choose threads per block as a multiple of warp size
• Avoid wasting computation on under-populated warps (SIMD)

• More threads per block = better memory latency hiding
• But: fewer registers per thread
• Kernel invocations can fail if too many registers are used

• Heuristics
• Minimum: 64 threads per block

• Only if multiple concurrent blocks
• 192 or 256 threads a better choice

• Usually still enough registers to compile and invoke successfully
• This all depends on your computation, so experiment

Page 64Page 64Dominik Göddeke | TU Dortmund

Occupancy != performance

• Increasing occupancy does not necessarily increase performance

BUT ...

• Low occupancy microprocessors cannot adequately hide latency
on memory-bound kernels

• It all comes down to arithmetic intensity and available parallelism

Page 65Page 65Dominik Göddeke | TU Dortmund

Parameterize your application

• Parameterization helps adaptation to different GPUs

• GPUs vary in many ways
• # of multiprocessors
• Memory bandwidth
• Shared memory size
• Register file size
• Max. Threads per block

• You can even make apps self-tuning
• Like FFTW or ATLAS
• Experiment mode discovers and saves optimal configuration

• Recall transpose example

Page 66Page 66Dominik Göddeke | TU Dortmund

Outline

• Overview

• Hardware

• Memory optimizations

• Execution configuration optimizations

• Instruction optimizations

• Summary

Page 67Page 67Dominik Göddeke | TU Dortmund

CUDA instruction performance

• Instruction cycles (per warp) = sum of
• Operand read cycles
• Instruction execution cycles
• Result update cycles

• Therefore instruction throughput depends on
• Nominal instruction throughput
• Memory latency
• Memory bandwidth

• Cycle refers to the multiprocessor clock rate
• 1.3 GHz on GTX 280

Page 68Page 68Dominik Göddeke | TU Dortmund

Maximizing instruction throughput

• Maximize use of high-bandwidth memory
• Maximize use of shared memory
• Minimize accesses to global memory
• Maximize coalescing of global memory accesses

• Optimize performance by overlapping memory accesses with
hardware computations

• High arithmetic intensity programs
• High ratio of math to memory transactions

• Many concurrent threads

Page 69Page 69Dominik Göddeke | TU Dortmund

Arithmetic instruction throughput

• int and float add, shift, min, max and float mul, mad
• 4 cycles per warp
• int multiply is by default 32-bit
• Requires multiple cycles per warp
• Use __mul24(), __umul24() intrinsics for 4-cycle 24-bit int multiply

• Integer divide and modulo are more expensive
• Compiler tries to convert literal power-of-two divides to shifts
• Be explicit in cases where compiler can‘t tell that divisor is power of 2
• Useful trick: foo % n == foo & (n-1) if n is a power of two

Page 70Page 70Dominik Göddeke | TU Dortmund

Arithmetic instruction throughput

• Intrinsics reciprocal, reciprocal square root, sin/cos, log, exp
prefixed with „__“

• 16 cycles per warp
• Example: __rcp()

• Other functions are combinations of the above
• y/x == rcp(x) * y takes 20 cycles per warp
• Sqrt(x) == x*rsqrt(x) takes 20 cycles per warp

Page 71Page 71Dominik Göddeke | TU Dortmund

Runtime math library

• There are two types of runtime math operations
• __func(): direct mapping to hardware ISA

• Fast
• But lower accuracy (see progguide)
• Example: __sin(x)

• func(): compiles to multiple instructions
• Slower but higher accuracy (5 ULP or less)
• Example: sin(x)

• –use-fast-math compiler flag
• Forces every func() to compile to __func()

• Double precision always IEEE-754 compliant

Page 72Page 72Dominik Göddeke | TU Dortmund

CPU results do not match GPU

• Many, many variables
• Hardware, compiler, optimization flags...

• CPU operations aren‘t strictly limited to 0.5 ulp
• Sequences of operations can be more accurate due to 80-bit

extended precision ALUs
• CPU-SSE code usually closest to GPU code

• Floating point arithmetic is not associative and commutative!

Page 73Page 73Dominik Göddeke | TU Dortmund

FP math is not associative

• Symbolic
• (x+y)+z = x+(y+z)

• Not necessarily true for floating-point addition
• Try x=10^30, y = -10^30 and z=1 in the above equation

• Parallelizing computations
• Potentially changes the order of operations
• Results may not exactly match sequential results
• This is not specific to CUDA or GPU
• Inherent part of parallel computation

Page 74Page 74Dominik Göddeke | TU Dortmund

Control flow instructions

• Main performance concern with branching is divergence
• Overhead of simple branch: ~4 cycles per warp
• Divergence: Threads within a single warp take different paths
• Different execution paths must be serialized

• Avoid divergence when branch condition is a function of the
thread ID

• Example with divergence
• If (threadIdx.x > 2) { ... }
• Branch granularity < warp size

• Example without divergence
• If (threadIdx.x / WARP_SIZE > 2) { ... }
• Branch granularity is a a whole multiple of warp size

Page 75Page 75Dominik Göddeke | TU Dortmund

Summary

• GPU hardware can achieve great performance on data-parallel
computations if you follow a few simple guidelines

• Use parallelism efficiently
• Coalesce memory accesses if possible
• Take advantage of shared memory
• Explore other memory spaces

• Texture
• Constant

• Reduce bank conflicts
• Avoid partition camping

	Acknowledgements
	Outline
	Optimize algorithms
	Optimize memory access
	Take advantage of shared memory
	Use parallelism efficiently
	Outline
	GT200 architecture
	Execution model
	Warps and half-warps
	Memory architecture
	Memory spaces
	Outline
	Host device data transfers
	Page-locked data transfers
	Overlap data transfers and computation
	Asynchroneous data transfers
	GPU/CPU synchronization
	GPU/CPU synchronization
	Outline
	Matrix transpose
	Theoretical bandwidth
	Effective bandwidth
	Matrix copy kernel
	Matrix copy kernel timing
	Naïve transpose
	Effective bandwidth
	Outline
	Coalescing
	Coalescing
	Coalescing
	Coalescing in transpose
	Take advantage of shared memory
	Coalescing through shared memory
	Coalescing through shared memory
	Effective bandwidth
	Outline
	Shared memory architecture
	Bank addressing examples
	Bank addressing examples
	Shared memory bank conflicts
	Bank conflicts in transpose
	Effective bandwidth
	Outline
	Partition camping
	Partition camping in transpose
	Partition camping solutions
	Diagonal transpose
	Diagonal transpose
	Effective bandwidth
	Transpose summary
	Outline
	Texture addressing
	Two CUDA texture types
	CUDA texturing steps
	Outline
	Occupancy
	Grid/Block size heuristics
	Register dependency
	Register pressure
	Occupancy calculator
	Optimizing threads per block
	Occupancy != performance
	Parameterize your application
	Outline
	CUDA instruction performance
	Maximizing instruction throughput
	Arithmetic instruction throughput
	Arithmetic instruction throughput
	Runtime math library
	CPU results do not match GPU
	FP math is not associative
	Control flow instructions
	Summary

