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This tutorial explains how to perform a simple vector operation completely on the GPU
using the so-called ping pong approach and the open-source RenderTexture class written
by Mark Harris (http://www.markmark.net). The code samples have only been tested on
NV3X and NV4X hardware because of the unavailability of  ATI hardware at my place.
Additionally, Linux is unsupported because I didn't have the time yet.

The example  is  chosen because it  is  as  simple  as  possible  while  not  containing  any
graphics at  all.  However,  it  is not completely arbitrary.  Full  sources for  this tutorial  are
provided on my web page.

Please feel free to complain about  any bugs etc., but keep in mind that  this tutorial  is
provided „as is“, without any guarantee or liability. If you find this short tutorial useful, a
short e-mail is always welcome.

Preface

I assume you have basic knowledge of OpenGL and C/C++. The following packages need
to be installed to start developing under MS Windows:

– NVIDIA SDK,: http://developer.nvidia.com, SDK 8.0 or better (or some other source of
the proper headers and libraries for OpenGL)

– at least Cg 1.2 for NV3x, Cg 1.3 for NV4x:  http://delevoper.nvidia.com (if you use Cg,
for the GLSL version, you just need a driver that exposes the neccessary extensions)

– Microsoft Platform SDK: http://msdn.microsoft.com
– Microsoft Visual C++ 2003 or 2005 (any other C++ compiler should suffice, but has not

been tested yet)
– The OpenGL Extension Wrapper Library (GLEW) http://glew.sourceforge.net

Compilation can be tricky at first, to get this bit of code compiled using VS, make sure you
have the INCLUDE and LIB directories of all the packages mentioned above listed in the
corresponding sections in the "project properties" dialog of VS. You might have to add
"cg.lib cgGL.lib glew32.lib" to the "additional dependencies" section of the linker as well.



Mathematical Problem

In  this  tutorial,  we  are  going  to  implement  the  so  called  SAXPY_V operation,  a
modification of the SAXPY function of the BLAS library. This operation can be considered
as a low-level building block for all kinds of linear algebra operators and high-level linear
solvers.  For  example,  banded  matrix  vector  operations  arising  in  Finite  Element
discretisations can be implemented as a series of  SAXPY calls. Given three vectors Y,X
and A, all of length N and of 32-bit floating point precision, a CPU implementation using
three arrays for the vectors would look like this:

FOR J=0 TO somefixednumberofiterations
FOR I=0 TO N

Y[I] = Y[I] + A[I]*X[I]

Note that the vectors  X and  A remain unchanged during the iteration, and the vector  Y
gets updated in each step. 

To get this bit of  code over to the GPU, we proceed like this: First,  we create a data
structure  that  maps  well  onto  the  GPU for  our  vectors.  Then  we set  up  an  OpenGL
program using GLUT. After that, we create an offscreen buffer in the GPU memory using
the RenderTexture class. The actual math is performed through a simple Cg fragment
shader program, which we initialise next. We then upload our vectors into the offscreen
buffer and perform the iteration using a ping pong approach which will be explained in
detail  later on. After the iteration has finished, we download the results back into CPU
memory and compare them with a solution calculated on the CPU. 

Step 1: Arranging the data

In GPGPU calculations, textures are the equivalent of arrays used in CPU programs. In
our case, we need three 1D arrays, one for X, Y and A respectively. Since 2D textures are
way more efficient on GPUs and because of the limitation of 1D textures (they can contain
at most 4096 elements, while 2D textures can contain 4096^2 elements), we need to map
our 1D data into a 2D texture. For the sake of simplicity, we assume that the size of our
vectors is N=2^k by 2^m for some appropriate integers k and m so that N<4096^2: Only
the  latest  NV40  cards  provide  so  called  non-power-of-two  textures  natively  without
emulation, but we want this implementation runnable on NV30 GPUs. We decide to use
one texture for all three vectors, storing the Y values in the red channel, and the X and A
values in the green and blue channels. The actual mapping from 1D to 2D is implemented
in a row-major way. The following code snippet gives the neccessary declarations:

typedef float rgb[3];
int N = 256*256;
int numIterations = 100;
texWidth = sqrt((float)N);
texHeight = texWidth;

The createTextureData() function creates such a 2D array (in CPU memory) that contains
the data in a format well-suited to be used as a texture later on:



rgb* createTextureData () {
// allocate memory
rgb* p = (rgb*)malloc(N*sizeof(rgb));
// and fill it with some arbitrary nonsense values
for (int i=0; i<texWidth; i++)
for (int j=0; j<texHeight; j++) {

// red channel is y-Vector
p[i*texWidth+j][0] = 0.0;
// green channel is x-Vector
p[i*texWidth+j][1] = 2.0/3.0;
// blue channel is a-Vector
p[i*texWidth+j][2] = 3.0/2.0;

}
return p;

}

Please keep in mind that this data layout is chosen for simplicity's sake, if you want to
score proper GFLOPS, you might have to come up with a better idea, eventually taking
advantage of the intrinsic SIMD capabilities and the parallelism on the GPU which is able
to perform calculations on a four-tupel of data (RGBA) in one cycle. Some ideas how to do
that are outlined in my "Performance Tuning Tutorial", available on the web.

Step 2: Setting up OpenGL, initialising the neccessary extensions

I won't go into details here, I assume you are able to do this. Getting pointers for extension
functions can be painful,  but  luckily the  GLEW  library wraps  all  that  up  nicely.  In  the
accompanying implementation, the setup takes place in the subroutines  initGLUT() and
initGLEW().  Note  that  GLEW  automatically  checks  if  all  neccessary  extensions  are
supported. 

Step 3: Creating an offscreen buffer

The  pBuffer  extension  to  OpenGL  (vendor-specific,  in  case  of  NVIDIA,  it's  called
NV_FLOAT_BUFFER) allows the use of offscreen floating point rendering targets (which
we definitely need because we don't  want results to be clamped to [0,1]).  We need to
keep in mind one important detail: These buffers are either read-only (when bound as an
input texture) or write-only (when bound as render target). Unfortunately, we need to read
and update the Y-vector in each step. Basically, there are two solutions to this problem:
We could use two pBuffers (the usual way with Linux at the moment), or we could use a
double-buffered one. Each pBuffer has its own OpenGL context, so we would have to
ensure that our data is shared between these contexts. Additionally, we would have to
switch between these contexts in each iteration, which is expensive since changing the GL
context  implies  a  flush  of  the  graphics  pipeline.  But  luckily,  pBuffers  can  be  double-
buffered.  This means we will use one single buffer, which has two “surfaces”, one we
read from and the other we write to.  We also want to use the fast “render to texture”
approach: In the first step, we render the results into a buffer which we then use as an
input texture for the next step without any actual copying of  data or anything else that
would inhibit performance. This process is known as the ping pong approach.

The RenderTexture class graciously takes care of all the dirty details, so let's take a look
at some code next:



const char *modeString = "rgb=32f doublebuffer texRECT rtt";

This is the initialisation string for the RenderTexture class.  It translates into the following
wishlist passed to the RenderTexture class in the next step: We want

– a double-buffered offscreen rendering target,
– with three channels of 32 bit precision each, 
– supporting the fast “render to texture” approach (limited to Windows so far),
– and access to its data with the texRECT extension instead of the tex2D texture lookup.

Rectangular textures (aka texRECT) differ from regular textures: Their coordinates are in
the  range   [0,texWidth]  x  [0,texHeight]  as  compared  to  [0,1]  x  [0,1].  When  using
rectangular textures, texels should be accessed at the texel center by adding 0.5 to its
texture coordinates. To see what I mean, just output the WPOS value from below in your
shaders. For example, the first texel is located at (0.5,0.5). 

With this in mind, we can put the whole creation process into a single subroutine:

RenderTexture* createOffscreenBuffer(void) {
// create new instance of RenderTexture class
RenderTexture *rt = new RenderTexture(); 
// set it up to suit our needs
rt->Reset(modeString);
// and initialise it to preferred size
if (!rt->Initialize(texWidth, texHeight)) {

// throw some error
}
// setup RT 
rt->BeginCapture();
glMatrixMode(GL_PROJECTION);
glLoadIdentity();
gluOrtho2D(0.0, texWidth, 0.0, texHeight);
glMatrixMode(GL_MODELVIEW);
glLoadIdentity();
glViewport(0, 0, texWidth, texHeight);
glBindTexture(rt->GetTextureTarget(), rt->GetTextureID());
glTexParameteri(rt->GetTextureTarget(), GL_TEXTURE_MIN_FILTER, GL_NEAREST);
glTexParameteri(rt->GetTextureTarget(), GL_TEXTURE_MAG_FILTER, GL_NEAREST);
glTexParameteri(rt->GetTextureTarget(), GL_TEXTURE_WRAP_S, GL_CLAMP);
glTexParameteri(rt->GetTextureTarget(), GL_TEXTURE_WRAP_T, GL_CLAMP);
rt->EndCapture();
return rt;

}

In the first half of this routine, we just create the buffer using the narrow RenderTexture
interface and set it up to run in the mode and size we require. The second half of this code
snippet requires some more explanation: By calling BeginCapture(), we turn our buffer (to
be more precise, its active surface) into the current OpenGL render target.  Later on, we
want to use a one to one mapping of  the values in the vectors,  the viewport  and the
textures,  so  we  set  up  the  RenderTexture  instance  to  use  a  simple  one-to-one  2D
orthographic  projection.  We  then  bind  it  as  a  texture  and  set  the  OpenGL  texture
parameters to suit  our needs. Note that this pBuffer has, as explained before,  it's own
context, so everything we do between the enclosing  BeginCapture() and EndCapture()
calls affects exactly the context we want to change. Keep this in mind, it is a common
error if you start to modify this basic example.



Step 4a: Setting up Cg

To be able to use Cg, we first need to write a little Cg program that performs the actual
calculation. We use a neat little fragment program for this. For the sake of simplicity, we
inline it directly into the source code instead of calling the Cg compiler manually or through
the  Makefile.  Our  program  takes  a  rectangle  texture  (through  a  variable  of  type
samplerRECT)  and  the  proper  fragment  coordinates  (through  the  WPOS binding
semantics) for the fragment as parameters, and calculates the result which is returned as
a "color" value. Note that we don't have to worry about texture coordinates at all, since we
set  the viewport  to full  screen size earlier  and will  render  something that  serves as a
stream data generator later on. All you need to know now to understand this fragment
program is that it will be called independently for each value in our vectors, meaning
for each entry in our texture we set up earlier.

static char *fragmentSource = 
  "float3 saxpy_v (in half4 screen : WPOS,\n "
  "             uniform samplerRECT texture)  : COLOR {\n "
  "  float3 OUT;\n" 
  "  float3 tex = texRECT (texture, screen.xy);  // get y_i, x_i and a_i \n" 
  "  OUT.r = tex.r + tex.g*tex.b;                         // calc new y_i aka left-hand-side \n"
  "  OUT.gb = tex.gb;                                        // copy over x_i and a_i for next iteration \n "
  "  return OUT;\n 
}\n";

The subroutine  initCG() takes care of setting up the Cg context the usual way. Check
back  with  the  accompanying  sources  for  details.  For  future  use,  we  get  the  texture
parameter from the Cg runtime by calling 

CGparameter textureParam = cgGetNamedParameter (fragmentProgram, "texture");

Step 4b: Setting up GLSL alternatively

GLSL is set up just like in any of the numerous tutorials available, I recommend taking a
look at http://www.lighthouse3d.com/opengl/glsl/ or directly in the accompanying sources,
the subroutine is called initGLSL(). The syntax of the GL shading language is a little bit
different to Cg, the shader for our saxpy implementation looks like this:

const char *fragmentSource = {
"uniform sampler2DRect texture;\n"
"void main(void) {\n"
"  vec2 texcoord = gl_TexCoord[0].st;\n" // get texcoord and texture data
"  vec4 data = texture2DRect(texture, texcoord);\n"
"  data.x = data.x + data.y*data.z;\n" // perform saxpy
"  gl_FragColor = data;\n"
"}\n "
};

Step 5: Uploading the data to the offscreen buffer

This is the last preprocessing step: In order to work on proper data, we need to upload the
starting values we defined earlier in an array on CPU memory for the iteration to the GPU.
This is achieved by the following subroutine:



void uploadTexture () {
// upload texture to FRONT buffer of the texture
rgb *vec = createTextureData();
rt->BeginCapture();
glDrawBuffer(GL_FRONT_LEFT);
glRasterPos2i(0,0);
glDrawPixels (texWidth,texHeight,GL_RGB,GL_FLOAT,vec);
rt->EndCapture();

}

Note that  it  is  essential  to  tell  OpenGL to interpret  the data (which we created in  the
createTextureData() subroutine) as floating point values by passing  GL_FLOAT to the
corresponding  method.  The  internal  format  needs  to  be  set  to  GL_RGB because  we
initialised the buffer to have three channels.

Step 6: Performing the actual computation by playing ping pong

After all initialisations are done, we enter the drawing process by calling render(). Inside
this routine, all neccessary steps are performed. Before we dive into the implementation, I
will  sketch out the basic idea of the ping pong approach: Since the two surfaces of our
offscreen buffer are either read-only or write-only, we will store the input data in the read-
only buffer and we will write the results of the computations into the output buffer. We are
working with a graphics programming paradigm, so the input data is going to be bound as
a texture. Reading from this texture and writing into the output buffer is the first step to be
performed. 

So much for the ping step, before we start the next iteration (aka pong), we just swap the
role of  the two buffers:  The output buffer we just “rendered” to (I  use quotation marks
because we didn't create an image in the traditional sense) becomes the new input buffer,
again as a texture. This is why the whole process is called render to texture. The former
input buffer can be overwritten with the results of this iteration step since we don't need it
anymore. Then we swap buffers again and start over. Luckily, the RenderTexture class
takes care of the ugly internals, so all we have to do is to keep track of which buffer is
being used as input and which buffer is being rendered to. The easiest way to do this is by
a couple of macros:

const GLenum glsurf[2] = {GL_FRONT_LEFT, GL_BACK_LEFT};
const GLenum wglsurf[2] = {WGL_FRONT_LEFT_ARB, WGL_BACK_LEFT_ARB}; 
int SOURCE_BUFFER = 0;
#define DESTINATION_BUFFER !SOURCE_BUFFER
#define SWAP()  SOURCE_BUFFER = DESTINATION_BUFFER; 

With all that in mind, we are ready to write the display callback routine:

void displayCallback() {
// get RT, make it "writable"
rt->BeginCapture();
// bind Cg program
cgGLBindProgram(fragmentProgram);
cgGLEnableProfile(cgProfile);
// tell the shader to use the right texture
cgGLSetTextureParameter(textureParam, rt->GetTextureID());
cgGLEnableTextureParameter(textureParam);
// iterate test couple times



for (int i=0; i<numIterations; i++) {
// use BACK as render target
glDrawBuffer(glsurf[DESTINATION_BUFFER]);
// and FRONT as texture
rt->BindBuffer(wglsurf[SOURCE_BUFFER]); 
// render viewport-sized quad. With our viewport, this makes sure the fragment
// program is executed once per value (once per pixel/texel in the offscreen buffer)
glBegin(GL_QUADS);
    glTexCoord2f(-texWidth,-texHeight); glVertex2f(-texWidth, -texHeight);
    glTexCoord2f(texWidth, -texHeight); glVertex2f(texWidth, -texHeight);
    glTexCoord2f(texWidth, texHeight); glVertex2f(texWidth, texHeight);
    glTexCoord2f(-texWidth, texHeight); glVertex2f(-texWidth, texHeight);
glEnd();
SWAP();

}
glFinish();
// perfom some timing [...]
// clean up and jump to postprocessing
rt->EndCapture();
cgGLDisableProfile(cgProfile);
doPostprocessing();

}
This is all the magic behind the ping pong approach. Note that all we render is a viewport-
sized quad. This causes the rasterizer (a fixed part of the graphics pipeline we can't
influence (yet?)) to create a fragment for each pixel in our viewport.  The quad basically
serves as a data stream generator for our fragment program which gets executed
independently for each of these fragments. We set the texture coordinates (which are
linearly interpolated between the corners of the quad) of our data texture to a one-to-one
mapping between pixels and texels. In this way we are able to access the right positions in
both the input and the output buffer, in each iteration: The index "I" in the CPU
implementation directly translates to the index "WPOS" on the GPU.

After the loop in this subroutine is finished, all our calculations are done. There might be
better ways to do this, but in this simple example we just call another routine (described in
the next section) instead of exiting the GLUT main loop properly.

The timing needs some further commenting: Some GL calls execute asynchroneously,
some don't. In order to get proper timings for GPGPU applications, we perform the same
task quite often, and take the average runtime. If you take a look at the accompagnying
implementation, please do not take the CPU timings seriously, the CPU code is a very
straight forward cache-unfriendly implementation, so please don't use these timings to
measure any CPU vs. GPU ratio! 

The shader setup using GLSL is even easier:

rt->BeginCapture();
// enable GLSL program
glUseProgramObjectARB(programObject);

    // identify the bound texture unit as input to the shader
glUniform1iARB(textureParam, 0);
for (int i=0; i<numIterations; i++) {

// ... no other changes
}
glFinish();

Step 7: Postprocessing

In this last step, we just download the results from GPU memory for future use. In the
accompanying implementation, the results are simply compared with a reference solution



calculated on the CPU. Even this is beyond the scope of this tutorial. Here, we just sketch
the download subroutine:

rgb *downloadTexture (GLenum target) {
rgb *data = (rgb*)malloc(sqrtn*sqrtn*sizeof(rgb));
rt->BeginCapture();
glReadBuffer(target);
glReadPixels(0, 0, texWidth, texHeight,GL_RGB,GL_FLOAT,data);
rt->EndCapture();
return data;

}

One error-prone detail remains: In the last iteration of the loop inside the display callback
routine, we called  SWAP(). So in order to get the correct results, we have to download
them from the source buffer and not from the destination buffer, somewhat contrary to
common sense.

Closing remark

Ok, you have reached the end of this tutorial, I hope you enjoyed it and found it useful. 

If you look at the output of the program closely, you will notice two strange WIN32 error
messages about  missing PROCs:  One is  caused inside  the  initGLEW  subroutine,  the
other  is thrown while setting optimal  parameters for  the Cg runtime.  Both errors don't
affect this program. If you know why they occur, please drop me a note.

To dive further into the topic of GPGPU programming, I recommend the community site at
http://www.gpgpu.org which comes with a ton of information and a great, active forum.  If
you prefer reading hardcovers, the text book GPU GEMS 2 comes with a a whole chapter
of  articles  on  GPGPU  programming.  Additionally,  you  might  find  some  more  tutorials
useful which I gradually make available on my web page.


