
GPGPU Performance Tuning – An illustrated example

Dominik Göddeke, University of Dortmund, Germany
dominik.goeddeke@mathematik.uni-dortmund.de

www.mathematik.uni-dortmund.de/~goeddeke

This tutorial describes some common techniques to improve performance of  GPU-based
implementations in linear algebra applications. The example presented here is a Jacobi
iteration (commonly used as a smoother in multigrid scenarios) on a sparse matrix arising
from  Finite  Element  discretizations  of  standard  operators.  However,  none  of  that
advanced  background  is  neccessary  to  understand  the  GPU-specific  examples  given
here.

Full  sources (in OpenGL and Cg) are provided on the web page. Most of  this work is
based on [BVP] and several discussions at the online forums on [GPGPU].

CPU implementation

We consider  a  nine-banded sparse matrix  A that  defines  a linear  system we want  to
"solve" by Jacobi iteration. The nine bands are stored in separate vectors each of length
N, with some zero padding at the beginning or end of the off-diagonal vectors. The bands
are labelled  DD,  DU,  DL for  center  tridiagonal  submatrix,  UD,  UU,  UL for  the  upper
tridiagonal and LD, LU, LL for the lower respectively. Given a RHS vector B and a solution
vector X, one step of the Jacobi iteration can be written as

X[i] = X[i] + (B[i] – (A*X)[i])/DD[i], i=1..N

Taking the band structure of the matrix into account, the matrix-vector-multiplication inside
this iteration can be rewritten using a single loop over all bands:

Y[i] = DD[i]*X[i] + DL[i]*X[i-1] + DU[i]*X[i+1] + 
LD[i]*X[i-SQRT(N)] + LL[i]*X[i-SQRT(N)-1] + 
LU[i]*X[i-SQRT(N)+1] + UD[i]*X[i+SQRT(N)] + 
UL[i]*X[i+SQRT(N)-1] + UU[i]*X[i+SQRT(N)+1]

Alternatively,  each  band  can  be  looped  over  separately  with  a  DAXPY-like operation,
yielding better performance when linked against the BLAS library.

Note that for a given length N, the number of arithmetic operations for the a single step of
the Jacobi iteration is 20*N. 

Mapping the CPU implementation to the GPU

The first attempt in porting the application to the GPU roughly follows the steps outlined in
the PingPong tutorial [PINGPONG]. The iteration vector X is stored in a double-buffered
pBuffer (using only a single channel), alternately serving as render target and input texture
as described in the above tutorial. The right-hand-side and the various bands are stored in



different  channels  of  three  other  square  floating point  textures  with  some  appropriate
zero padding to avoid ugly index shifts. Alternatively, each vector can of course be stored
in  a  single-channeled  texture  alone,  increasing  the  number  of  additional  textures,  but
making better use of the texture caches. All vectors are packed into the 2D textures in a
row-major manner,  each texture is of  size SQRT(N) by SQRT(N). A single step of  the
Jacobi iteration can be coded into a single fragment program running entirely on the GPU.
To make sure the program gets all the neccessary data, an orthographic projection with a
one to one mapping from viewport to screen is chosen, and a multitextured screen-filling
quad is rendered. This ensures that for each entry in our vector, the fragment program is
executed exactly once. After this pass, the CPU takes care of swapping the surfaces of
the offscreen buffer, the newly calculated values on the formerly write-only surface of the
buffer are now bound as a read-only input texture for the next iteration. At no time, any
user data is transferred back to the CPU. Instead of implementing a convergence control,
a fixed number of iterations is performed.

Because of the mapping from vector to texture, for a given fragment at coordinates  (i,j),
the following positions need to be accessed in the input textures: Of the nine bands and
the right hand side vector, data at location (i,j) is read in, and in the texture representing
the vector X, data from pixel location (i,j) and the eight directly surrounding neighbours is
required, i.e. from pixel (i-1,j-1) to pixel (i+1,j+1). In total, 12 texture lookups (9 into the X
texture and 3 into the other data textures) are required to calculate a single new value of
the iteration vector X. The arithmetic intensity of this Jacobi implementation is rather low.

One detail needs additional explanation: When looking up values from the X texture at the
"boundary layer" of the texture, data has to be wrapped around to the next or previous
"row" of texels as a consequence of the vector to texture mapping chosen. In this first
version,  the  respective  coordinates  are  wrapped  around  using  some  straight  forward
algebra, presented here directly as a Cg snippet. Note that "ocoords" is the actual screen
position  as  passed  to  the  fragment  program  through  the  WPOS semantics.  The
subtraction/addition of 0,5 is implied by the use of texRECT-style texture coordinates.

float2 coords_right = ocoords-0.5;
float z = (coords_right.y)*texwidth + (coords_right.x+1);
coords_right.y = floor(z/texwidth);
coords_right.x = z-texwidth*coords_right.y;
coords_right += 0.5;
float2 coords_left = ocoords-0.5;
z = (coords_left.y)*texwidth + (coords_left.x-1);
coords_left.y = floor(z/texwidth);
coords_left.x = z-texwidth*coords_left.y;
coords_left += 0.5;

Substancial performance improvement by exploiting the SIMD model

The first step in achieving a good GFLOP/s rate is to exploit the SIMD (single instruction
multiple data) view of  the graphics processor.  When  viewing the GPU as a streaming
processor, a computational kernel is executed on each fragment. For the programmer, it
is safe to abstractly view this process as if "on each fragment, the same operations are
performed simultaneously", we do not have to worry about the number of parallel pipes
the card provides, and especially we are not able to influence the parallel execution.

But there is a second level of SIMD nature: Instead of operating on a single floating point
value, modern GPUs can perform the same operation on a quadrupel (RGBA) of values at



the same time, almost at the same speed. 

With respect to the Jacobi iteration discussed here, the initial task to solve one system is
extended to solving four systems at the same time. Each of these must be of same size
and format (must have the same 9-banded structure as presented above), but the values
in the different band vectors and the right hand side may of course be different. This may
sound like a "cheat", in practical situations however where systems with the given matrix
structure  arise,  there  are  usually  many systems that  need  solving.  Another  possibility
would be to map a single vector into  a 2D-RGBA structure,  but  this is tedious and is
beyond the scope of this tutorial. Warning: Different cards behave differently, this trick
might even result in a slowdown! To check this for yourself, two versions of the code
are available on my web page, one using only single-channeled textures, and the other
one using the idea to "solve four systems simultaneously".

The  neccessary changes  to  the  implementation  are  straight-forward and  need  not  be
documented here. Just note that for each fragment (for each quadrupel of new X values),
a total of 19 texture lookups (9 times into the X texture, nine times into the various band
textures and once into the RHS texture) are required, improving the arithmetic intensity
slightly.

On an ideal SIMD machine, one would expect a speedup by a factor of  four since the
systems are completely independent  of  each other.  However, due to the fact  that less
texels fit in the texture cache (one texel comsumes 128 Bits instead of 32 Bits now), the
number  of  cache hits  decreases.  In  this  example,  a speedup by a factor  of  two was
measured on certain cards, on other hardware, this resulted in a factor of 2 slowdown.

Another trick is worth an additional 100 MFLOP/s of speedup: Instead of actually dividing
by the main diagonal in each fragment, its inverse is precomputed on the CPU, passed as
an  additional  texture  to  the  GPU where  a   multiplication  is  performed.  Note  that  this
approach does not only yield better performance, but also better accuracy, as pointed out
by [PARANOIA].

Multipass rendering to reduce shader complexity

A closer examination of the fragment program and some experiments show the next major
bottleneck:  For  each  fragment,  a  lot  of  possibly  unneccessary  algebra  is  performed,
including two rather expensive calls to the Cg library function floor(). For the vast majority
of the pixels, wrapping to get the correct offsets in the texture representing the vector X is
not neccessary at all. Additionally, for texels on the left boundary, all texels will wrap to the
left and no texels will wrap to the right and vice versa.

To get around this problem, instead of running one generic shader that works correctly for
all  pixel  locations,  three  rendering  passes  –  each  using  a  specialized  shader  -  are
performed to implement a single iteration of the Jacobi algorithm:

In the first pass, a single quad is rendered with coordinates (1.0, 0.0), (texWidth-1.0, 0.0),
(texWidth-1.0, texHeight) and (1.0, texHeight). This covers all the “interiour texels”, in the
corresponding  fragment  program,  the  neccessary  offsets  can  be  directly  calculated
without any wrapping.

The  second  pass  renders  a  single  line  from  (0.0,  0.0) to  (0.0,  texHeight).  All  texels



activated  by  this  line  will  wrap  their  left  neighbours  to  the  next  line.  By  passing  the
texWidth value as uniform parameter to the shader, this can be implemented without any
call to the expensive floor() library function as well. 

The last pass uses a line from (texWidth-1.0, 0.0) to (texWidth-1.0, texHeight) to perform
an analogous operation for the texels on the right boundary. 

After  these  three  passes,  the  surfaces  are  swapped,  and  one  Jacobi  iteration  is
completed. Note that despite the fact that the CPU overhead (per pass, three programs
need  to  be  bound/unbound  with  their  respective  parameter  handles)  is  bigger,  this
multipass approach yields a total speedup of 400 MFLOP/s.

Including the vertex shader

The graphics card provides powerful interpolation units in the fixed-function part of  the
hardware.  With  the  approach  as  described  before,  this  feature  has  been  used  only
sparsely:  The  texel  coordinates  as  queried  with  the  WPOS semantics  have  been
interpolated from the corner coordinates of the screen-sized quad that was rendered. To
get  additional  efficiency,  the  other  texture  coordinates  (up,  down,  left,  right)  can   be
calculated explicitely in the vertex shader and be interpolated automatically: They depend
linearly on the texture coordinate values assigned to the corners of  the quads.  This is
implemented by a small  vertex program that calculates the eight offset coordinates for
each of the four vertices of our screen-sized quad, and passes them through the pipeline
(correctly  interpolated)  on  to  the  fragment  program  using  the  TEXCOORD0 to
TEXCOORD7 binding semantics. 

In  total,  this  trick  yields another  300 MFLOP/s:  The pipeline  is  still  dominated by the
workload  of  the  fragment  shader,  but  the  fragment  shader  only  performs  the  20*N
essential operations of the Jacobi iteration, and no additional coordinate calculations.

Results

The Jacobi solver has been applied to a couple of test cases of various vector lengths.
The following table summarizes averaged results for two common cards.

Problem size MFLOPs 5900U RGBA MFLOPs 5900U RED MFLOPs 6800 RGBA MFLOPs 6800 RED
4096 807 451 283 474

16384 1595 594 669 1233
65536 1925 639 979 1894

262144 1504 643 1083 2238
1048576 1363 632 1002 2358
4194304 1280 984 2240

Note that a problem size of 4096 means N=4096 for the single channeled (RED)  layout,
and 4 systems each of size N=1024 for the layout labelled RGBA: Indeed the data layout
makes a huge difference, and different cards perform differently. It goes beyond the scope
of this tutorial to explain why, pragmatic programmers should just run tests with both data
layouts (provided independently on my homepage)  and pick their  layout  based on the
results of this benchmark.



References

[BVP] Goodnight, Woolley, Lewin, Luebke, Humphreys: A multigrid solver for boundary-
value problems using programmable graphics hardware

[GPGPU] General Purpose Computations on Graphics Hardware, http://www.gpgpu.org

[GPUBENCH] http://graphics.stanford.edu/projects/gpubench/

[PARANOIA] Hillesland, Lastra: GPU floating-point paranoia,
http://www.cs.unc.edu/~ibr/projects/paranoia/

[PINGPONG] Göddeke: Playing Ping Pong with Render-To-Rexture and Cg,
http::www.mathematik.uni-dortmund.de/~goeddeke

[RT] RenderTexture-2.0.3 by Mark J. Harris, http://www.sourceforge.net/projects/gpgpu


