The GPU as a co-processor
In FEM-based simulations

Preliminary results

Dipl.-Inform. Dominik Géddeke

dom ni k. goeddeke@rat hemat i k. uni - dor t nund. de

Institute of Applied Mathematics
University of Dortmund

GPUs as FEM co-processors — Dominik Goddeke Slide /16

Outline

e Motivation and general introduction (Robert)
e Techniques and data layouts

e Performance of basic numerical linear algebra
components

e Efficiency vs. accuracy using 16bit floating point
arithmetics

e Towards "numerical GIGAFLOP/s”
e Discussion

GPUs as FEM co-processors — Dominik Goddeke Slide 2/16

Hardware y 4

All tests presented have been implemented in OpenGL + Cg
on a Windows box.

GPUs as FEM co-processors — Dominik Goddeke Slide 3/16

Hardware

All tests presented have been implemented in OpenGL + Cg

on a Windows box.

Four different systems have been evaluated:

e AMD Opteron (1800 MHz) as CPU reference with
SBBLAS benchmark linked to GOTO BLAS (check
Christian’s talk for details)

e NVIDIA 5950Ultra (NV30, 450 MHz, 4 vertex—, 8
fragment pipelines, 256bit memory interface, 425 MHz

GDDR)

e NVIDIA 6800 (NV40, 350 MHz, 5 vertex—, 12 fragment
pipelines, 256bit memory interface, 500 MHz GDDR?2)

e NVIDIA 6800GT (NV40, 350 MHz, 6 vertex—, 16
fragment pipelines, 256bit memory interface, 500 MHz

GDDR?2), courtesy of Hendrik Becker R (JH |
k |

LS3

GPUs as FEM co-processors — Dominik Goddeke Slide 3/16

Techniques

All GPU implementations are based on the following
techniques. Visit my homepage for detailed tutorials and

code examples.

e Render-to-texture and "ping-ponging” between
double-sided offscreen surfaces for fast iteration-type
algorithms with data reuse.

e All calculations are performed in the fragment pipeline,
the vertex pipeline is used to generate data which is
uniformly interpolated by the rasterizer (e.g. array

indices).

e Multitexturing and multipass partitioning for maximum

efficiency.

GPUs as FEM co-processors — Dominik Goddeke

Slide 4/16

Data layouts ~

Current NVIDIA GPUs support the following three major
render target formats:

GPUs as FEM co-processors — Dominik Goddeke Slide 5/16

Data layouts

Current NVIDIA GPUs support the following three major
render target formats:

e one 32 bit floating point value (LUMINANCE, s23e8
IEEE-like, memory imprint 32 bits), used to store a
single vector

e four 32 bit floating point values (RGBA32, s23e8,
memory imprint 128 bits), used to "solve four systems
simultaneously” (no dependencies between different
channels, but different data in each channel).

e four 16 bit floating point values (RGBA16, s10e5,
memory imprint 64 bits), again to "solve four systems
simultaneously”.

Remark: ATI only supports one to four 24 bit channels.

| J"k |
LS3

GPUs as FEM co-processors — Dominik Goddeke

Slide 5/16

Numerical linear algebra (I)

The following low-level building blocks for FEM codes have
been mapped to the GPU:

BLAS SAXPY C. 2N flops.y, =y; +ax;, i=1...N
SAXPY_V 2N ﬂOpS: Vi=V:+ax;, t=1...N

MV _V for a 9-banded FEM (@) matrix with variable
coefficients: 18 N flops, implemented as a series of 9
SAXPY _V operations with appropriate zero padding:

y =y + Ax

DOT: 2N flops, implemented as a logarithmic
reduction: y = S\ a;b;

NORM 2N flops, implemented as a logarithmic
reduction: y = \/Zfll aa;

o

| J’k : "“
LS3

GPUs as FEM co-processors — Dominik Goddeke

Slide 6/16

Numerical linear algebra (ll) ~

MFLOP/s rates for LUMINANCE data structure:

GPUs as FEM co-processors — Dominik Goddeke Slide 7/16

Numerical linear algebra (ll) ~

MFLOPs MANTARAY

MFLOP/s rates for LUMINANCE data structure:

7000 7000 7000
6000 6000 6000
5000 5000 5000
3 8
4000 3 4000 ® 4000
n ©
2 2
o o
\ g 9
3000 T 3000 I 3000
\ = = /
2000 2000 2000 /
1000 —— 1000 o 1000 /
0) 0 / | 0 |
1024 65e3 4e6 1024 65e3 4e6 1024 65e3 4e6
N N N
CPU GF 5950 GF 6800

L3

GPUs as FEM co-processors — Dominik Goddeke Slide 7/16

Numerical linear algebra (ll) ~

MFLOP/s rates for LUMINANCE data structure:

7000 7000 7000
6000 6000 6000
5000 5000 5000
>
<
Z 2 S
~ 4000 o 4000 © 4000
= n ©
" 2]
< g 2
o \ S S
Q3000 L 3000 i 3000
S s s
s
2000 “ 2000 2000 /‘
N —— N } o /
1

0 0 L 0 L
1024 65e3 4e6 1024 65e3 4e6 1024 65e3 4e6

CPU " GF 5950 " GF 6800 "

SAXPY C SAXPY V

L3

GPUs as FEM co-processors — Dominik Goddeke Slide 7/16

Numerical linear algebra (ll)

MFLOPs MANTARAY

MFLOP/s rates for LUMINANCE data structure:

7000

6000

7000

5000

4000

3000

2000

1000

6000
5000
3
& 4000
z
\ 2 2000
\ s
\ 2000
\\ ~ 1000 /F__\ |
, , ====::::=z::::::44— |
65e3 4e6 1024 65e3
CPU " GF 5950 "

4e6

SAXPY C SAXPY V MWV

MFLOP/s 6800

7000

6000

5000

4000

3000

2000

1000

|

/a

pd

0
1024 65e3 4e6

GF 6800 "

L3

GPUs as FEM co-processors — Dominik Goddeke Slide 7/16

Numerical linear algebra (ll) ~

MFLOP/s rates for LUMINANCE data structure:

7000 7000 7000
6000 6000 6000
5000 5000 5000
4000 \ 4000 4000

MFLOP/s 5950
MFLOP/s 6800

MFLOPs MANTARAY

3000 \k\ 3000 3000 //
2000 2000 2000 A |
k\\ P _ // /
1000 , 1000 — 1000
3
0 L 0 L 0 L
1024 653 4e6 1024 653 4e6 1024 653 4e6

CPU " GF 5950 " GF 6800 "

SAXPY C SAXPY V MV_V DOT

GPUs as FEM co-processors — Dominik Goddeke Slide 7/16

Numerical linear algebra (ll)

MFLOPs MANTARAY

MFLOP/s rates for LUMINANCE data structure:

7000

6000

5000

4000

3000

2000

1000

2\
QNN

0
1024

I
65e3

CPU "

MFLOP/s 5950

7000

6000

5000

4000

3000

2000

1000

%.ﬁ

0
1024 65e3

GF 5950 "

4e6

MFLOP/s 6800

7000

6000

5000

4000

3000

2000

1000

////75'

S

0
1024 65e3 4e6

SAXPY C SAXPY V MV _V DOT NORM

GF 6800 "

o
[‘S \. -
"

L3

GPUs as FEM co-processors — Dominik Goddeke Slide 7/16

Numerical linear algebra (lll) ~

MFLOP/s rates for RGBA32 data structure:

L3

GPUs as FEM co-processors — Dominik Goddeke Slide 8/16

Numerical linear algebra (lII) ~

MFLOPs MANTARAY

MFLOP/s rates for RGBA32 data structure:

7000 7000 7000
6000 6000 6000
5000 5000 5000
3 3
4000 & 4000 & 4000
n ©
@ @
o o
\ o] o
3000 T 3000 T 3000
\ = =
2000 2000 /\\ 2000
1000 — 1000 1000
o . o / | i / |
1024 65€e3 4e6 1024 65€e3 4e6 1024 653 4e6
N N N
CPU GF 5950 GF 6800

L3

GPUs as FEM co-processors — Dominik Goddeke Slide 8/16

Numerical linear algebra (lII)

MFLOPs MANTARAY

MFLOP/s rates for RGBA32 data structure:

7000

6000

7000

6000

5000

5000

4000

4000

3000

MFLOP/s 5950

3000

2000

1000

2000

\ : 1000
1

0
65e3 4e6 1024 65e3 4e6

PN

A
d

GF 5950 "

SAXPY C SAXPY V

MFLOP/s 6800

7000

6000

5000

4000

3000

2000

1000

e

_—

2024 6;&3 4e6
GF 6800 "
00'“ "
Q. —
'3 U
X

L3

GPUs as FEM co-processors — Dominik Goddeke Slide 8/16

Numerical linear algebra (lII) ~

MFLOP/s rates for RGBA32 data structure:

7000 7000 7000
6000 6000 6000
5000 5000 5000
>
5 o o
= 4000 & 4000 & 4000
= o) ©
S o)
= \ % %
[
& 3000 T 3000 I 3000
| = >
(TR
o “ - N o
1000 xg‘ 1000 / ——————— 1000 -
0 L 0 L 0 L
1024 65e3 4e6 1024 65e3 4e6 1024 65e3 4e6
N N N
CPU GF 5950 GF 6800

SAXPY C SAXPY V MWV

L3

GPUs as FEM co-processors — Dominik Goddeke Slide 8/16

Numerical linear algebra (lII) ~

MFLOP/s rates for RGBA32 data structure:

7000 7000 7000
6000 6000 6000
5000 5000 5000

>

<

E \ 3 S

= 4000 & 4000 & 4000

= o) ©

S))

= o o

2 \\ 0 S

& 3000 T 3000 T 3000

| \\ = >

=
- “\ h %& o
1000 N ; E 1000 / ——————— 1000 |-

0 L 0 0 L
1024 65e3 4e6 1024 65e3 4e6 1024 65e3 4e6

CPU " GF 5950 " GF 6800 "

SAXPY C SAXPY V MV_V DOT

GPUs as FEM co-processors — Dominik Goddeke Slide 8/16

Numerical linear algebra (lII) ~

MFLOP/s rates for RGBA32 data structure:

7000 7000 7000
6000 6000 6000
5000 5000 5000
>
: \ 5 .
= 4000 & 4000 & 4000
= o) ©
S o)
= \ % %
[
& 3000 T 3000 I 3000
| \\ = >
s
1000 N ; E 1000 / rrrrrrr 1000 |
0 . o //‘—_— 0 I
1024 65e3 4e6 1024 6563 4e6 1024 65e3 4e6
N N N
CPU GF 5950 GF 6800

SAXPY C SAXPY V MV _V DOT NORM

L3

GPUs as FEM co-processors — Dominik Goddeke Slide 8/16

Numerical linear algebra (lII) ~

MFLOP/s rates for RGBA32 data structure:

7000 7000 7000
6000 6000 6000
LUMINANCE
5000 5000 5000
>
: \ ; :
= 4000 & 4000 & 4000
z o o
i \\ 5 5
& 3000 T 3000 I 3000
: \\ E 2 .
= //%
2000 \ 2000 AN 2000
1000 k‘: \\; E 1000 / m 1000 //y /§
0 . o //‘—_— i / I
1024 65e3 4e6 1024 65e3 4e6 1024 65e3 4e6
CPU " GF 5950 " GF 6800 "

SAXPY C SAXPY V MV _V DOT NORM

L3

GPUs as FEM co-processors — Dominik Goddeke Slide 8/16

Numerical linear algebra (1V) ~

MFLOP/s rates for RGBA16 data structure:

L3

GPUs as FEM co-processors — Dominik Goddeke Slide 9/16

Numerical linear algebra (IV)

MFLOPs MANTARAY

MFLOP/s rates for RGBA16 data structure:

7000

6000

5000

4000

3000

MFLOP/s 5950

2000

1000

0
1024

CPU

7000

6000

5000

4000

3000

2000

1024

N\

/

J

1000 /
0

I
65e3

GF 5950 "

SAXPY C

4e6

MFLOP/s 6800

7000

6000

5000

4000

3000

2000

1000

0
1024

/\

/

/

/

GF 6800

1
65e3 4e6
N

L3

GPUs as FEM co-processors — Dominik Goddeke

Slide 9/16

Numerical linear algebra (IV)

MFLOP/s rates for RGBA16 data structure:

5000
o
< 4000
g 3000 \
|
2000
1000
0
1024
CPU

\
A\

1
65e3 4e6
N

MFLOP/s 5950

5000

4000

3000

2000

1000

///f_——-———‘\\\\\\\\----- §

S
T 3000

\

/N
J

|

GF 5950 "

SAXPY C SAXPY V

5000

4000

2000

1000

/\

L
/

o/

GF 6800 "

J
Qo
o

-
o R
e]
5 % o
Y <
L}
]
& (

9

L3

GPUs as FEM co-processors — Dominik Goddeke Slide 9/16

Numerical linear algebra (IV) ~

MFLOP/s rates for RGBA16 data structure:

5000 5000 5000
%
g 2 ——\ 8
'E 4000 2 4000 2 4000 \
< £ 2
= o 1 a
0 \ S 9
% 3000 T 3000 —— o 3000
9 = =
[T
=

\ /O Vi
NS //
“cpu v © GFs950 ™ © TGFesoo v

SAXPY C SAXPY V MWV

L3

GPUs as FEM co-processors — Dominik Goddeke Slide 9/16

Numerical linear algebra (IV)

MFLOP/s rates for RGBA16 data structure:

\]t
= |4 S~ 1/

CPU v e GF 5950 °* e GF 6800 "

SAXPY C SAXPY V MV_V DOT

L3

GPUs as FEM co-processors — Dominik Goddeke Slide 9/16

Numerical linear algebra (IV)

MFLOP/s rates for RGBA16 data structure:

5000 5000 5000
>
24 o o
£ 4000 2 4000 N\ 2
Z \ P / o / / 7\
< @ At @
= o o
o o
g 3000 \ T 3000 e T 3000
9 = 3 =
s
S~ S 1000 / 1000 /
0 J/. 0 Z/I
4e6

CPU v e GF 5950 " GF 6800 "

SAXPY C SAXPY V MV _V DOT NORM

o
[d \. -
"

L3

GPUs as FEM co-processors — Dominik Goddeke Slide 9/16

Conclusions and Questions

Conclusions:

e GPUs outperform recent CPUs up to a factor of 5 for
single precision arithmetics.

e GPUs only show their true potential for interesting
problem sizes that crash the CPU cache.

e Different GPUs behave differently for solving single
and quadruple tasks. Appropriate data layouts must be
chosen independently for each GPU.

e GPU performance doubles to quadruples for 16 bit
floating point arithmetics compared to 32 bit
arithmetics.

o

| J’k : "“
LS3

GPUs as FEM co-processors — Dominik G6ddeke Slide 10/16

Conclusions and Questions

Conclusions:

e GPUs outperform recent CPUs up to a factor of 5 for
single precision arithmetics.

e GPUs only show their true potential for interesting
problem sizes that crash the CPU cache.

e Different GPUs behave differently for solving single
and quadruple tasks. Appropriate data layouts must be
chosen independently for each GPU.

e GPU performance doubles to quadruples for 16 bit
floating point arithmetics compared to 32 bit
arithmetics.

Questions:

e How can the 16bit performance be achieved while
maintaining 32bit accuracy?

e \What about the 40 GFLOP/s that were announced?

GPUs as FEM co-processors — Dominik G6ddeke Slide 10/16

Accuracy issues with 16 bits

Test case: Solve Ax = 0 with 9-band-stencil matrix A and
random input x. Use Jacobi scheme based on W_V
operator (as prototype for preconditioner and smoother in

Krylov space methods) and RGBA (“four independent
systems simultaneously”).

b

GPUs as FEM co-processors — Dominik Goddeke

Slide 11/16

Accuracy issues with 16 bits o

Test case: Solve Ax = 0 with 9-band-stencil matrix A and
random input x. Use Jacobi scheme based on W_V
operator (as prototype for preconditioner and smoother in
Krylov space methods) and RGBA (“four independent
systems simultaneously”).

100

32bit Residual e
32bit Error e

0.01

\

Norm of Residuals / Errors

1 1 1 1 1 1
0 10000 20000 30000 40000 50000 60000 70000
Jacobi Iterations

CED
‘?u‘a)‘*{'Eé
i

lz?‘.’:j |
L3

GPUs as FEM co-processors — Dominik Goddeke Slide 11/16

b

Accuracy issues with 16 bits

Test case: Solve Ax = 0 with 9-band-stencil matrix A and
random input x. Use Jacobi scheme based on W_V
operator (as prototype for preconditioner and smoother in
Krylov space methods) and RGBA (“four independent
systems simultaneously”).

100

32bit Residual =—
32bit Error

16bit Residual e
16bit Error e
1
= =
001 K

Norm of Residuals / Errors

1 1 1 1 1 1
0 10000 20000 30000 40000 50000 60000 70000
Jacobi Iterations

J

ﬂ) [
* K2
L3

GPUs as FEM co-processors — Dominik Goddeke Slide 11/16

Accuracy issues with 16 bits

Test case: Solve Ax = 0 with 9-band-stencil matrix A and
random input x. Use Jacobi scheme based on W_V
operator (as prototype for preconditioner and smoother in
Krylov space methods) and RGBA (“four independent
systems simultaneously”).

100
32bit Residual =—

32bit Error
16bit Residual

16bit Error e
1
0.01 \

Norm of Residuals / Errors

e-08 Il Il Il Il Il Il
0 10000 20000 30000 40000 50000 60000 70000
Jacobi Iterations

"Half precision” floats are insufficient for applications beyond 12 (H
visual accuracy. But: Gaining at least one or two decimalsis |3

possible, making the use as preconditioner feasible! L3

_|

GPUs as FEM co-processors — Dominik G6ddeke Slide 11/16

b

Proof of concept

Use fast 16bit processing as preconditioner, update result
"occasionally” with single or double precision. All GPUs
tested so far show identical floating point accuracy.

GPUs as FEM co-processors — Dominik Goddeke Slide 12/16

Proof of concept

Use fast 16bit processing as preconditioner, update result
"occasionally” with single or double precision. All GPUs
tested so far show identical floating point accuracy.

1.

Calculate defect:
dB32) = AB2)x(2) _p(32) o — Hd(?’Q)H-

Check some convergence criterion.

4. Shift solution: b(16) = 4(32) x(16) — (o,

Perform m Jacobi steps to "solve” A(16)x(16) — 1(16),

Shift corrected solution back:
x(32) — (32) _ +(16)

GPUs as FEM co-processors — Dominik G6ddeke Slide 12/16

Proof of concept

Use fast 16bit processing as preconditioner, update result
"occasionally” with single or double precision. All GPUs
tested so far show identical floating point accuracy.

1.

Calculate defect:
d(32) — AB2)x(32) _ p(32) o = |dB32)||. CPU or GPU

Check some convergence criterion.
CPU

Shift solution: b(16) = d(32) x(16) — (o,
GPU or AGP transfer

Perform m Jacobi steps to "solve” A(16)x(16) = 1(16),
GPU

Shift corrected solution back:

9" PP

X Zx) 400 K3 GF»
GPU or AGP transfer A2 4
LS3
GPUs as FEM co-processors — Dominik G6ddeke Slide 12/16

Proof of concept

Use fast 16bit processing as preconditioner, update result
"occasionally” with single or double precision. All GPUs
tested so far show identical floating point accuracy.

1.

o 0k w0

Calculate defect:
dB32) = AB2)x(2) _p(32) o — Hd(?’Q)H-

Check some convergence criterion.

Apply scaling by defect: d©3?) = 1/a * d?),

Shift solution: b(16) = d(32), x(16) = @,

Perform m Jacobi steps to "solve” A(16)x(16) — 1(16),

Shift corrected solution back:
X(32) — X(32) — W k Oz*X(16).

Apply damping by w and scaling by norm of defect for better

convergence and to keep well within the dynamic range of E Qﬂl
the 16bit "half precision” data type. L LS3 .
GPUs as FEM co-processors — Dominik G6ddeke Slide 12/16

Proof of concept

Results:

Norm of Residuals / Errors

100

0.01

le-04

1le-06

1le-08

32bit Residual
32bit Error

16bit Residual e
16bit Error e

10000 20000 30000 40000 50000 60000 70000
Jacobi Iterations

GPUs as FEM co-processors — Dominik Goddeke

(%

.08

J

Py o)

Slide 13/16

Proof of concept ~

Results:

100

32bit Residual
32bit Error
16bit Residual
16bit Error
1 Mix Residual e

H=HOf

0.01

le-04

Norm of Residuals / Errors

1le-06

1e-08 | | | | | |
0 10000 20000 30000 40000 50000 60000 70000

Jacobi Iterations

GPUs as FEM co-processors — Dominik Goddeke Slide 13/16

Proof of concept

Results:

32 bit Jacobi iteration: ~ 1100 MFLOPSs, 70K iterations
16 bit Jacobi iteration: ~ 3800 MFLOPS, oo iterations
Norm: ~ 2000 MFLOPs

Combined scheme with correction on CPU:
~ 800 — 1200 MFLOPs (depending on problem size),
40K iterations

Combined scheme running completely on GPU:

~ 3500 MFLOPs (independent of problem size), 40K
iterations

GPUs as FEM co-processors — Dominik G6ddeke Slide 13/16

Proof of concept

Results:

32 bit Jacobi iteration: ~ 1100 MFLOPSs, 70K iterations
16 bit Jacobi iteration: ~ 3800 MFLOPS, oo iterations
Norm: ~ 2000 MFLOPs

Combined scheme with correction on CPU:
~ 800 — 1200 MFLOPs (depending on problem size),
40K iterations

Combined scheme running completely on GPU:
~ 3500 MFLOPs (independent of problem size), 40K
iterations

Questions:

When should the update be performed?

Can this be predicted a priori to avoid heavy data
transfer to CPU?

GPUs as FEM co-processors — Dominik Goddeke Slide 13/16

How to get closer to peak performance?

"Data moving is expensive, not data processing” is valid for
GPUs as welll On GPUs, this can be quantified with the
arithmetic intensity (number of flops per texture lookup) of
Implementations.

GPUs as FEM co-processors — Dominik Goddeke Slide 14/16

How to get closer to peak performance?

"Data moving is expensive, not data processing” is valid for
GPUs as well! On GPUs, this can be guantified with the
arithmetic intensity (number of flops per texture lookup) of
Implementations.

Test case:
e Fetch value x; from long vector / texture x,
i=1,...,10242.

e Compute z; = x; + 2% + a3 +xf + ...+ 2.
e Rewrite Horner-style: degree m yields 2m — 1 flops.

o B
A2 J
1S3

GPUs as FEM co-processors — Dominik Goddeke

Slide 14/16

How to get closer to peak performance?

"Data moving is expensive, not data processing” is valid for
GPUs as well! On GPUs, this can be guantified with the
arithmetic intensity (number of flops per texture lookup) of

Implementations.
30000 30000 30000
25000 25000 25000
20000 20000 ~ 20000
i 8 3
2 15000 2 15000 £ 15000
T T 9
= = s
10000 10000 10000 |-
5000 [5000 ’ 5000
Ou 1 1 1 1 1 1 1 1 1 ot 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1
0O 20 40 60 80 100 120 140 160 180 200 0O 20 40 60 80 100 120 140 160 180 200 0 20 40 60 80 100 120 140 160 180 200
Intensity Intensity Intensity
GF 5950 GF 6800 GF 6800GT*

* courtesy of Hendrik Becker

LS3

GPUs as FEM co-processors — Dominik Goddeke Slide 14/16

How to get closer to peak performance?

"Data moving is expensive, not data processing” is valid for
GPUs as well! On GPUs, this can be guantified with the
arithmetic intensity (number of flops per texture lookup) of

unplementatlons.
30000 30000 30000
25000 25000 25000
20000 20000 — 20000
3 S)
2 8 2
£ o ©
& 15000 & 15000 T 2 15000
] — o
o o prt
= = E
10000 10000 10000 A
5000 5000 f, 5000
0 0 1 1 1 1 1 1 1 1 1 O

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
0O 20 40 60 80 100 120 140 160 180 200 0O 20 40 60 80 100 120 140 160 180 200 0 20 40 60 80 100 120 140 160 180 200
Intensity Intensity Intensity

GF 5950 GF 6800 GF 6800GT™

LUMINANCE RGBA32

* courtesy of Hendrik Becker

GPUs as FEM co-processors — Dominik Goddeke Slide 14/16

How to get closer to peak performance?

MFLOP/s 5950

"Data moving is expensive, not data processing” is valid for
GPUs as well! On GPUs, this can be guantified with the
arithmetic intensity (number of flops per texture lookup) of

Implementations.

30000

25000

20000

15000

10000

5000 (i

0 I I I I I I I I I
0 20 40 60 80 100 120 140 160 180 200

GF 5950

MFLOP/s 6800

30000

25000

20000

15000

10000
5000 v
0 1 1

[

0O 20 40 60 80 100 120 140 160 180 200
Intensity

GF 6800

MFLOP/s 6800GT

30000

S
[-
/

25000

20000

15000

10000

5000

O 1 1 1 1 1 1 1 1 1
0 20 40 60 80 100 120 140 160 180 200
Intensity

GF 6800GT™

-
LUMINANCE RGBA32 RGBA16 Jg G FD)
* courtesy of Hendrik Becker 1 S~
LS3
GPUs as FEM co-processors — Dominik Goddeke Slide 14/16

How to get closer to peak performance?

Realistic goal: 50% peak performance at a moderate
Intensity.

L3

GPUs as FEM co-processors — Dominik Goddeke Slide 15/16

How to get closer to peak performance?

MFLOP/s 5950

Realistic goal: 50% peak performance at a moderate

Intensity.

14000

12000

10000

8000

/]

6000

-

4000 E :
2000

0 1 2

Intensity

GF 5950

3 4

LUMINANCE RGBA32 RGBA16

MFLOP/s 6800

14000

12000

10000

8000

6000

=

0 1

GF 6800

MFLOP/s 6800GT

14000

12000

10000

8000

6000 //
4000

2000
0 ﬁ |

0 1 2

GE 6800GT

ensity

GPUs as FEM co-processors — Dominik Goddeke

Slide 15/16

How to get closer to peak performance?

MFLOP/s 5950

Realistic goal: 50% peak performance at a moderate

Intensity.

14000

12000

10000

8000

6000

0

4000 E ;
2000

0 1 2 3 4

GF 5950

LUMINANCE RGBA32 RGBA16

MFLOP/s 6800

14000

12000

10000

8000

6000

4000

2000

0

GF 6800

MFLOP/s 6800GT

14000

12000

10000

8000

6000

4000

2000

0

Intensity

GF 6800GT

Intensity of all examples presented so far is ~ 1! GFLOP/s =
rate for W_V and JACOBI is within 90% of the measured w‘ ﬂj \
peak for this intensity. A
LS3
GPUs as FEM co-processors — Dominik Goddeke Slide 15/16

Conclusions: Towards numerical GIGAFLOP/s

Short term goal: Investigate further into using fast 16 bit
preconditioning, this way working around the "intensity
barrier”.

GPUs as FEM co-processors — Dominik Goddeke Slide 16/16

Conclusions: Towards numerical GIGAFLOP/s

Short term goal: Investigate further into using fast 16 bit
preconditioning, this way working around the "intensity
barrier”.

Long term goal: Try to reformulate core FEM-multigrid
components to increase their intensity: Assemble on-the-fly?
Smart, complex preconditioners like ILU, ADI and SPAI?

GPUs as FEM co-processors — Dominik Goddeke Slide 16/16

Conclusions: Towards numerical GIGAFLOP/s

Short term goal: Investigate further into using fast 16 bit
preconditioning, this way working around the "intensity
barrier”.

Long term goal: Try to reformulate core FEM-multigrid
components to increase their intensity: Assemble on-the-fly?
Smart, complex preconditioners like ILU, ADI and SPAI?

Software goal: Don’t implement a full solver on the GPU,
Instead include the GPU as a fast preconditioner into the
FEAST framework.

GPUs as FEM co-processors — Dominik GOoddeke

Slide 16/16

Conclusions: Towards numerical GIGAFLOP/s

Short term goal: Investigate further into using fast 16 bit
preconditioning, this way working around the "intensity
barrier”.

Long term goal: Try to reformulate core FEM-multigrid
components to increase their intensity: Assemble on-the-fly?
Smart, complex preconditioners like ILU, ADI and SPAI?

Software goal: Don’t implement a full solver on the GPU,
Instead include the GPU as a fast preconditioner into the
FEAST framework.

Questions? Comments? Your opinion?

GPUs as FEM co-processors — Dominik GOoddeke

Slide 16/16

	Outline
	Hardware
	Techniques
	Data layouts
	Numerical linear algebra (I)
	Numerical linear algebra (II)
	Numerical linear algebra (III)
	Numerical linear algebra (IV)
	Conclusions and Questions
	Accuracy issues with 16 bits
	Proof of concept
	Proof of concept
	How to get closer to peak performance?
	How to get closer to peak performance?
	Conclusions: Towards numerical GIGAFLOP/s

